
CSE696 Week 13: Grover's Algorithm---and Feynman's Briar Patch?
 
I have three special things to say about Grover's algorithm before we begin.  First, all of our previous 
quantum algorithms have been ones where an -qubit Hadamard transform has been applied once, n
then an oracle gate or other computation to create a functional superposition
 

,∑
 

x∈ 0,1 n{ }

x f x( )

 
and then one further transform---Hadamard or Fourier---before measuring the entire output.   [Footnote: 
the notation  for the body of the sum is equivalent.]  Further iterations are managed by a routine xf x( )

with classical control.  Grover's algorithm, however, has successive quantum stages that each use two 
banks of Hadamard gates.  The  matrices  are just as easy as any other in a "Schrödinger-2  ×  2n n H⊗n

style" simulation where you multiply matrices.  But in a "Feynman-style" simulation where we count 
nondeterministic witness strings, the repeated Hadamard transforms mushroom the witness space.  
 
Second, Grover's algorithm as originally presented applies only at "witness scale": a space of  N =  2q

potential witness strings using  qubits, not  separate physical locations as commonly talked q = q n( ) N

about.  Whether it can apply to  physical sites with  effort is IMPHO controversial.  It is N O N

claimed in the paper by Aaronson and Ambainis, "Quantum Search of Spatial Regions," which has lots 
of physical justification (amid speculation) in its section 2, but I demur with the troglodyte view that any 
contingent polling of  spatial sites requires  units of total effort.  However, at witness scale, there N N

aren't even  physical sites, only  qubits with basis vectors  through .  A solution set N n 0q 1q

 is represented by the "hit vector"  defined byS ⊆ 0, 1{ }q hS

 

, h y  =  S( )

1

|S|
if y ∈ S

0 otherwise
 
which just normalizes the sub of the basis vectors corresponding to strings in .  Well, if  is nonempty, S S
that is; if  is empty, this presecribes the zero vector in  which is not a legal quantum state.  Let us S CN

compare with an example from earlier notes (actually homework) that involved building a matrix  with G
 linearly independent rows, so that subsets  of  are in 1-to-1 correspondence with vectors  2q S 0, 1{ }q vS

in the space generated by the rows:
 

 

 

https://www.scottaaronson.com/papers/ggtoc.pdf


 
 
It seems that the legal unit vectors in  carry up to  bits of information---insofar as there are C

N N
different possible subsets , but there is a massive caveat:2  =  2N 2q

S
 
Holevo's Theorem: It is not possible to extract more than  bits of classical information from any -q q
qubit quantum state.
 
This is part reason for Lov Grover's original attention only to singleton sets , whereupon we S = y{ }

simply have .  Then distinguishing among the  possibilities (all of them not the empty set) h =S y 2q

involves only  bits of information.  Note, incidentally, that Holevo's theorem implies that -vertex q n
graphs  cannot be losslessly encoded by -qubit states,unless  is -sparse in some pertinent G n G n
sense.  Therefore, any setting that allows  involves some information smearing.|S| > 1

 
At witness scale, the running time is not quadratically not sub-linear but merely quadratically sub-

exponential: , which is still 2-to-the-linear exponential time,not even .   =  n 2O N O 1( ) q n /2( ) 2q n( )1/2

 
The third aspect is how this gibes with the quantum circuit size  representation of effort.  My s = s n( )

belief is that  understates the effort quadratically---in particular, that a bank of  Hadamard gates s n( ) n
applied to a highly entangled state costs order-  not order-  units of effort. Thus I am "Shor-sure" but n2 n
Grover-skeptic.   Well, we should examine the quantum circuits, after seeing the idea of the algorithm.
 
How Grover Search Works
 
Grover's algorithm actually operates completely within a -dimensional subspace of .  The 2 C

N

subspace is spanned by two vectors:  and the vector .  (Unless  in toto, hS j =  H⊗q 0q S = 0, 1{ }q

which makes them equal.)  We do not know  in advance, but we do know .  The "miss" vector hS j

 also belongs to the subspace, since it equalsm = hS ∼S

 

 

N = 2q0..00 = 0q

0..01 = 0 1q-1

0..010

0..011

11...11

⋮

⋮

y

j = 1, 2, 3,... j RG y, j[ ]

v  =  G y, ⋅  mod 2S ∑
 

y∈S

[ ] ( )

For any , defineS ⊆ 0, 1{ }q

 is the all-0 vector.v∅
Each row  is y v y{ }

Because the rows must be linearly independent, they generate an -dimensionalN
vector space whose members are all the  vectors, each a sum of rows.vS

*

*

*
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*
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*
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 ,      so that     .
⋅ j - ⋅ hN |S| S

N- |S|
j =  m  +  h

N- |S|

N
S

|S|

N
S

 
We don't know  either, but provided  is given by a polynomial-time decidable witness predicate mS S

 of our problem instance , then we can reflect around it by means of the Grover oracleR x, y( ) x
 

