CSE696 Week 12: Shor's Algorithm

The main piece is the Quantum Fourier Transform, which is just the Discrete Fourier Transform with
exponential scaling:

5.2 Fourier Matrices

The next important family consists of the quantum Fourier matrices. Let w
stand for ¢>™N which is often called “the” principal Nth root of unity.

DEFINITION 5.2 The Fourier matrix Fy of order N is
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That is, Fy[i,j] =w? ™4V divided by v/N.

It is well known that Fy is a unitary matrix over the complex Hilbert space.
This and further facts about Fy are set as exercises at the end of this chapter,
including a running theme about its feasibility via various decompositions. For
any vector a, the vector b = Fya is defined in our index notation by

N-1

|
b(x)=— ) wa(r).
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Compare-contrast with the Hadamard Transform:
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The centerpiece of Peter Shor’s algorithm detects a period in a function. Let

FiN=S{01,... . M1}

be a feasibly computable function. We are promised that there is a period r,
meaning that, for all x,

flx+r)=f(x).
The goal is to detect the period, that is, to determine the value of r. Actually,
we need more than this promise. We also need that the repeating values

FO)LFD), .. fr=T1)

are all distinct. Some call this latter condition “injectivity” or “bijectivity.”

Possible relaxations of this condition are explored in the exercises, and overall
its necessity and purpose are not fully understood.

1. Given an n-bit integer M, which we suppose is a product of distinct primes,
use classical randomness to generate an integer a between 1 and M — 1.
First, we check for the tiny chance that a already shares a factor with M,
in which case one application of Euclid’s algorithm for the greatest com-
mon divisor quickly finds it and we’re done. Otherwise, form the function
Ja(x)=a* mod M, which then has a period r that we wish to compute. This
r will divide the product of p— 1 over all primes p dividing M and may help
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us find them. Many values of @ and r are unhelpful, but with substantial
probability, a will be chosen so that r is computed and yields a factor p.

)

Use the classical feasibility of modular exponentiation via repeated squar-
ing (shown in problems 2.8-2.9) to prepare the functional superposition
of f,(x) over all x<M.

Run the quantum part once and measure all qubits. The string formed by
the first ¢ of them, where ¢ is about 21og, M, yields a particular integer
x in binary encoding. With substantial probability, x is “good,” as defined
below.

(S

4. Then classical computation is used to try to infer r from x. Either this
succeeds and we go to the next step, or it is recognized that x is not good.
In the latter case, we go back to step 3, running the quantum routine again.

n

There is still a chance the value of r may be unsuitable—that is, that the
original @ was an unlucky choice. In this case, we must begin again at step
I. But otherwise, the value of r provides the only needed input to a final
classical stage that yields a verifiable solution to the problem about M.

1
O = — |xf(x))
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The Intuition (See also Scott Aaronson, https://www.scottaaronson.com/blog/?p=208)

Let 7 stand for the true period of f. Leta be any element of the group G of size
¢(M) = (p—1)(g—1). Then we will picture a as a "crazy clock" that jumps a units counter-clockwise
at each time step.


https://www.scottaaronson.com/blog/?p=208

a; cX @) Each "guess" 7;
"independently”
iterates the code:
Sleep 7; timesteps
sot = t+7;.
Move one unit in
the current

direction «;.

The guesses that are
close to a multiple of

the correct r get high
displacement and so
high amplitude.

The longer this runs, so

Q = M?, the finer the
T Wrong guesses stay near 0
discrimination of the true r. and so keep low amplitude.

With fairly high probability, measurement yields a multiple of . The true 7 is the least of the multiples.
It is individually the most likely value returned and is also returned with reasonable probability. A bad r
might work anwyay. We can tell whether r works by seeing if the classical part gives us p or g, else we
just try the quantum process again.

Arora-Barak uses cubic slack, Q = 2" where m = 3log M.

Details

The top-down goal is to find a number X such that X?> = 1 modulo M but X isnot = 1 or = —
modulo M. Then X?> -1 = (X-1)(X +1) is a multiple of M but neither factor is zero. When

M = pq with p, g prime, this means p and g each divide one or both factors. We need to split them
across the factors, so that gcd(X — 1, M) and/or gcd(X + 1, M) will find p and g as opposed to just
giving M back again. Thus we want to guess a such that:

1. The period 7 of a is even, so that /2 is defined;

2.X = a” £ M~1 modulo M.
3. Either X —1 or X + 1 is a multiple of one of p, g but not both.

