Reading:

We are transiting from Arora-Barak chapter 10, (plus sections 16.1–16.3 of chapter 16) to quantum computing with emphasis on Simon's, Shor's, and Grover's algorithms. Note that the Arora-Barak text has its own chapter 20 on quantum computing which focuses on these topics.

(1) A three-part progression of worst-case one-way function notions. In each case, f is stratified so that m = |f(x)| depends only on n = |x|, so we can write $f = [f_n]$ as a family of finite functions if we wish. And we suppose the time t(n) to compute f(x) for all x of length n is polynomial in n. In each case, we define

$$I_f = \{ \langle w, y \rangle : (\exists x) : w \sqsubseteq x \land f(x) = y \}.$$

This is a language version of the problem of inverting f, where $w \sqsubseteq x$ means that w is a prefix of x, i.e., there exists a string v such that x = wv. One could alternatively use $w \le x$ as the condition instead without changing the nature of this problem.

- (a) Suppose f is a permutation of $\{0,1\}^*$ that permutes $\{0,1\}^n$ for each n. Show that $I_f \in \mathsf{UP} \cap \mathsf{co-UP}$.
- (b) Now suppose $f = [f_n]$ is such that each f_n maps $\{0,1\}^n$ 2-to-1 into $\{0,1\}^n$, with half of $\{0,1\}^n$ being not in the range of f_n . Show that $I_f \in \mathsf{UP}$. Explore the question of whether $I_f \in \mathsf{co-UP}$ a little and say what the obstacle(s) are.
- (c) Now remove the 2-to-1 condition. Give an example of a family $f = [f_n]$ with $m(n) = \tilde{\Theta}(n)$ such that I_f is NP-complete. Can you arrange m(n) = n exactly? (Hint: Think of building up prefixes of satisfying assignments that f erases. Maybe include some padding. 6 + 9 + 15 = 30 pts.)

(2) Suppose $\mathsf{UP} \neq \mathsf{P}$. Produce a family $f = [f_n]$ of the 2-to-1 kind in 1(b) that cannot be inverted in polynomial time. (12 pts.)

(3) The logic of using $a = \frac{1}{3}2^k$ and $b = \frac{2}{3}2^k$ as the hypothesized interval for |S| given k is that as you go from 2^k to 2^{k-1} or 2^{k+1} , these intervals neatly knit together to cover all possible nonzero values of |S| from 1 to 2^n . They give n intervals, so the probability $\geq \frac{2}{9}$ which my notes obtain (corresponding to $\frac{1}{8}$ in Arora-Barak, which becomes overall $\frac{1}{8n}$) for each interval translates into the overall success probability $\geq \frac{2}{9n}$.

What happens if we use wider or narrower intervals [a, b]? For instance, what if we step from k to k-2 and k+2, so that we only have $\frac{n}{2}$ intervals, and make a = b/4 so that they still tile? Does this make the lower bound on the overall success probability better than $\frac{2}{9n}$? What is the limit that seems to be possible with this approach? (12 pts. for the a = b/4 calculation and at least 6 pts. for exploring the limit question.)

(4) (An alternate proof of the first part of Toda's Theorem that uses odd-parity more generally than the fact of 1 being an odd number): Let $K = 2^{q(n)}$ and $N = 2^{r(n)}$ where r(n) is the number of random bits the BP $\cdot \oplus \mathsf{P}$ machines we are building will be allowed. Say that a $K \times N$ matrix G with 0-1 entries is good if:

- Any given entry G[i, j] can be computed in time polynomial in q(n) + r(n)—note that this is the length of i as a q(n)-bit number plus that of j as an r(n)-bit number.
- For every $i, 1 \le i \le K$, row i has at least N/8 1's. Moreover, so does every N-vector obtained by XOR-ing any subset S of the rows of G.

Take for granted that there exist families $[G_n]$ of good matrices for any polynomials q(n)and r(n), which by the first condition gives polynomial time in n overall. Indeed, they can be built with $G_n[i, j]$ computable in time (q(n) + r(n)) times a polynomial in log n. Use this to show NP \subseteq RP[\oplus P]. Compare the efficiency of the reduction in terms of q(n) and r(n) and the overall "success of oddness" probability with $\frac{2}{9n}$ or etc. in problem (3). (30 pts., for 90 to this point, before one more problem to come).

(5) Take $[N_i]$ to be a fixed and natural recursive presentation of polynomial-time bounded NTMs, each with its associated polynomial time bound p_i (which you may lavishly or slavishly take to be $n^i + i$). Take \mathcal{F} to be any strong, sound, and effective system of logic, with proof predicate $P_{\mathcal{F}}$ as on Assignment 2. Choose \mathcal{C} to be any one of the following "promise classes": UP, RP, NP \cap co-NP, BPP, or (looking ahead) BQP. Without caring about its details, you may take $S_{\mathcal{C}}(i)$ to be a predicate defining " N_i represents a language in \mathcal{C} ." Two notes:

- For BPP, the language represented by N_i won't be literally $L(N_i)$; most often $L(N_i) = \Sigma^*$ while you want the language of inputs x having over 3/4 witnesses y, for instance.
- For $C = \mathsf{NP} \cap \mathsf{co-NP}$ you should use $S_{\mathcal{C}}(i) \equiv (\exists j)[L(N_i) = \sim L(N_j)]$ so that you can reference an N_j in your set B below.

Then define $\operatorname{Pr} \mathcal{C}$ to be the set of languages represented by N_i such that $(\exists d) P_{\mathcal{F}}(S_{\mathcal{C}}(i), d)$. Technically the extent of "provable \mathcal{C} " depends on the system \mathcal{F} but as long as \mathcal{F} is natural and reasonable, the features of this problem are all the same.

- (a) Construct a language B that is factually in \mathcal{C} , such that for all languages $A \in \Pr \mathcal{C}$, $A \leq_m^p B$. In fact, make B be in linear or quasi-linear time in some appropriate sense. (If you choose $\mathcal{C} = \mathsf{NP} \cap \mathsf{co-NP}$, be sure to show that both B and $\sim B$ belong to NP .)
- (b) Address the question of whether $B \in \Pr \mathcal{C}$, so that it would become a complete language for the provable part of \mathcal{C} . Why doesn't it simply follow? After all, your answer to part (a) was a proof that B belongs to \mathcal{C} . (This is open-ended. I've often wondered whether there is a "Rosser-type trick" that would do an end-run around Gödel here. 24 pts. for (a) and 6+ points for (b), making 120+ total on the set.)

(*) Bonus Question(?) With reference to the 4/17 lecture, consider Boolean circuits C with m inputs that try to predict the next bit of a pseudorandom generator g(x) that outputs m bits in total. When k < m, we suppose that the remaining m - k input gates are given a special symbol # that makes any gate involving it return false.

- (a) Prove an analogue of the equivalence of the Yao and Blum-Micali definitions of security with negligible error against $n^{O(1)}$ -sized circuits. (The first part was mostly done in lecture. I think it works the other way...hmm...)
- (b) What happens if we fill in the remaining m-k gates by 0s instead? The thing to note is that if $g(x)_k = 0$, then C will automatically make the same prediction for $g(x)_{k+1}$ that it made for $g(x)_k$. Does this dependence destroy the probabilistic reasoning (which is already dented by the absence of " ρ ")?