

CSE696 Week 13: Grover's Algorithm---and Feynman's Briar Patch?

I have three special things to say about Grover's algorithm before we begin. First, all of our previous quantum algorithms have been ones where an n -qubit Hadamard transform has been applied once, then an oracle gate or other computation to create a functional superposition

$$\sum_{x \in \{0,1\}^n} |x\rangle |f(x)\rangle,$$

and then *one* further transform---Hadamard or Fourier---before measuring the entire output. [Footnote: the notation $|xf(x)\rangle$ for the body of the sum is equivalent.] Further iterations are managed by a routine with *classical* control. Grover's algorithm, however, has successive quantum stages that each use two banks of Hadamard gates. The $2^n \times 2^n$ matrices $\mathbf{H}^{\otimes n}$ are just as easy as any other in a "Schrödinger-style" simulation where you multiply matrices. But in a "Feynman-style" simulation where we count nondeterministic witness strings, the repeated Hadamard transforms mushroom the witness space.

Second, Grover's algorithm as originally presented applies only at "witness scale": a space of $N = 2^q$ potential witness strings using $q = q(n)$ qubits, **not** N separate physical locations as commonly talked about. Whether it can apply to N physical sites with $\tilde{O}(\sqrt{N})$ **effort** is IMHO controversial. It is claimed in the [paper](#) by Aaronson and Ambainis, "Quantum Search of Spatial Regions," which has lots of physical justification (amid speculation) in its section 2, but I demur with the troglodyte view that any contingent polling of N spatial sites requires N units of total **effort**. However, at witness scale, there aren't even \sqrt{N} physical sites, only n qubits with basis vectors $|0^q\rangle$ through $|1^q\rangle$. A solution set $S \subseteq \{0,1\}^q$ is represented by the "hit vector" \mathbf{h}_S defined by

$$\mathbf{h}_S(y) = \begin{cases} \frac{1}{\sqrt{|S|}} & \text{if } y \in S \\ 0 & \text{otherwise} \end{cases},$$

which just normalizes the sub of the basis vectors corresponding to strings in S . Well, if S is nonempty, that is; if S is empty, this prescribes the zero vector in \mathbb{C}^N which is not a legal quantum state. Let us compare with an example from earlier notes (actually homework) that involved building a matrix G with 2^q linearly independent rows, so that subsets S of $\{0,1\}^q$ are in 1-to-1 correspondence with vectors v_S in the space generated by the rows:

$G[y, j]$	$j = 1, 2, 3, \dots$	j	R	$*$ means $y \in S$	$N = 2^q$
$0.00 = 0^q$					
$0.01 = 0^{q-1}1$		*		*	
$0..010$		*		*	
$0..011$				*	
\vdots					
y		*		*	
\vdots					
$11\dots11$					

Because the rows must be linearly independent, they generate an N -dimensional vector space whose members are all the v_S vectors, each a sum of rows.

v_S

It seems that the legal unit vectors in \mathbb{C}^N carry up to N bits of information---insofar as there are $2^N = 2^{2^q}$ different possible subsets S , but there is a massive caveat:

Holevo's Theorem: It is not possible to extract more than q bits of classical information from any q -qubit quantum state.

This is part reason for Lov Grover's original attention only to singleton sets $S = \{y\}$, whereupon we simply have $\mathbf{h}_S = |y\rangle$. Then distinguishing among the 2^q possibilities (all of them not the empty set) involves only q bits of information. Note, incidentally, that Holevo's theorem implies that n -vertex graphs G cannot be losslessly encoded by n -qubit states, unless G is n -sparse in some pertinent sense. Therefore, any setting that allows $|S| > 1$ involves some information smearing.

At witness scale, the running time is not quadratically not sub-linear but merely quadratically sub-exponential: $\tilde{O}(\sqrt{N}) = n^{O(1)} 2^{q(n)/2}$, which is still 2-to-the-linear exponential time, not even $2^{q(n)^{1/2}}$.