.U xy, xy  =  -1  =  R[ ] ( )R x,y( ) -1 if R x, y( )

1 if ¬R x, y( )

 
When  is fixed, the Grover oracle drops down to an  diagonal matrix  with entry x N×N Gx

 if  and  otherwise.  To compute it, we can apply an idea that the G y, y = - 1x[ ] y ∈ S G y, y = 1x[ ]

textbook calls "flipping a switch" in section 6.5 but might be better called the idea of using an extra qubit 
as a catalyst.  The catalyst is that we initialize the extra qubit not to  or  but to0 1

 

.  d =  H  = -1
1

2
0 1

 
We can create a quantum circuit  of deterministic gates only (Toffoli plus constant initializations) for C0

the reversable form of the Boolean function , which is the -bit function f y = R x, yx( ) ( ) q+ 1( )

.  Now define  using our catalyst.  We get F yb = y b⊕ f yx( ) ( x( )) g y  =  C ⊗dx( ) 0 y

 

g y = C  =  = -x( ) 0( y
 - 0 1

2

C  - C0 y0 0 y1

2

1

2
y f yx( ) y ¬f yx( )

= = = -1 ⊗d

-y1 y0

2
if f y = 1x( )

-y0 y1

2
if f y = 0x( )

⊗ -dy ( ) if R x, y( )

⊗dy if ¬R x, y( )
( )R x,y( ) y

 
If we "throw away" the last qubit (say by measuring it and ignoring the result) then we get the Grover 
oracle action on the first  qubits.  So for polynomial-time witness predicates , the Grover oracle q R x, y( )

is feasible to compute.  
 
The key next point is that in the geometry of the 2-dimensional space, the Grover oracle  represents 
reflection around the miss vector .  Note first that  because no nonzero entry gets mS G m = mx S S

negated.  And  because all the nonzero entries get negated.  Therefore the action of  G h  =  - hx S S Gx

in this space is reflection about .  ms

 
The other operation we want is reflection about .  In general, reflection of a vector  around a vector  j v x
involves first taking the projection of  onto , which is .  Then we want to move  by twice the v x ⟨v, x⟩x v
difference of that to :v

 

 



 

 
The matrix operator that creates the projection of an argument  along  is the outer product , v x x x

whose  entry is .  The Dirac notation is especially handy here, because we can doi, j[ ] xix⏨j
 

.  ⋅  =   =  ⟨x, v⟩x x v x x v x
 
So the operator that creates the reflection is .  In the case  this is given by the matrix 2  -  Ix x x = j

 where each entry of  is  and  is the  identity matrix.  2J- I J
1

N I N×N

 
Because we are talking about exponential-sized matrices, it is relevant to ask about the feasibility of 
computing their actions.  An equation by which to build the reflection about  isj
 

.2J- I =  H -1 H⊗q( )NOR 1..q( ) ⊗q

 
The  is implemented via a controlled-  gate on one qubit with controls on the other  -1( )NOR 1..q( ) Z q - 1( )

qubits---it doesn't matter which, as the gate is symmetric.  By itself, that gate computes , -1( )AND 1..q( )

so it is sandwiched between two banks of  gates to get the action of .  To see why this NOT NOR

works, consider first that on any basis input , .  Applying the x H = -1⊗q x
1

N
∑

 

y ( )x⊙y y

 gives-1( )NOR 1..q( )

 

 -1  +  -1   = -1  -  
1

N
∑

 

y≠0q ( )x⊙y x
-1( )

N
( )x⊙0q

0q 1

N
∑

 

y
( )x⊙y y

2

N
0q

 
Applying  again givesH⊗q

 

-1 -1  -  -1  = -1  -  
1

N
∑

 

y
∑

 

z
( )x⊙y( )z⊙y z

2

N
∑

 

z
( )z⊙0q

z
1

N
∑

 

y
∑

 

z
( ) x⊕z ⊙y( ) z

2

N
∑

 

z
z

 
Now the outer sum over  in the first term vanishes except when , so we gety z = x
 

. -   =   -   =  I -  2J
1

N
∑

 

y
x

2

N
∑

 

z
z x

2

N
∑

 

z
z ( ) x

 
This is actually  times what we expected, but the global scalar does not matter.  The last thing to -1( )

 

 

v

x p = ⟨x, v⟩x

v+ 2 p - v = 2p - v( )

v'

  

      

   



say is what whenever  belongs to our 2-dimensional subspace, the reflection of  around  stays within v v j
the subspace.
 