If our value of a fails either of these, we just try again from the start of guessinga < M.

Our treatment (blog post and chapter 12) also desires  to be a multiple of p—1 org—1. It can be

shown that many a give this "helpful" property, which requiresr > V(p-1)(g-1) = VM.



(It is not clear whether we show this. It could be an exercise: Consider numbers r that divide a product
mn of two nearly-equal composite numbers. Conditioned on r > min{m, n}, give a lower bound for
the proportion that are a multiple of m or a multiple of #7. Note that m and n need not be themselves
relatively prime; p — 1 and q- 1 are both even, for instance. It would still need to be argued that most a
give such an r. But | am not sure that the "helpful" property is needed either.)

Chapter 12 does handle the argument in property 3, given that r is "helpful"---which also subsumes
issue 1 since p—1 and g —1 are even. Issue 2 is handled by a random argument.

We will see that the closer r is to 'V M as opposed to being order-of M, the more challenging for a
potential classical simulation of Shor's algorithm.

Another thing to observe is that when M is a Blum integer, meaning p and g are both congruent to 3
modulo 4, then (p — 1)(g — 1) is divisible by 4 but no higher even number. There are always four

square roots of 1 modulo M = pg, so we need to argue that the a's such that a'? is one of the good
ones are as plentiful as the bad ones. (Note that r depends only on a.) Here is an example for the

smallest Blum integer: 21 = 3%7. The quadratic residues are:

1:1,2:4,3:9,4:16, 5:4, 6:15,7:7, 8:1, 9:18, 10:16,
20:1, 19:4, 18:9, 17:16, 15:15, 14:7, 13:1, 12:18, 11:16

Now (p—1)(g—1) = 12. The numbers Y =8-1,8+1,13+1, and 13 -1 all give a factor via
ged(21,Y).

a=1:r =1; of course doesn't work.

a=2:2,4,8,16,11,1.

a=4:16,1 (period 3 is odd)

a=5:4,20,16,17,1; doesn't work because 20 = —1.
a=28:82=1. Period r = 2 is "helpful" and 8”2 = 8 is not —1. So
a=10:16,13,4,19,1.

The other values are mirror images.

A more interesting Blum integer IMHO is 77 = 7+11. Then (p —1)(g—1) = 60. "Helpful" means the
period is a multiple of 6 or of 10. Note: 342 = 1156 = 77+15 + 1 is a nontrivial square root of 1 and
432 =1849 = 77+24+1 is the other one. Does 2 work?

2:4,8,16,32,64,51, 25,50, 23,46, 15,30, 60,43,9,18, 36,72,67,57,37,74, etc.:

The next question is whether it is OK for the quantum part to obtain a multiple ¥ = br of a helpful 7. If b
is even than certainly not, because a””? will be 1. Butifbis odd-—-? In any event, we can obviate this
question because we can single out the minimum 7 with sufficiently high probability.



The key auxiliary technical notion is a number x that is "good" to help find r.

11.2 Good Numbers

Let Q be a power of two, Q=2", such that M? < Q <2M?. Say an integer x in
the range 0,1, ..., Q-1 1s good provided there is an integer f relatively prime
to the period r such that

tQ—xr=k, where —r2<k<r/2 (11.1)

The key part is the multiple t of Q being relatively prime to 7.

LEMMA 11.1 There are Q(W) o0od numbers.

Proof. The key insight is to think of equation (11.1) as an equation modulo r.
Then it becomes

tQ=k mod r,

where —r/2 <k <r/2. But as r varies from 0 to r—1, the value of k& can be
arranged to be always in this range, so the only constraint on 7 is that it must
be relatively prime to r. The number of values 7 that are relatively prime to r
defines Euler’s torient function, which is denoted by ¢(r). Note that for each
value of 7 there is a different value of x, so counting 7s is the same as counting
xs. Thus, the lemma reduces to a lower bound on Euler’s function. But it is
known that

=0 ).

loglogz

Indeed, the constant in €2 approaches ¢, where v=0.5772156649 . .. is the
famous Euler-Mascheroni constant. In any event, this proves the lemma.  []

The general drift is that a good x gives a good chance of finding r exactly, by purely classical means.
Of note:



If r is close to M, then by choosing Q close to M rather than M?, we would
stand a good chance of finding a good x just by picking about log /-many of
them classically at random. However, this does not help when r is smaller. The
oenius of Shor’s algorithm is that the quantum Fourier transform can be used
to drive amplitude toward good numbers in all cases.