The third aspect is how this gibus with the quantum circuit size $s = s(n)$ representation of **effort**. My belief is that $s(n)$ understates the effort quadratically---in particular, that a bank of n Hadamard gates applied to a highly entangled state costs order- n^2 not order- n units of **effort**. Thus I am "Shor-sure" but Grover-skeptic. Well, we should examine the quantum circuits, after seeing the idea of the algorithm.

How Grover Search Works

Grover's algorithm actually operates completely within a 2-dimensional subspace of \mathbb{C}^N . The subspace is spanned by two vectors: \mathbf{h}_S and the vector $\mathbf{j} = \mathbf{H}^{\otimes q} |0^q\rangle$. (Unless $S = \{0, 1\}^q$ in toto, which makes them equal.) We do not know \mathbf{h}_S in advance, but we do know \mathbf{j} . The "miss" vector $\mathbf{m}_S = \mathbf{h}_{\sim S}$ also belongs to the subspace, since it equals

$$\frac{\sqrt{N} \cdot \mathbf{j} - \sqrt{|S|} \cdot \mathbf{h}_S}{\sqrt{N - |S|}}, \quad \text{so that} \quad \mathbf{j} = \frac{\sqrt{N - |S|}}{\sqrt{N}} \mathbf{m}_S + \frac{\sqrt{|S|}}{\sqrt{N}} \mathbf{h}_S.$$

We don't know \mathbf{m}_S either, but provided S is given by a polynomial-time decidable witness predicate $R(x, y)$ of our problem instance x , then we can reflect around it by means of the **Grover oracle**

$$U_R[xy, xy] = (-1)^{R(x, y)} = \begin{cases} -1 & \text{if } R(x, y) \\ 1 & \text{if } \neg R(x, y) \end{cases}.$$

When x is fixed, the Grover oracle drops down to an $N \times N$ diagonal matrix G_x with entry $G_x[y, y] = -1$ if $y \in S$ and $G_x[y, y] = 1$ otherwise. To compute it, we can apply an idea that the textbook calls "flipping a switch" in section 6.5 but might be better called the idea of using an extra qubit as a *catalyst*. The catalyst is that we initialize the extra qubit not to $|0\rangle$ or $|1\rangle$ but to

$$\mathbf{d} = \mathbf{H}|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$$

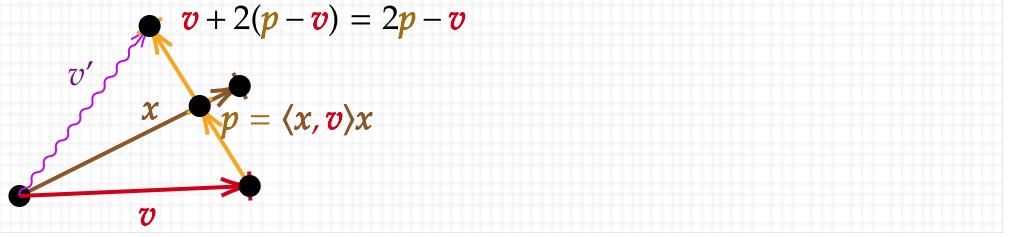
We can create a quantum circuit C_0 of deterministic gates only (Toffoli plus constant initializations) for the reversible form of the Boolean function $f_x(y) = R(x, y)$, which is the $(q + 1)$ -bit function $F_x(yb) = y(b \oplus f_x(y))$. Now define $g_x(y) = C_0(|y\rangle \otimes \mathbf{d})$ using our catalyst. We get

$$\begin{aligned} g_x(y) &= C_0(|y\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right)) = \frac{C_0|y0\rangle - C_0|y1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}}(|y\rangle |f_x(y)\rangle - |y\rangle |\neg f_x(y)\rangle) \\ &= \begin{cases} \frac{|y1\rangle - |y0\rangle}{\sqrt{2}} & \text{if } f_x(y) = 1 \\ \frac{|y0\rangle - |y1\rangle}{\sqrt{2}} & \text{if } f_x(y) = 0 \end{cases} = \begin{cases} |y\rangle \otimes (-\mathbf{d}) & \text{if } R(x, y) \\ |y\rangle \otimes \mathbf{d} & \text{if } \neg R(x, y) \end{cases} = (-1)^{R(x, y)} |y\rangle \otimes \mathbf{d} \end{aligned}$$

If we "throw away" the last qubit (say by measuring it and ignoring the result) then we get the Grover oracle action on the first q qubits. So for polynomial-time witness predicates $R(x, y)$, the Grover oracle is feasible to compute.

