
CSE696, Spring 2019 Problem Set 3 Due Tue. 4/30

Reading:

We are in Chapter 9 (on crypto) but wil transit to chapter 20 (on de-randomization)
after the next lecture which is on pseudorandom generators (PRGs).

(1) Define a language A to be downward self-reducible if there is a polynomial-time
oracle TM M such that for all n,

A=n = L(MA<n
).

That is, the status of any string of length n can be resolved by querying the status of strings
of lengths < n. SAT is downward self-reducible because φ is satisfiable iff at least one
of φ0 = φ[x1 = 0] and φ1 = φ[x1 = 1] is satisfiable—and because φ0 and φ1 have shorter
encodings since they have one fewer variable.

Show that every such language A belongs to PSPACE. (18 pts.)

(2) Given a number K = 2k, call a number m “top mod K” if K/2 ≤ (m (mod K)) ≤ K−1.
First, find a polynomial pk(x, y) such that for all natural numbers x and y,

pk(x, y) is top mod K ⇐⇒ x is top mod K and y is top mod K.

For a hint, the famous Lucas Lemma states that a binomial coefficient
(n

m

)
is even iff for some

bit i in the standard binary representations of m and n, ni = 0 and mi = 1.

What is the degree of your polynomial? Show that if you could construct pk of degree
kO(1) in time kO(1) then PSPACE would equal P#P. (36 pts. total)

(3) Let [fn] be an ensemble with each fn a function from {0, 1}2n to {0, 1}n. Suppose
that for each n and w ∈ {0, 1}n there is a string sw ∈ {0, 1}n such that for all x, y ∈ {0, 1}n,

fn(wx) = fn(wy) ⇐⇒ x = y ∨ x = y ⊕ sw,

where ⊕ means bitwise XOR. The functions fn are given as black boxes: if w is given and
Arthur nominates a string z such that for some x, f (wx) = z, then Merlin can produce x and
they both can see a trusted intermediary (Sir Gawain) verify that fn(wx) = z. Note that w
makes fn induce a 1-to-1 function fw from {0, 1}n to {0, 1}n if and only if sw = 0n.

Show that with these (somewhat artificial) settings, the problem, given w, of whether
sw = 0n belongs to AM ∩ co-NP. (24 pts. total)

(4) Let C be a collection of oracle Turing machines which define an ordinary class of
languages CA for any language A. We will in fact consider oracles of the form A∪ 1R where
R is a finite source of randomness. (The notation 0A ∪ 1B is often written A ⊕ B or A] B
and called join or marked union.) The class C by itself just means C∅. The C-machines M

are total and hence have the property that there is a computable function r(n) such that for
all oracles A and inputs x, MA(x) makes no query of length more than r(|x|). (Proving this
could be an exercise in itself—it is a consequence of König’s Lemma applied to the tree of
possible computations of MA(x) over all oracles A.) Note that Rn = {0, 1}2r(n)+1

−1 thus covers
all queries M(·) can possibly make on inputs of length n.

Define “Almost−C” to be the class of languages L such that for some C-machine M
(with associated r(n) function, which here is a polynomial) and all n,

Pr
R∈Rn

[(∀x ∈ Σn) : L(x) = MR(x)] > 3/4.

We can also define ‘Almost−CA” relative to any oracle A by making the body be L(x) =
MA]R)(x) instead. This is a finitistic way of defining the concept without needing to get into
details of Lebesgue measure and “0-1 laws”; note that the “3/4” can be amplified to be as
close to 1 as desired.

(a) Show that BPP[C] ⊆ Almost−C. Your proof should also work for CA in place of C by
the “general nonsense” of “relativization transparency.”

(b) Sticking with the original C for simplicity here, can we get BPPC ⊆ Almost−C? Does it
suffice to assert that C (as an oracle class) is closed under polynomial-sized conjunc-
tions of queries?

(c) The converse inclusions are not known to hold. However, they do hold when C is
the relativization of NP by polynomial-time oracle NTMs. Moreover they hold when
C is any

∑p
k or

∏p
k level of the polynomial hierarchy relativized by polynomial-time

alternating TMs that make at most k alternations. This is not obvious—it uses a
theorem by Nisan and Wigderson that applies to Boolean circuits of constant depth
k and is touched on in Section 20.2 which we are getting into now—but we can take
it as given. Deduce from this and the relativized Sipser-Gacs-Lautemann theorem
BPP ⊆

∑p
2 ∩

∏p
2 (which also relativizes) that if Almost−PH = Almost−

∑p
k for any k,

then the unrelativized, real-world polynomial hierarchy collapses to
∑p

k+2 ∩
∏p

k+2.

