Reading:

We are in Chapter 9 (on crypto) but will transit to chapter 20 (on de-randomization) after the next lecture which is on pseudorandom generators (PRGs).

(1) Define a language \(A \) to be downward self-reducible if there is a polynomial-time oracle TM \(M \) such that for all \(n \),

\[
A^n = L(M^{A^n}).
\]

That is, the status of any string of length \(n \) can be resolved by querying the status of strings of lengths < \(n \). SAT is downward self-reducible because \(\phi \) is satisfiable iff at least one of \(\phi_0 = \phi[x_1 = 0] \) and \(\phi_1 = \phi[x_1 = 1] \) is satisfiable—and because \(\phi_0 \) and \(\phi_1 \) have shorter encodings since they have one fewer variable.

Show that every such language \(A \) belongs to \(\text{PSPACE} \). (18 pts.)

(2) Given a number \(K = 2^k \), call a number \(m \) “top mod \(K \)” if \(K/2 \leq (m \mod K) \leq K-1 \). First, find a polynomial \(p_k(x, y) \) such that for all natural numbers \(x \) and \(y \),

\[
p_k(x, y) \text{ is top mod } K \iff x \text{ is top mod } K \text{ and } y \text{ is top mod } K.
\]

For a hint, the famous Lucas Lemma states that a binomial coefficient \(\binom{n}{m} \) is even iff for some bit \(i \) in the standard binary representations of \(m \) and \(n \), \(n_i = 0 \) and \(m_i = 1 \).

What is the degree of your polynomial? Show that if you could construct \(p_k \) of degree \(k^{O(1)} \) in time \(k^{O(1)} \) then \(\text{PSPACE} \) would equal \(\text{P}^\#P \). (36 pts. total)

(3) Let \(\{f_n\} \) be an ensemble with each \(f_n \) a function from \(\{0,1\}^{2n} \) to \(\{0,1\}^n \). Suppose that for each \(n \) and \(w \in \{0,1\}^n \) there is a string \(s_w \in \{0,1\}^n \) such that for all \(x, y \in \{0,1\}^n \),

\[
f_n(wx) = f_n(wy) \iff x = y \lor x = y \oplus s_w,
\]

where \(\oplus \) means bitwise XOR. The functions \(f_n \) are given as black boxes: if \(w \) is given and Arthur nominates a string \(z \) such that for some \(x \), \(f(wx) = z \), then Merlin can produce \(x \) and they both can see a trusted intermediary (Sir Gawain) verify that \(f_n(wx) = z \). Note that \(w \) makes \(f_n \) induce a 1-to-1 function \(f_w \) from \(\{0,1\}^n \) to \(\{0,1\}^n \) if and only if \(s_w = 0^n \). Show that with these (somewhat artificial) settings, the problem, given \(w \), of whether \(s_w = 0^n \) belongs to \(\text{AM} \cap \text{co-NP} \). (24 pts. total)

(4) Let \(C \) be a collection of oracle Turing machines which define an ordinary class of languages \(C^A \) for any language \(A \). We will in fact consider oracles of the form \(A \cup 1R \) where \(R \) is a finite source of randomness. (The notation \(0A \cup 1B \) is often written \(A \oplus B \) or \(A \bowtie B \) and called join or marked union.) The class \(C \) by itself just means \(C^\emptyset \). The \(C \)-machines \(M \)
are total and hence have the property that there is a computable function \(r(n) \) such that for all oracles \(A \) and inputs \(x \), \(M^A(x) \) makes no query of length more than \(r(|x|) \). (Proving this could be an exercise in itself—it is a consequence of König’s Lemma applied to the tree of possible computations of \(M^A(x) \) over all oracles \(A \).) Note that \(R_n = \{0, 1\}^{2^{r(n)}+1} \) thus covers all queries \(M^{(i)} \) can possibly make on inputs of length \(n \).

Define “Almost–C” to be the class of languages \(L \) such that for some \(C \)-machine \(M \) (with associated \(r(n) \) function, which here is a polynomial) and all \(n \),

\[
\Pr_{\mathcal{R}_n}[(\forall x \in \Sigma^n) : L(x) = M^{(r(n)}(x)] > 3/4.
\]

We can also define ‘Almost–C\(^A\)” relative to any oracle \(A \) by making the body be \(L(x) = M^{A^{(r)}}(x) \) instead. This is a finitistic way of defining the concept without needing to get into details of Lebesgue measure and “0-1 laws”; note that the “3/4” can be amplified to be as close to 1 as desired.

(a) Show that \(\text{BPP}[C] \subseteq \text{Almost–C}. \) Your proof should also work for \(C^A \) in place of \(C \) by the “general nonsense” of “relativization transparency.”

(b) Sticking with the original \(C \) for simplicity here, can we get \(\text{BPP}^C \subseteq \text{Almost–C} \)? Does it suffice to assert that \(C \) (as an oracle class) is closed under polynomial-sized conjunctions of queries?