The key next point is that in the geometry of the 2-dimensional space, the Grover oracle represents reflection around the *miss* vector \mathbf{m}_S . Note first that $G_x \mathbf{m}_S = \mathbf{m}_S$ because no nonzero entry gets negated. And $G_x \mathbf{h}_S = -\mathbf{h}_S$ because all the nonzero entries get negated. Therefore the action of G_x in this space is *reflection about \mathbf{m}_S* .

The other operation we want is reflection about \mathbf{j} . In general, reflection of a vector v around a vector x involves first taking the projection of v onto x , which is $\langle v, x \rangle x$. Then we want to move v by twice the difference of that to v :



The matrix operator that creates the projection of an argument v along x is the **outer product** $|x\rangle\langle x|$, whose $[i, j]$ entry is $x_i \overline{x_j}$. The Dirac notation is especially handy here, because we can do

$$|x\rangle\langle x| \cdot |v\rangle = |x\rangle\langle x|v\rangle = \langle x, v\rangle|x\rangle.$$

So the operator that creates the reflection is $2|x\rangle\langle x| - \mathbf{I}$. In the case $x = j$ this is given by the matrix $2\mathbf{J} - \mathbf{I}$ where each entry of \mathbf{J} is $\frac{1}{N}$ and \mathbf{I} is the $N \times N$ identity matrix.

Because we are talking about exponential-sized matrices, it is relevant to ask about the feasibility of computing their actions. An equation by which to build the reflection about j is

$$2\mathbf{J} - \mathbf{I} = \mathbf{H}^{\otimes q}(-1)^{NOR(1..q)}\mathbf{H}^{\otimes q}.$$

The $(-1)^{NOR(1..q)}$ is implemented via a controlled-Z gate on one qubit with controls on the other $(q - 1)$ qubits—it doesn't matter which, as the gate is symmetric. By itself, that gate computes $(-1)^{AND(1..q)}$, so it is sandwiched between two banks of NOT gates to get the action of NOR. To see why this works, consider first that on any basis input $|x\rangle$, $\mathbf{H}^{\otimes q}|x\rangle = \frac{1}{\sqrt{N}}\sum_y (-1)^{x \odot y}|y\rangle$. Applying the $(-1)^{NOR(1..q)}$ gives

$$\frac{1}{\sqrt{N}}\sum_{y \neq 0^q} (-1)^{x \odot y}|x\rangle + \frac{(-1)}{\sqrt{N}}(-1)^{x \odot 0^q}|0^q\rangle = \frac{1}{\sqrt{N}}\sum_y (-1)^{x \odot y}|y\rangle - \frac{2}{\sqrt{N}}|0^q\rangle$$

Applying $\mathbf{H}^{\otimes q}$ again gives

$$\frac{1}{N}\sum_y \sum_z (-1)^{x \odot y}(-1)^{z \odot y}|z\rangle - \frac{2}{N}\sum_z (-1)^{z \odot 0^q}|z\rangle = \frac{1}{N}\sum_y \sum_z (-1)^{(x \oplus z) \odot y}|z\rangle - \frac{2}{N}\sum_z |z\rangle$$

Now the outer sum over y in the first term vanishes except when $z = x$, so we get

$$\frac{1}{N}\sum_y |x\rangle - \frac{2}{N}\sum_z |z\rangle = |x\rangle - \frac{2}{N}\sum_z |z\rangle = (\mathbf{I} - 2\mathbf{J})|x\rangle.$$

This is actually (-1) times what we expected, but the global scalar does not matter. The last thing to

say is what whenever v belongs to our 2-dimensional subspace, the reflection of v around \mathbf{j} stays within the subspace.