The standard infinitistic phrasing of theorem (by Ronald Book) in (c) is: “If the polynomial
hierarchy collapses relative to a random oracle, then it collapses absolutely.” This statement
is now known to have a counterfactual premise: the set of oracles A such that PHA is infinite
has Lebesgue measure 1. See https://rjlipton.wordpress.com/2015/05/08/a-tighter-grip-on-
circuit-depth/ if curious. But I’ve worded this problem so that it can be solved by “local”
means within the course structure. (12+6+9 = 27 pts.)

(5) A matrix game (of the 2-player zero-sum kind) has an M × N matrix A of real
numbers. Alice secretly chooses a row i, Bob a row j, and after they reveal their choices, the
payoff is A[i, j] to Alice from Bob (so a negative entry means that Bob profits). For example,
the game rock(1)-paper(2)-scissors(3) has the matrix 0 −1 1

1 0 −1
−1 1 0



https://rjlipton.wordpress.com/2015/05/08/a-tighter-grip-on-circuit-depth/
https://rjlipton.wordpress.com/2015/05/08/a-tighter-grip-on-circuit-depth/

Alice and Bob may employ randomized strategies which are represented by vectors α, βwith
nonnegative entries that sum to 1 (i.e., probability vectors). The expected value under those
strategies is then

αTAβ.

The Minimax Theorem of John von Neumann and Oskar Morgenstern asserts that every
matrix game has a unique value v and probebility vectors α0, β0 (not necessarily unique)
such that for all alternative strategies α′, β′,

αT
0 Aβ′ ≥ v and α′TAβ0 ≤ v.

That is, Alice has a randomized strategy α0 that assures expectation of at least v no matter
what Bob does, and Bob has a policy β0 that asures losing no more than −v per play in the
long run, no matter what Alice does—even if she knows what β0 is—as she can figure out
from A given enough “pre-processing” time. In rock-paper-scissors the value is 0 (a fair
game) and α0 = β0 = (1/3, 1/3, 1/3): it is in both players’ best interests to play uniformly at
ranodm. Note that the time for one play of the game can be reckoned as the number of bits
in any i plus the number in any j plus the time to compute A[i, j] so as to do the payoff.
This allows A to have exponential size M,N = 2nk for some k and still run in O(nk) time.

Now let us play the following instances of the game, given a language L ⊆ {0, 1}∗

amd a function s(n) intended to bound the size of Boolean circuits according to the length
of their binary string encodings (which can be reckoned as 2m log2 r where m is the number
of wires and r is the number of gates). We presume that s(n) ≥ n log2 n. The matrix AL,s has
M = 2s = 2s(n) rows, one for every (encoding of a) circuit C of size s(n), and N = 2n columns,
one for each possible input string x ∈ {0, 1}n. The payoff is 1 if C(x) = A(x) and −1 if not.
Thus Alice chooses a size-s(n) circuit and wins if it gets the correct answer on whether the
string Bob chooses belongs to L.

(a) Let vL,n (for some fixed size function s(n)) stand for the value of the game at length n.
Show that vL(n) ≥ 0 for all n.

(b) If the language L has circuits of size s(n), what happens?

(c) Deduce that there is an ensembleD = [Dn], eachDn being a probability distribution on
{0, 1}n, such that no randomized algorithm that runs in time s(n)/ log s(n) can achieve
more than vL(n) success per play when inputs are drawn according toD.

(d) Show nevertheless a sense in which there is a randomized algorithm that “kind-of”
runs in time O(s(n)) and achieves success at least a vL(n) fraction of the time, for any
distribution of the inputs.

The notion of a “randomized algorithm” is rather stretched in (d), because it is not account-
ing for the time needed to sample circuits from the optimial minimax distribution computed
in part (c). Modulo that, this says that the hardest distributional complexity of L equals the
best possible performance of a randomized algorithm. (6 + 6 + 9 + 9 = 30 pts., for 135 total
on the set)

