
CSE696, Spring 2021 Problem Set 2 Due Mon. 3/15

Reading:

After working through Arora-Barak chapter 7 (skimming section 7.5), we will go to section
9.3, then chapter 8.

(1) Let ≤qlm stand for many-one reducibility by functions computable in deterministic quasi-
linear time, which means time n(log n)O(1). All functions of the form cn(log n)d where c and
d are positive rational numbers (and logs are to base 2) are fully time constructible, so you
may freely assume the ability of Turing machines to count up to or down from such function
values. It follows that the classes DQL = DTIME[n(log n)O(1)] and NQL = NTIME[n(log n)O(1)]
are recursively presentable in a natural and relativized way by time-clocked oracle Turing
machines. Also, SAT is complete for NQL under ≤qlm. So whether NQL 6= DQL is a variant of
the P versus NP question. One advantage of ≤qlm reductions is that they also allow us to probe
the fine structure within polynomial time. This problem is about a subtlety that appears
more clearly there.

(a) Show that DTIME[n2] has a complete set B under ≤qlm. (12 pts.)

(b) Define a recursive presentation of the languages that are complete for DTIME[n2] under
≤qlm. Does it yield a recursive presentation of the complete sets for DTIMEE[n2] under
≤qlm, for all oracles E? (12 pts.)

(c) Show that there are languages A such that:

– A ∈ DTIME[n2],

– for all ε > 0, A /∈ DTIME[n2−ε],

– A is not complete for DTIME[n2] under ≤qlm, and

– A is a proper subset of B.

(24 pts., for 48 total) As a “work-in” problem, we will show that the class of languages
that belong to DTIME[n2−ε] for some ε > 0 is recursively presentable—indeed, in a
relativizing manner (though that is not needed for this problem).

(2) Suppose f is a function in #P, with p(n) a length-bounded polynomial associated with
a polynomial-time predicate R(x, y) such that f = fR. For any n, let us call a circuit Cn
with n + p(n) inputs a witness circuit for f at n if Cn decides R(x, y) for x ∈ Σn, so that
f(x) = #py.Cn(x, y). Let the size s(Cn) be the count of wires.

(a) Show that not only does the function 2f belong to #P, but also given any n and witness
circuit Cn, we can build in nO(1) time a witness circuit C ′n of size s(C ′n) = s(Cn) + O(1). We
say that “#P is closed under the operation of going from f to 2f with additive overhead.” (9
pts.)



(b) Now suppose that #P is closed under the operation of going from f to f(x)/2 (integer
division by 2) with additive overhead. Show that PP = NP ∩ co-NP would follow. (Hint:
Utilize the “bare majority” form of PP shown in lectures and iterate divisions by 2, for 12 pts.
and 21 total. Can you get PP = P to follow? Can you make any of this work if the operation
has linear overhead s(C ′′n) ≤ Ks(Cn) for some constant K > 1? There may be extra credit if
you can do something nontrivial here...)

Work-in problem: We will show that the operations f + g and f ∗ g have additive overhead
in a related sense. This also serves as a work-in for the next problem.

(3) Let f(w, x) be a two-variable function in #P. Show that then the single-variable
function

g(x) =
∑

w∈{0,1}|x|
f(w, x)

belongs to #P. (15 pts.)

(4) Show that BPP is self-low, meaning that BPPBPP = BPP. Use amplification as desired.
Then show that NP[BPP] ⊆ BP[NP]. (9+9 = 18 pts. Does the latter inclusion go the other
way? 171,717 extra credit points if you prove it—that should be a hint... For work-in, we will
prove that BP[BPP] = BPP.

(5) Suppose F is any formal system of logic that has a decidable proof predicate PF(θ, π)
saying that π is a proof of the sentence θ in F . Now let R(i) be any predicate of Turing
machines Mi that entails Mi being total. Define

CR = {L(Mi) : (∃π)PF(R(i), π)},

which is the class of languages accepted by programs that F can prove to have property R.

� Presuming that CR is nonempty, show that CR is recursively presentable. (6 pts., easier
than you may think...)

� Deduce that there is a computable time function t(n) so that CR ⊆ DTIME[t(n)]. (6
pts.)

� Show that there is a computable function σ(n) such that for every machine Mi in your
presentation, the function computed by Mi is o(σ(n)). In particular, σ(n) outgrows all
functions that F can prove to belong to the class CR. (6 pts., for 18 on the problem and
120 on the set)