The Search Process

Let α stand for the angle between \mathbf{j} and \mathbf{m}_S . Then $\alpha = \cos^{-1}\langle \mathbf{j}, \mathbf{m}_S \rangle = \sin^{-1}\langle \mathbf{j}, \mathbf{h}_S \rangle$. When $|S| = o(N)$ we can estimate

$$\alpha = \sin^{-1}\langle \mathbf{j}, \mathbf{h}_S \rangle \sim \langle \mathbf{j}, \mathbf{h}_S \rangle = \frac{\sqrt{|S|}}{\sqrt{N}}.$$

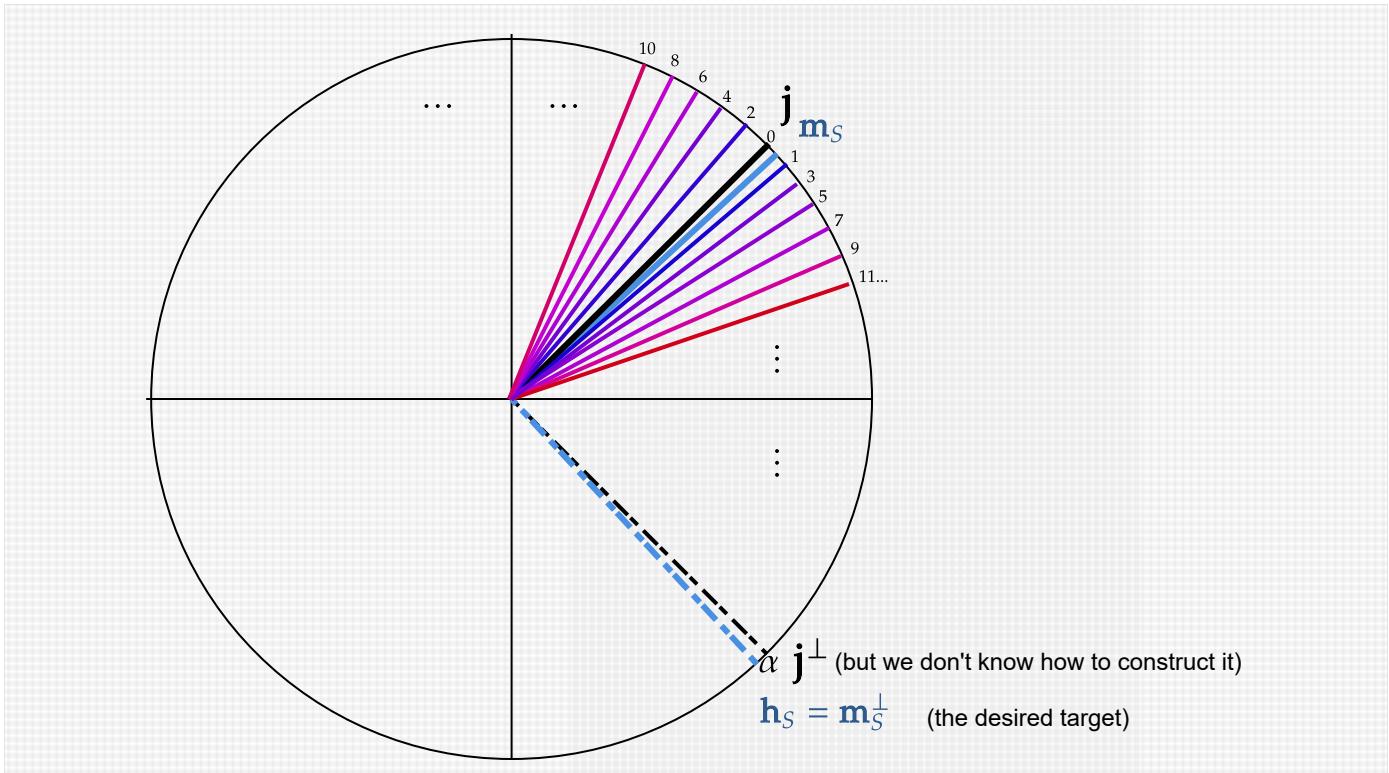
The number of iterations (each a pair of reflections) we will need is about $\frac{\pi/2}{2\alpha} = \frac{\pi}{4\alpha} \approx \frac{\pi}{4} \sqrt{\frac{N}{|S|}}$. This is always about the square root of the expected time for guessing uniformly at random and verifying. If we know $|S|$, then we know how many iterations to make before measuring; if we don't know $|S|$, then there are further tradeoffs discussed later. In any event, unless $|S| = \Omega(N)$, we have $\alpha = o(1)$, so that the angle α is best pictured as very small. When $|S| \leq \sqrt{N}$, we have