(c) The converse inclusions are not known to hold. However, they do hold when \(C \) is the relativization of \(\text{NP} \) by polynomial-time oracle NTMs. Moreover they hold when \(C \) is any \(\Sigma^p_k \) or \(\Pi^p_k \) level of the polynomial hierarchy relativized by polynomial-time alternating TMs that make at most \(k \) alternations. This is not obvious—it uses a theorem by Nisan and Wigderson that applies to Boolean circuits of constant depth \(k \) and is touched on in Section 20.2 which we are getting into now—but we can take it as given. Deduce from this and the relativized Sipser-Gacs-Lautemann theorem \(\text{BPP} \subseteq \Sigma^p_2 \cap \Pi^p_2 \) (which also relativizes) that if \(\text{Almost–C} = \text{Almost–C} \cap \Pi^p_k \) for any \(k \), then the unrelativized, real-world polynomial hierarchy collapses to \(\Sigma^p_{k+2} \cap \Pi^p_{k+2} \).

The standard infinitistic phrasing of theorem (by Ronald Book) in (c) is: “If the polynomial hierarchy collapses relative to a random oracle, then it collapses absolutely.” This statement is now known to have a counterfactual premise: the set of oracles \(A \) such that \(\text{PH}^A \) is infinite has Lebesgue measure 1. See https://rjlipton.wordpress.com/2015/05/08/a-tighter-grip-on-circuit-depth/ if curious. But I’ve worded this problem so that it can be solved by “local” means within the course structure. (12+6+9 = 27 pts.)

(5) A matrix game (of the 2-player zero-sum kind) has an \(M \times N \) matrix \(A \) of real numbers. Alice secretly chooses a row \(i \), Bob a row \(j \), and after they reveal their choices, the payoff is \(A[i, j] \) to Alice from Bob (so a negative entry means that Bob profits). For example, the game rock(1)-paper(2)-scissors(3) has the matrix

\[
\begin{bmatrix}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{bmatrix}
\]
Alice and Bob may employ randomized strategies which are represented by vectors α, β with nonnegative entries that sum to 1 (i.e., probability vectors). The expected value under those strategies is then

$$\alpha^T A \beta.$$

The Minimax Theorem of John von Neumann and Oskar Morgenstern asserts that every matrix game has a unique value v and probability vectors α_0, β_0 (not necessarily unique) such that for all alternative strategies α', β',

$$\alpha_0^T A \beta' \geq v \quad \text{and} \quad \alpha'^T A \beta_0 \leq v.$$

That is, Alice has a randomized strategy α_0 that assures expectation of at least v no matter what Bob does, and Bob has a policy β_0 that asures losing no more than $-v$ per play in the long run, no matter what Alice does—even if she knows what β_0 is—as she can figure out from A given enough “pre-processing” time. In rock-paper-scissors the value is 0 (a fair game) and $\alpha_0 = \beta_0 = (1/3, 1/3, 1/3)$: it is in both players’ best interests to play uniformly at random. Note that the time for one play of the game can be reckoned as the number of bits in any i plus the number in any j plus the time to compute $A[i, j]$ so as to do the payoff. This allows A to have exponential size $M, N = 2^k$ for some k and still run in $O(n^k)$ time.

Now let us play the following instances of the game, given a language $L \subseteq \{0, 1\}^*$ and a function $s(n)$ intended to bound the size of Boolean circuits according to the length of their binary string encodings (which can be reckoned as $2m \log_2 r$ where m is the number of wires and r is the number of gates). We presume that $s(n) \geq n \log_2 n$. The matrix $A_{L,s}$ has $M = 2^r = 2^{s(n)}$ rows, one for every (encoding of a) circuit C of size $s(n)$, and $N = 2^n$ columns, one for each possible input string $x \in \{0, 1\}^n$. The payoff is 1 if $C(x) = A(x)$ and −1 if not. Thus Alice chooses a size-$s(n)$ circuit and wins if it gets the correct answer on whether the string Bob chooses belongs to L.

(a) Let $v_{L,n}$ (for some fixed size function $s(n)$) stand for the value of the game at length n. Show that $v_{L,n} \geq 0$ for all n.

(b) If the language L has circuits of size $s(n)$, what happens?

(c) Deduce that there is an ensemble $D = [D_n]$, each D_n being a probability distribution on $\{0, 1\}^n$, such that no randomized algorithm that runs in time $s(n)/ \log s(n)$ can achieve more than $v_{L,n}$ success per play when inputs are drawn according to D.

(d) Show nevertheless a sense in which there is a randomized algorithm that “kind-of” runs in time $O(s(n))$ and achieves success at least a $v_{L,n}$ fraction of the time, for any distribution of the inputs.

The notion of a “randomized algorithm” is rather stretched in (d), because it is not accounting for the time needed to sample circuits from the optimal minimax distribution computed in part (c). Modulo that, this says that the hardest distributional complexity of L equals the best possible performance of a randomized algorithm. ($6 + 6 + 9 + 9 = 30$ pts., for 135 total on the set)