 
The Search Process
 
Let  stand for the angle between  and .  Then .  When 𝛼 j mS 𝛼 = ⟨j,m ⟩ = ⟨j, h ⟩cos-1

S sin-1
S

 we can estimate|S| = o N( )

 

𝛼 =  ⟨j, h ⟩ ∼  ⟨j, h ⟩ =  .sin-1
S S

|S|

N
 

The number of iterations (each a pair of reflections) we will need is about .  This =   ≈
𝜋 / 2

2𝛼

𝜋

4𝛼

𝜋

4

N

S
isalways about the square root of the expected time for guessing uniformly at random and verifying.  If 
we know , then we know how many iterations to make before measuring; if we don't know , then |S| |S|

there are further tradeoffs discussed later.  In any event, unless , we have , so that |S| = 𝛺 N( ) 𝛼 = o 1( )

the angle  is best pictured as very small.  When , we have𝛼 |S| ≤  N

 ≤  𝛼 ≤  
1

N

1

N
as the most relevant range of angles.  Now to summarize what we know and don't know:
 

1. We know a vector  in the two-dimensional subspace  generated by the hit vector  and its j H hS

orthogonal complement, the miss vector .mS

2. The goal is to build a quantum state  whose vector is within  of , so that measuring  will 𝜙 𝜖 hS 𝜙

with probability  yield a member of .≈ 1- 𝜖 S

3. We know that  is close to , so that  is close to  (or opposite to ---either way, j mS j⟂ hS hS

measuring  would yield a solution whp.), but we have no idea how to construct  within .j⟂ j⟂ H
4. What we do have are feasible circuit components computing reflection around  and reflection mS

aound  that stay within .j H
5. If we know , then we know the number of iterations that produces a vector  closest to .  |S| 𝜙 hS

Moreover,  will be within angle  of .𝜙 𝛼 hS

 
Here is a diagram of the iteration process.  It is different from most other diagrams by emphasizing the 
smallness of  and not giving the impression that  is knowable by aligning it with vertical or horizontal 𝛼 j⟂

axes.  The iteration starts by reflecting the known vector  around .  The next five iterations (each a j mS

rotation by  effected by two reflections) are shown and color-coded.2𝛼
 

 

 

4



 
It may seem strange that we cannot jump straight to  from  or otherwise leverage the initial proximity j⟂ j

to  in a way that would at least allow taking bigger steps toward  than repeated rotation by .  It mS hS 2𝛼

looks even more enticing upon realizing that getting within  of , that means anywhere in the lower-45∘ hS

right quadrant shown, gives at least a  chance of the measurement giving a string in .   =  sin2 𝜋

4

1

2
S

The picture makes it look like we could hit that quadrant quickly just by throwing darts at it.  But the 
point is that the "dartboard"  is hidden inside a vastly higher dimensional space, and we have no H
direct information besides the  vector of how it lies. j
 
In fact, the above process is tightly optimal.  The first incarnation of a "Polynomial Method" in quantum 

computing (Boyer, Brassard, Høyer, Tapp, 1996) was to show cases where  calls to the Grover 𝛺 N

oracle are necessary.  Zalka (1999) gave bounds that are tight up to the constant being .  𝜋

4

 

If  is unknown, we can guess a stopping time  uniformly at random.  Now the "dartboard" |S| t ≤ N
reasoning works in our favor since everything happens within the subspace , and the expected time H
to find a solution is only a constant factor greater than when  is known.|S|

 
 
Circuit Implementation and Problematic Aspects
 
The Grover oracle is deterministic except for the single Hadamard gate used to initialize the catalyst 
qubit to the difference state .  We do not have to re-initialize it, however, because the output after the d

evaluation remains .  The issue is the reflection about .  Done straightforwardly, it -1 ⊗d( )R x,y( ) y mS
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⟂
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https://arxiv.org/abs/quant-ph/9605034
https://arxiv.org/abs/quant-ph/9711070v2


is heavy on the  gates, as evinced by the following example in Davy Wybiral's quantum web applet.  H

Here the Grover oracle is  giving .  This is implemented as a multi-∧ x ∧ x ∧ ∧ xx⏨1 2 3 x⏨4 5 S = 01101{ }

controlled flip of the catalyst line (where a single  follows the initial ) with  gates to make  and H 1 X x⏨1

.  The initial bank of Hadamards on the first five qubits is to create the  vector on them.  The four x⏨4 j

other banks, however, are for the two reflections about .  The angle  is  j 𝛼 1 /  =  0.1777...sin-1 32

radians. The desired number of iterations is ; the diagram counts as 2.5 iterations.  This is = 4.42
𝜋

4𝛼
close enough to show more probability accumulating on the string  on the first five qubits.01101

 

 
If we make a polynomial simulation out of this, however, the Hadamard gates for the reflections give 
rise to  new variables.  The number of Feynman paths grows by a factor of more than 1,000 per 20

iteration.  (This also causes major branching in the witness space for problem 3 on assignment 4.)  This 
growth quickly chokes the path-counting simulation written in C++ which I've demo'ed.
 
The multi-controlled  gate has its own element of excess.  Yes, OK, the Grover oracle in this case is Z
also multi-controlled, but one expects to expend more effort on it---and it could be a larger network of 
gates with only one control each.  The reflection about , however, really uses all the controls.  IBM j
researchers have found even the double-controlled Toffoli gate to be difficult to engineer, which is why 
their preferred basis consists of  , , and the  gate.  H CNOT T

 

 