$$\frac{1}{\sqrt{N}} \leq \alpha \leq \frac{1}{\sqrt[4]{N}}$$

as the most relevant range of angles. Now to summarize what we know and don't know:

1. We know a vector \mathbf{j} in the two-dimensional subspace H generated by the hit vector \mathbf{h}_S and its orthogonal complement, the miss vector \mathbf{m}_S .
2. The goal is to build a quantum state ϕ whose vector is within ϵ of \mathbf{h}_S , so that measuring ϕ will with probability $\approx 1 - \epsilon$ yield a member of S .
3. We know that \mathbf{j} is close to \mathbf{m}_S , so that \mathbf{j}^\perp is close to \mathbf{h}_S (or opposite to \mathbf{h}_S ---either way, measuring \mathbf{j}^\perp would yield a solution whp.), but we have no idea how to construct \mathbf{j}^\perp within H .
4. What we do have are feasible circuit components computing reflection around \mathbf{m}_S and reflection around \mathbf{j} that stay within H .
5. If we know $|S|$, then we know the number of iterations that produces a vector ϕ closest to \mathbf{h}_S . Moreover, ϕ will be within angle α of \mathbf{h}_S .

Here is a diagram of the iteration process. It is different from most other diagrams by emphasizing the smallness of α and not giving the impression that \mathbf{j}^\perp is knowable by aligning it with vertical or horizontal axes. The iteration starts by reflecting the known vector \mathbf{j} around \mathbf{m}_S . The next five iterations (each a rotation by 2α effected by two reflections) are shown and color-coded.



It may seem strange that we cannot jump straight to j^\perp from j or otherwise leverage the initial proximity to m_S in a way that would at least allow taking bigger steps toward h_S than repeated rotation by 2α . It looks even more enticing upon realizing that getting within 45° of h_S , that means anywhere in the lower-right quadrant shown, gives at least a $\sin^2\left(\frac{\pi}{4}\right) = \frac{1}{2}$ chance of the measurement giving a string in S .

The picture makes it look like we could hit that quadrant quickly just by throwing darts at it. But the point is that the "dartboard" H is hidden inside a vastly higher dimensional space, and we have no direct information besides the j vector of how it lies.

