Problem Set 3

Reading:

We are in Chapter 9 (on crypto) but wil transit to chapter 20 (on de-randomization) after the next lecture which is on pseudorandom generators (PRGs).

(1) Define a language *A* to be *downward self-reducible* if there is a polynomial-time oracle TM *M* such that for all *n*,

$$A^{=n} = L(M^{A^{< n}}).$$

That is, the status of any string of length *n* can be resolved by querying the status of strings of lengths < n. SAT is downward self-reducible because ϕ is satisfiable iff at least one of $\phi_0 = \phi[x_1 = 0]$ and $\phi_1 = \phi[x_1 = 1]$ is satisfiable—and because ϕ_0 and ϕ_1 have shorter encodings since they have one fewer variable.

Show that every such language A belongs to PSPACE. (18 pts.)

(2) Given a number $K = 2^k$, call a number m "top mod K" if $K/2 \le (m \pmod{K}) \le K-1$. First, find a polynomial $p_k(x, y)$ such that for all natural numbers x and y,

 $p_k(x, y)$ is top mod $K \iff x$ is top mod K and y is top mod K.

For a hint, the famous Lucas Lemma states that a binomial coefficient $\binom{n}{m}$ is even iff for some bit *i* in the standard binary representations of *m* and *n*, $n_i = 0$ and $m_i = 1$.

What is the degree of your polynomial? Show that if you could construct p_k of degree $k^{O(1)}$ in time $k^{O(1)}$ then PSPACE would equal $P^{\#P}$. (36 pts. total)

(3) Let $[f_n]$ be an ensemble with each f_n a function from $\{0, 1\}^{2n}$ to $\{0, 1\}^n$. Suppose that for each n and $w \in \{0, 1\}^n$ there is a string $s_w \in \{0, 1\}^n$ such that for all $x, y \in \{0, 1\}^n$,

$$f_n(wx) = f_n(wy) \iff x = y \lor x = y \oplus s_w$$

where \oplus means bitwise XOR. The functions f_n are given as black boxes: if w is given and Arthur nominates a string z such that for some x, f(wx) = z, then Merlin can produce x and they both can see a trusted intermediary (Sir Gawain) verify that $f_n(wx) = z$. Note that w makes f_n induce a 1-to-1 function f_w from $\{0,1\}^n$ to $\{0,1\}^n$ if and only if $s_w = 0^n$.

Show that with these (somewhat artificial) settings, the problem, given w, of whether $s_w = 0^n$ belongs to AM \cap co-NP. (24 pts. total)

(4) Let *C* be a collection of oracle Turing machines which define an ordinary class of languages C^A for any language *A*. We will in fact consider oracles of the form $A \cup 1R$ where *R* is a finite source of randomness. (The notation $0A \cup 1B$ is often written $A \oplus B$ or $A \oplus B$ and called *join* or *marked union*.) The class *C* by itself just means C^{\emptyset} . The *C*-machines *M*

are total and hence have the property that there is a computable function r(n) such that for all oracles A and inputs x, $M^A(x)$ makes no query of length more than r(|x|). (Proving this could be an exercise in itself—it is a consequence of *König's Lemma* applied to the tree of possible computations of $M^A(x)$ over all oracles A.) Note that $\mathcal{R}_n = \{0, 1\}^{2^{r(n)+1}-1}$ thus covers all queries $M^{(\cdot)}$ can possibly make on inputs of length n.

Define "Almost-C" to be the class of languages *L* such that for some *C*-machine *M* (with associated r(n) function, which here is a polynomial) and all *n*,

$$\Pr_{R\in\mathcal{R}_n}[(\forall x\in\Sigma^n):L(x)=M^R(x)]>3/4.$$

We can also define 'Almost– $C^{A''}$ relative to any oracle A by making the body be $L(x) = M^{A \uplus R}(x)$ instead. This is a finitistic way of defining the concept without needing to get into details of Lebesgue measure and "0-1 laws"; note that the "3/4" can be amplified to be as close to 1 as desired.

- (a) Show that $BPP[C] \subseteq Almost C$. Your proof should also work for C^A in place of C by the "general nonsense" of "relativization transparency."
- (b) Sticking with the original *C* for simplicity here, can we get BPP^C ⊆ Almost−C? Does it suffice to assert that *C* (as an oracle class) is closed under polynomial-sized conjunctions of queries?
- (c) The converse inclusions are *not* known to hold. However, they *do* hold when *C* is the relativization of NP by polynomial-time oracle NTMs. Moreover they hold when *C* is any \sum_{k}^{p} or \prod_{k}^{p} level of the polynomial hierarchy relativized by polynomial-time alternating TMs that make at most *k* alternations. This is not obvious—it uses a theorem by Nisan and Wigderson that applies to Boolean circuits of constant depth *k* and is touched on in Section 20.2 which we are getting into now—but we can take it as given. Deduce from this and the relativized Sipser-Gacs-Lautemann theorem BPP $\subseteq \sum_{2}^{p} \cap \prod_{2}^{p}$ (which also relativizes) that if $Almost-\mathcal{PH} = Almost-\sum_{k}^{p}$ for any *k*, then the *unrelativized*, real-world polynomial hierarchy collapses to $\sum_{k=2}^{p} \cap \prod_{k=2}^{p}$.

