
CSE696, Spring 2019 Problem Set 1 Due Tue. 3/12

Reading: We are currently in Chapter 7 of the Arora-Barak online text, and at the same time in
Chapter 17 for counting complexity, which they consider an “advanced topic” but others do not.
After proving the amplification theorem for BPP and noting the #P-completeness of #SAT, we will
do the theorems that BPP is contained in the second level of PH and that PH is contained in PPP.
We’ve also covered some material from chapters 3 and 5 also given out.

(1) Show that the language of Turing machines Mi such that Mi is total and L(Mi) is infinite
belongs to

∏
2 by writing a

∏0
2 definition for it. You may regard any decidable predicate as “ground”

requiring no further quantifiers. (The only ones you need here are the Kleene T-predicate T(i, x, c) ≡ c
is a valid halting computation of Mi on input x, a relation U(c) saying c accepts, and basic numerical
comparisons.)

Now how about the language of i such that Mi is total and L(Mi) is finite? Can you prove it
is neither in

∏
2 nor in

∑
2? (One hint: Consider designing a machine that accepts 〈x,m〉 if and only

if Mi accepts x in exactly m steps. 12 + 24 = 36 pts.)

(2) Give a
∑0

3 definition for the language IREC = {i : L(Mi) is decidable}. Note that Mi itself
need not be total. Take it as a fact—we won’t ask for a proof—that

∑0
3 is optimal.

Now suppose F is a sound and effective formal system, meaning it has a decidable proof
predicate P(φ, π) ≡ π is a proof of the sentence φ in F, such that whenever it holds, φ is actually
true. For any TM Mi, we can make a sentence φ = τ(i) from the formula τ(i) = (∀x)(∃c)T(i, x, c). Then
when P(τ(i), π) holds, we call Mi a provably total machine. Use the fact about

∑0
3 and IREC to deduce

that there are decidable languages that are not accepted by any provably total machine. (12 + 12 =
24 pts.)

(3) Define the “anti-index set” of any subclass C of the decidable languages by RC = {i :
τ(i) ∧ L(Mi) < C}. That is, RC is the set of total machines that accept languages outside the class.
Show that for C = P, RC belongs to

∏
2. How about for C = NP? Now try it for C = BPP where you

don’t have a simple recursive enumeration of total machines representing the class, but. . . (30 pts.
total)

(4) Prove that a language A belongs to NP ∩ co-NP if and only if NPA = NP. (24 pts.)

(5) Define H to be the intersection of PA over all oracles A such that NPA = PA. Show the
following facts about H:

(a) PH ⊆ H ⊆ PSPACE.

(b) If PH =
∑p

k =
∏p

k for some k (read as saying that the polynomial hierarchy “collapses” to the
kth level), then H =

∑p
k =
∏p

k too.

(c) If RH <
∏

2 then the polynomial hierarchy is infinite and different from PSPACE and H is
properly between PH and PSPACE.

(d) If H = PH, does that prevent the polynomial hierarchy from being infinite? (Actually, I don’t
know...)

I invented this idea long ago and used “H” to mean a kind of disembodied hierarchy. Except that
maybe H = PH can be proved without major consequences, the idea hasn’t gone anywhere except
as an illustration of grasping and playing with both the logical and complexity concepts. (12 + 9 +
9 = 30 pts. total, possibly more if you do something with (d), for 144 pts. on the set)