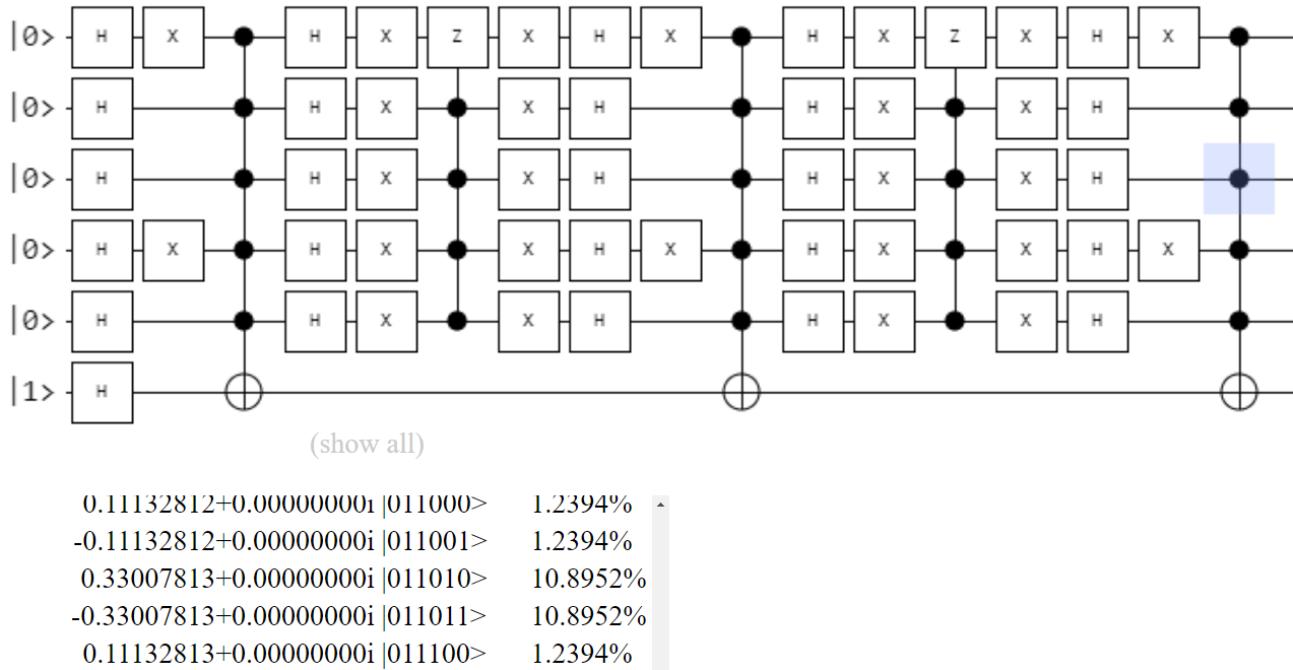
In fact, the above process is tightly optimal. The first incarnation of a "Polynomial Method" in quantum computing (Boyer, Brassard, Høyer, Tapp, 1996) was to show cases where $\Omega(\sqrt{N})$ calls to the Grover oracle are necessary. Zalka (1999) gave bounds that are tight up to the constant being $\frac{\pi}{4}$.

If $|S|$ is unknown, we can guess a stopping time $t \leq \sqrt{N}$ uniformly at random. Now the "dartboard" reasoning works in our favor since everything happens within the subspace H , and the expected time to find a solution is only a constant factor greater than when $|S|$ is known.

Circuit Implementation and Problematic Aspects

The Grover oracle is deterministic except for the single Hadamard gate used to initialize the catalyst qubit to the difference state d . We do not have to re-initialize it, however, because the output after the evaluation remains $(-1)^{R(x,y)}|y\rangle \otimes d$. The issue is the reflection about m_S . Done straightforwardly, it

is heavy on the **H** gates, as evinced by the following example in Davy Wybiral's quantum web applet. Here the Grover oracle is $\bar{x}_1 \wedge x_2 \wedge x_3 \wedge \bar{x}_4 \wedge x_5$ giving $S = \{01101\}$. This is implemented as a multi-controlled flip of the catalyst line (where a single **H** follows the initial 1) with **X** gates to make \bar{x}_1 and \bar{x}_4 . The initial bank of Hadamards on the first five qubits is to create the **j** vector on them. The four other banks, however, are for the two reflections about **j**. The angle α is $\sin^{-1}(1/\sqrt{32}) = 0.1777\ldots$ radians. The desired number of iterations is $\frac{\pi}{4\alpha} = 4.42$; the diagram counts as 2.5 iterations. This is close enough to show more probability accumulating on the string 01101 on the first five qubits.



If we make a polynomial simulation out of this, however, the Hadamard gates for the reflections give rise to 20 new variables. The number of Feynman paths grows by a factor of more than 1,000 per iteration. (This also causes major branching in the witness space for problem 3 on assignment 4.) This growth quickly chokes the path-counting simulation written in C++ which I've demo'ed.

The multi-controlled **Z** gate has its own element of excess. Yes, OK, the Grover oracle in this case is also multi-controlled, but one expects to expend more effort on it---and it could be a larger network of gates with only one control each. The reflection about **j**, however, really uses all the controls. IBM researchers have found even the double-controlled Toffoli gate to be difficult to engineer, which is why their preferred basis consists of **H**, **CNOT**, and the **T** gate.