The standard infinitistic phrasing of theorem (by Ronald Book) in (c) is: "If the polynomial hierarchy collapses relative to a random oracle, then it collapses absolutely." This statement is now known to have a counterfactual premise: the set of oracles *A* such that PH^A is infinite has Lebesgue measure 1. See https://rjlipton.wordpress.com/2015/05/08/a-tighter-grip-on-circuit-depth/ if curious. But I've worded this problem so that it can be solved by "local" means within the course structure. (12+6+9 = 27 pts.)

(5) A *matrix game* (of the 2-*player zero-sum* kind) has an $M \times N$ matrix A of real numbers. *Alice* secretly chooses a row *i*, *Bob* a row *j*, and after they reveal their choices, the payoff is A[i, j] to Alice from Bob (so a negative entry means that Bob profits). For example, the game rock(1)-paper(2)-scissors(3) has the matrix

$$\begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}$$

Alice and Bob may employ *randomized strategies* which are represented by vectors α , β with nonnegative entries that sum to 1 (i.e., probability vectors). The expected value under those strategies is then

$$\alpha^T A \beta.$$

The *Minimax Theorem* of John von Neumann and Oskar Morgenstern asserts that every matrix game has a unique value v and probability vectors α_0 , β_0 (not necessarily unique) such that for all alternative strategies α' , β' ,

$$\alpha_0^T A \beta' \ge v$$
 and $\alpha'^T A \beta_0 \le v$

That is, Alice has a randomized strategy α_0 that assures expectation of at least v no matter what Bob does, and Bob has a policy β_0 that asures losing no more than -v per play in the long run, no matter what Alice does—even if she knows what β_0 is—as she can figure out from A given enough "pre-processing" time. In rock-paper-scissors the value is 0 (a *fair game*) and $\alpha_0 = \beta_0 = (1/3, 1/3, 1/3)$: it is in both players' best interests to play uniformly at ranodm. Note that the time for one *play* of the game can be reckoned as the number of bits in any *i* plus the number in any *j* plus the time to compute A[i, j] so as to do the payoff. This allows A to have exponential size $M, N = 2^{n^k}$ for some *k* and still run in $O(n^k)$ time.

Now let us play the following instances of the game, given a language $L \subseteq \{0, 1\}^*$ amd a function s(n) intended to bound the size of Boolean circuits according to the length of their binary string encodings (which can be reckoned as $2m \log_2 r$ where m is the number of wires and r is the number of gates). We presume that $s(n) \ge n \log_2 n$. The matrix $A_{L,s}$ has $M = 2^s = 2^{s(n)}$ rows, one for every (encoding of a) circuit C of size s(n), and $N = 2^n$ columns, one for each possible input string $x \in \{0, 1\}^n$. The payoff is 1 if C(x) = A(x) and -1 if not. Thus Alice chooses a size-s(n) circuit and wins if it gets the correct answer on whether the string Bob chooses belongs to L.

- (a) Let $v_{L,n}$ (for some fixed size function s(n)) stand for the value of the game at length n. Show that $v_L(n) \ge 0$ for all n.
- (b) If the language *L* has circuits of size *s*(*n*), what happens?
- (c) Deduce that there is an *ensemble* $\mathcal{D} = [\mathcal{D}_n]$, each \mathcal{D}_n being a probability distribution on $\{0, 1\}^n$, such that no randomized algorithm that runs in time $s(n)/\log s(n)$ can achieve more than $v_L(n)$ success per play when inputs are drawn according to \mathcal{D} .
- (d) Show nevertheless a sense in which there is a randomized algorithm that "kind-of" runs in time O(s(n)) and achieves success at least a $v_L(n)$ fraction of the time, for any distribution of the inputs.

The notion of a "randomized algorithm" is rather stretched in (d), because it is not accounting for the time needed to sample *circuits* from the optimial minimax distribution computed in part (c). Modulo that, this says that the hardest distributional complexity of *L* equals the best possible performance of a randomized algorithm. (6 + 6 + 9 + 9 = 30 pts., for 135 total on the set)