This makes ¥ M€ where 0 < € < 1 the "vat" of hard cases: too sparse to guess at random.
For the quantum part, however, we need Q > rM. Just to finish off the classical part:



LEMMA 11.7 Ifxis good, then in classical polynomial time, we can determine
the value of r.

Proof. Recall that x being good means that there is a t relatively prime to r so
that (by symmetry)

xr—tQ=k where ——<k<

2| =
B3| =~

Assume that £ > 0: the areument is the same in the case where it 1s negative.
We can divide by rQ and get the equation

x ot |
- E —
0 ri”20
We next claim that r and 7 are unique. Suppose there is another ¢'/r’. Then
t l 1
——=lZ2=275
¥ r.F rr! MH

But then both fractions are close, which makes Q smaller than M?, a contra-
diction.
Because r is unique, it follows that 7 is too. So we can treat

xr—tQ=k

as an integer program in a fixed number of variables: the variables are r, r, and
two slack variables used to state

—1r2<k<r/2

as two equations. While integer programs are hard in general, for a fixed num-
ber of variables they are solvable in polynomial time. This proves the lemma.
]

The Quantum Part

The essence is to show that a non-negligible amount of amplitude is marshaled onto "good" values x.
We actually analyze pairs xy formed by the main and ancilla qubits after a one-shot sampling
measurement.



1. The start vector a is the functional superposition of f: that is.

L when y=f(x);
a(xy) = 70 y=f(x)

0 otherwise.

2. The next vector b is the result of applying F to the x part of a.
3. Measure b, giving an answer xy from which we discard y.
4. Exit into a classical routine that tests whether x is a good integer—if so,

continue with the classical steps given later or else repeat from step 1.

Recall that xr in equation (I11.1) is ordinary numerical multiplication,
whereas xy in vector indices is binary string concatenation. Although y is dis-
carded, the injectivity condition ensures that for every good x the superposition
caused by Fg will contribute exactly r-many ys. Together with lemma 11.1,
this will give a little short of order-r> good pairs xy. Hence., it suffices to show
that every good pair receives (1) of the amplitude, giving () in probabil-
ity. The resulting Q(W) probability of getting a good number on each trial
will be large enough for the classical part to expect to succeed after relatively
few trials of the quantum part.



The intuition is that the quantum Fourier transform creates power series out
of many angles 3. Each series creates a large locus of points 0, 5,253,353, ...
For most angles /3, the locus spreads itself over the circle so that its average—
which is obtained by summing the corresponding power series of complex
numbers exp(ik/7)—is close to the origin. If 3 is close to an integer multiple
of 27 radians, however, then the angles all stay close to 0 modulo 27, and
the average stays close to the complex number 1. These “good™ 5 embody
multiples of the unknown period r, so the process will distinguish those x that
yield such 3. The way that r “pans out” like a nugget of gold is similar to what
happens with s in Simon’s algorithm.

Much of the analysis can be done exactly before we take estimates to bound
the amplitudes. It suffices to show that the good cases collectively grab a non-
trivial fraction of the probability—we do not need estimates when /3 is “*bad™ at
all. Let us consider any pair xy where y is in the range of £. With w =exp (%)
we have

01
I 1 1

b(."\’} - § wma(iﬂ-’) - E wma(tn-’) — ﬂ&.—'_r”.
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" wf(u)=y wef-1(y)



The last é 1s not a typo—we have substituted the value of a(uy). Now take the
first xp such that f(xg)=y. Then, by injectivity,

f_](}-') ={xp, Xo+F, xo+2r, xo+3r,...}.

