
CSE696 Take-Home Final Spring 2015

(1) Homer-Selman text, exercise 10.5 on page 246: prove that AM ⊆ NP/poly. Optionally,
rather than the “advice” formalism, you’re welcome to define NP/poly via polynomial-size circuits
with oracle gates for a language in NP. (24 pts.)

(2) Lipton-Regan text, exercise 10.6 on page 96. Also answer whether Shor’s algorithm is
applicable and what its success probability would be. (30 pts. total)

(3) Given two polynomials f, g in variables x1, . . . , xn over a field F , say that f is “Boolean
equivalent” to g if every arithmetical formula φ for f can be transformed into a formula ψ for g
by arithmetical operations and substitutions of the form xai 7→ xbi (a, b ≥ 1). The substitutions
do not have to apply to all occurrences of the variable the same way. For instance, given φ =
(x1 + 3x2)(2x1 − 6x2x

2
1 + 1), you can first multiply out to get

2x2
1 − 6x3

1x2 + x1 + 6x1x2 − 18x2
1x

2
2 + 3x2.

Then you can substitute x1 7→ x3
1 in the fourth term to make it cancel the second term, and x2

1 7→ x1

in the first term to make it conjoin with the third, leaving

ψ = 3x1 − 18x2
1x

2
2 + 3x2,

which can ultimately be reduced to the multilinear polynomial (formula) 3(x1 + x2 − 6x1x2).

You might expect that every case of equivalence should be accomplished by a short trans-
formation that works in O(n) substitutions and something like O(n2) overall bit-steps including the
increased sizes of constants, but read on. . .

(a) Prove that the above definition of “Boolean equivalent” is equivalent to f(x) = g(x) for all
x ∈ { 0, 1 }n. That is, f and g coincide on 0-1 arguments, though they might not over F in
general. (It may help you to prove as a lemma that there is a unique f̂ equivalent to f that is
multilinear .)

(b) Show that it is NP-hard to tell whether a given formula φ is Boolean-equivalent to zero. Is
non-equivalence NP-complete?

(c) Hence say what would follow if every formula φ that is Boolean-equivalent to zero has a short
transformation to zero. Also explain briefly why this doesn’t contradict the fact that polynomial
identity testing belongs to co-RP. (21 + 9 + 6 = 36 pts. total)

(4) Regarding the protocol in Chapter 12, Section 12.5.1, to prove a value

K =
∑

x∈{0,1}n
f(x),

one point that might be obscured by the inductive presentation is that the verifier V needs to know f
in order to verify at the end that vn = f(r1, r2, . . . , rn). This can become an issue when we combine
with the issues in problem (3), where in particular the unique multilinear f̂ might not be knowable to
V given f .

(a) Show that if V knows f̂ , then the protocol can be restricted to work with every polynomial
p(xi) communicated by the Prover being linear , i.e., of the form Aixi +Bi. Describe the whole
protocol, following text as guide.



(b) What, then, is the probability of V catching either a wrong initial value of K or a dishonest
prover when the revised protocol is run over the field Fq with q prime?

(c) What can you say about the complexity of the problem, given f and values r1, . . . , rn ∈ F, of
computing f̂(r1, . . . , rn)? (In any event, you can conclude that having an IP protocol for this
one problem would then enable you to use your proof in (a) as an alternate to the text’s proof
of PSPACE ⊆ IP. 24 + 6 + 6 = 36 pts.)

(5) Suppose we have a polynomial-time decidable relation R(x, y) with |y| = p = p(|x|) that
defines a language L in NP. For any x, define S = {y : R(x, y)} as usual. Then define the (n+p)-qubit
quantum state

Φx =
1√
S

∑
y∈S

ex ⊗ ey

if x ∈ L, and define Φx = 1
2p/2

∑
y ex ⊗ ey otherwise. Whenever x ∈ L, measuring Φx always gives a

witness y drawn uniformly at random from S. Hence the ability to build Φx in random (quantum)
polynomial time would put NP ⊆ BQP.

Let us further suppose that given any oracle language A ∈ BQP and relation RA(x, y) derived
from a poly-time oracle NTM NA, one can build poly-size quantum circuits C that given x construct
the state

ΦA
x =

1√
S

∑
y∈S

ex ⊗ ey,

where S = { y : RA(x, y) } if x ∈ L(NA) and S = { 0, 1 }p otherwise.

(a) Show that then the entire polynomial hierarchy would be inside BQP.

(b) Make the argument of (a) work even if we can only build a less-helpful quantum state ΨA such
that when we measure the ancilla qubit i, we get 1 with probability pi = Pry∈S [yi = 1]. (Hint:
When y is unique then ΨA

x gives bit yi with certainty and so is just as helpful as ΦA
x . When y is

not unique then even measuring all i might not give a witness: if S = { 0p, 1p } the result is the
same “random noise” pi = 0.5 as when x /∈ L(NA).)

(c) For a “side question,” can you give the notation for the state ΨA? It is a non-entangled state
and so has a tensor product in place of the

∑
y summation. (18 + 18 + 3 = 39 pts., for 165

total)

Footnote: It is not known whether BQPBQP = BQP in any kind of analogy to BPPBPP = BPP.
Evidently because of this, it seems not known whether NP ⊆ BQP alone suffices to collapse the poly-
nomial hierarchy inside BQP. Nor is BQP ⊆ PH known the way we saw BPP ⊆ Σp

2∩Πp
2 in the course; I

have an idea for BQP ⊆ Σp
3∩Πp

3 but there are oracles D relative to which BQPD is not PHD at all. One
can abstract the above handling of “Φx” into a notion of “BPQP” where a non-quantum BPP-machine
(or really a ZPP-machine) builds with high probability a quantum circuit which is then evaluated to
build a state whose measurement gives a witness with high probability. The idea is that unlike when
you relativize BQPC , the oracle machine uses only classical randomness to make queries and certainly
can’t superpose its queries like with Deutsch’s Algorithm. I still couldn’t show BPQPBPQP = BPQP,
however. If you can get that or some other way to make the mechanism of Toda’s Theorem work
without “piggybacking” the oracle A as above, then this is open-ended large extra-credit.

Despite the length and variety of the elements in this problem, the answers follow patterns
of lectures and earlier HW and don’t have to be much longer than this footnote. At least it’s one
question that combines most of the parts of the course. Happy solving. . .


