
CSE696, Spring 2021 Problem Set 3 Due Mon. 4/26

Reading:

We are transiting from Arora-Barak chapter 10, (plus sections 16.1–16.3 of chapter 16) to
quantum computing with emphasis on Simon’s, Shor’s, and Grover’s algorithms. Note that
the Arora-Barak text has its own chapter 20 on quantum computing which focuses on these
topics.

(1) A three-part progression of worst-case one-way function notions. In each case, f is
stratified so that m = |f(x)| depends only on n = |x|, so we can write f = [fn] as a family of
finite functions if we wish. And we suppose the time t(n) to compute f(x) for all x of length
n is polynomial in n. In each case, we define

If = {〈w, y〉 : (∃x) : w v x ∧ f(x) = y}.

This is a language version of the problem of inverting f , where w v x means that w is a prefix
of x, i.e., there exists a string v such that x = wv. One could alternatively use w ≤ x as the
condition instead without changing the nature of this problem.

(a) Suppose f is a permutation of {0, 1}∗ that permutes {0, 1}n for each n. Show that
If ∈ UP ∩ co-UP.

(b) Now suppose f = [fn] is such that each fn maps {0, 1}n 2-to-1 into {0, 1}n, with half
of {0, 1}n being not in the range of fn. Show that If ∈ UP. Explore the question of
whether If ∈ co-UP a little and say what the obstacle(s) are.

(c) Now remove the 2-to-1 condition. Give an example of a family f = [fn] with m(n) =
Θ̃(n) such that If is NP-complete. Can you arrange m(n) = n exactly? (Hint: Think
of building up prefixes of satisfying assignments that f erases. Maybe include some
padding. 6 + 9 + 15 = 30 pts.)

(2) Suppose UP 6= P. Produce a family f = [fn] of the 2-to-1 kind in 1(b) that cannot be
inverted in polynomial time. (12 pts.)

(3) The logic of using a = 1
3
2k and b = 2

3
2k as the hypothesized interval for |S| given k is

that as you go from 2k to 2k−1 or 2k+1, these intervals neatly knit together to cover all possible
nonzero values of |S| from 1 to 2n. They give n intervals, so the probability ≥ 2

9
which my

notes obtain (corresponding to 1
8

in Arora-Barak, which becomes overall 1
8n

) for each interval
translates into the overall success probability ≥ 2

9n
.

What happens if we use wider or narrower intervals [a, b]? For instance, what if we step
from k to k−2 and k+2, so that we only have n

2
intervals, and make a = b/4 so that they still

tile? Does this make the lower bound on the overall success probability better than 2
9n

? What



is the limit that seems to be possible with this approach? (12 pts. for the a = b/4 calculation
and at least 6 pts. for exploring the limit question.)

(4) (An alternate proof of the first part of Toda’s Theorem that uses odd-parity more
generally than the fact of 1 being an odd number): Let K = 2q(n) and N = 2r(n) where r(n)
is the number of random bits the BP · ⊕P machines we are building will be allowed. Say that
a K ×N matrix G with 0-1 entries is good if:

� Any given entry G[i, j] can be computed in time polynomial in q(n) + r(n)—note that
this is the length of i as a q(n)-bit number plus that of j as an r(n)-bit number.

� For every i, 1 ≤ i ≤ K, row i has at least N/8 1’s. Moreover, so does every N -vector
obtained by XOR-ing any subset S of the rows of G.

Take for granted that there exist families [Gn] of good matrices for any polynomials q(n)
and r(n), which by the first condition gives polynomial time in n overall. Indeed, they can be
built with Gn[i, j] computable in time (q(n) + r(n)) times a polynomial in log n. Use this to
show NP ⊆ RP[⊕P]. Compare the efficiency of the reduction in terms of q(n) and r(n) and
the overall “success of oddness” probability with 2

9n
or etc. in problem (3). (30 pts., for 90 to

this point, before one more problem to come).

(5) Take [Ni] to be a fixed and natural recursive presentation of polynomial-time bounded
NTMs, each with its associated polynomial time bound pi (which you may lavishly or slavishly
take to be ni + i). Take F to be any strong, sound, and effective system of logic, with proof
predicate PF as on Assignment 2. Choose C to be any one of the following “promise classes”:
UP, RP, NP ∩ co-NP, BPP, or (looking ahead) BQP. Without caring about its details, you
may take SC(i) to be a predicate defining “Ni represents a language in C.” Two notes:

� For BPP, the language represented by Ni won’t be literally L(Ni); most often L(Ni) = Σ∗

while you want the language of inputs x having over 3/4 witnesses y, for instance.

� For C = NP ∩ co-NP you should use SC(i) ≡ (∃j)[L(Ni) =∼ L(Nj)] so that you can
reference an Nj in your set B below.

Then define Pr C to be the set of languages represented by Ni such that (∃d)PF(SC(i), d).
Technically the extent of “provable C” depends on the system F but as long as F is natural
and reasonable, the features of this problem are all the same.

(a) Construct a language B that is factually in C, such that for all languages A ∈ Pr C,
A ≤p

m B. In fact, make B be in linear or quasi-linear time in some appropriate sense.
(If you choose C = NP ∩ co-NP, be sure to show that both B and ∼ B belong to NP.)

(b) Address the question of whether B ∈ Pr C, so that it would become a complete language
for the provable part of C. Why doesn’t it simply follow? After all, your answer to part
(a) was a proof that B belongs to C. (This is open-ended. I’ve often wondered whether
there is a “Rosser-type trick” that would do an end-run around Gödel here. 24 pts. for
(a) and 6+ points for (b), making 120+ total on the set.)



(*) Bonus Question(?) With reference to the 4/17 lecture, consider Boolean circuits C with
m inputs that try to predict the next bit of a pseudorandom generator g(x) that outputs m
bits in total. When k < m, we suppose that the remaining m − k input gates are given a
special symbol # that makes any gate involving it return false.

(a) Prove an analogue of the equivalence of the Yao and Blum-Micali definitions of security
with negligible error against nO(1)-sized circuits. (The first part was mostly done in
lecture. I think it works the other way...hmm...)

(b) What happens if we fill in the remaining m−k gates by 0s instead? The thing to note is
that if g(x)k = 0, then C will automatically make the same prediction for g(x)k+1 that
it made for g(x)k. Does this dependence destroy the probabilistic reasoning (which is
already dented by the absence of “ρ”)?