The cardinality of this set (up to Q—1)is T=1+ L@J. This brings out the
finite geometric series and enables us to apply the formula for its sum:

= sty 9™ o o 1wl -1
)= § : Hlxo+rk) _ Cark _ o xxp
=52« e D _wh=e Q(w’fr_l)'
k=0 - k=0

Note that when we take absolute values, the complex-phase factor w* will go
away because it is a unit. We can multiply by further such units to make the
numerator and denominator have real values even before we take the norms,
using the trick that exp(i3)—exp(—i3)=2sin(3):

warf 2 w—Txrf 2

b(.‘(}-‘ )= w.r_rg—_rrTIE i ( — )

1 /¢ Jxr2  Txrf2
— T 24xr/2 (“" e

Q W2 i )
_ wx(—ruﬂT—l)!‘) l (S]n(T . T.".\'FIIQ))
O\ sin(mxr/Q) /°
Note that we canceled a factor of 2 both inside and outside the angles. This
finally tells us that

o= - sin®(T - 7xr/ Q) 112)
- 02 Sinz(fr,x'r/Q} ' '




looks strange that the right-hand side 1s independent of y, but recall that we did
use the property that y 1s in the range of f—without needing that y=f(x). By
injectivity, we have r-many such vs for any particular x. To finish the analysis,
we need to show the following:

When x is good. the right-hand side of equation (11.2) is relatively large.
The total probability on good pairs xvy is Q(@) where n is the number
of digits in M, which is high enough to give high probability of finding a
good x in O(log n)-many trials.

o =

J

3. If xis good, then in classical polynomial time we can determine the value
of r.

The second statement will follow quickly after the first, and we handle both in
the next section.



11.5 Probability of a Good Number

We state a fact about sines that has its own interest. Note that 1.581 in radians
is a little bit more than 7/2 to leave some slack. We target the number 0.63247
because its square is just above 0.4.

LEMMA 11.2 For all 7> 0 and all angles o> 0 such that Tar < 1.581,
sin(7Tcv)
sin(av)

>0.63247T.

Proof. The well-known identity sin(a) < «, which holds for all & = 0, makes
it suffice to show that in(To)
sin(Ta
2 5 0.63247.

To
Consider the function &f” for 0<x < 1.581. Its derivative has numerator
x cos(x)—sin(x) and denominator x%. For % <x < 1.581 the derivative is neg-
ative since cos(x) is negative. For O<x< 7 it is also negative because the
inequality x <tan(x) holds there. Because its derivative is always negative in
this range, the function is minimized at the upper boundary x = 1.581, where it

has value _
sin(1.581)  0.9999479

1581 1581

>0.63247.



LEMMA 11.3 For all pairs xy with x good, assuming M > 154, the probability
of the measurement step outputting x is bounded below by ‘14 :

Proof. Recall that x being good means there is an integer 7 such that —5 <
1Q—xr< 3, and that we have Q>Mr and T=1+ L@J where xp < r. From
above, using | sin(x)l=Isin(—x)l=Isin(x + m)l, we have
I sin®(T - mxr/
|b[’{‘})|2 — . : (2 QJ
Q°  sin“(mxr/Q)
-2 s

=i sin” (7 n[%—r))

Q*  sin® (7(% 1)

0]
_ [ sin? (T-r‘”’SQ)
Q* sin® (?T'”EQIQ)
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Now, by goodness, the angle o= 7227 i at most 7. Because T < 1 + % we

Q 20
have
Ta< T T
o< — :
-2 20
Because we chose Q> Mr, we have % <57 < 1.581 -7 using the condition

M = 154. Thus, Ta < 1.581, thus meeting the hypothesis of lemma 11.2. This
oives us what we needed to hit our round-number probability target:

1 0.4
b(xy)l” > @(0.63247?")2 >—.

B
[

COROLLARY 11.4 The probability of getting a good number on each trial of
the quantum part is Q.(m)—indeed, at least 1 in log, log, M.

Proof. Forevery good x, there are r-many different ys for which f~(y) is a set
of cardinality T in the analysis of section 11.4. Thus, by lemma 11.1, there are

(log’]—ogr) pairs xy for which lemma 11.3 applies. A glance at the proof plus
converting natural logs to logs base 2 makes the number of such pairs at least

2.53r° : or - : .
Tog, log, 7 Thus, the total probability of getting a good number is at least

2.53 I
> :
2.51og, log, r  log, log, M

This finishes the analysis of (the quantum part of) Shor's algorithm.



