CSE696 Week 13: Grover's Algorithm---and Feynman's Briar Patch?

| have three special things to say about Grover's algorithm before we begin. First, all of our previous
quantum algorithms have been ones where an n-qubit Hadamard transform has been applied once,
then an oracle gate or other computation to create a functional superposition

PENTEN

x€{0,1}n

and then one further transform---Hadamard or Fourier---before measuring the entire output. [Footnote:
the notation |xf(x)> for the body of the sum is equivalent.] Further iterations are managed by a routine
with classical control. Grover's algorithm, however, has successive quantum stages that each use two
banks of Hadamard gates. The 2" X 2" matrices H®" are just as easy as any other in a "Schradinger-
style" simulation where you multiply matrices. But in a "Feynman-style" simulation where we count
nondeterministic witness strings, the repeated Hadamard transforms mushroom the witness space.

Second, Grover's algorithm as originally presented applies only at "witness scale": a space of N = 21
potential witness strings using g = g(n) qubits, not N separate physical locations as commonly talked

about. Whether it can apply to N physical sites with 5(@ effort is IMPHO controversial. Itis
claimed in the paper by Aaronson and Ambainis, "Quantum Search of Spatial Regions," which has lots
of physical justification (amid speculation) in its section 2, but | demur with the troglodyte view that any
contingent polling of N spatial sites requires N units of total effort. However, at witness scale, there

aren't even VN physical sites, only # qubits with basis vectors |07) through |17). A solution set
S € {0, 1}1 is represented by the "hit vector" hg defined by

1
—— ifyes
hs(y) = Vs3] :

0 otherwise

which just normalizes the sub of the basis vectors corresponding to strings in S. Well, if S is nonempty,
that is; if S is empty, this presecribes the zero vector in C which is not a legal quantum state. Let us
compare with an example from earlier notes (actually homework) that involved building a matrix G with

217 linearly independent rows, so that subsets S of {0, 1} are in 1-to-1 correspondence with vectors vg
in the space generated by the rows:

https://www.scottaaronson.com/papers/ggtoc.pdf

Gly,jl j=1,23,.] R

+meansy € S

0..00 = 04 N =21
0.01 =071 * %
0..010 * + Forany S C {0,1}7, define
0.011 vs = Y,Gly, -1 (mod 2)
. yeSs
y 2 ¥ vy is the all-0 vector.
11..11 Each row y is vy,

Because the rows must be linearly independent, they generate an N-dimensional
vector space whose members are all the vg vectors, each a sum of rows.

os L[Ll [T @i Tl 1]

It seems that the legal unit vectors in cN carry up to N bits of information---insofar as there are
2N = 22 different possible subsets S, but there is a massive caveat:

Holevo's Theorem: It is not possible to extract more than g bits of classical information from any g-
qubit quantum state.

This is part reason for Lov Grover's original attention only to singleton sets S = {y}, whereupon we
simply have hg = |y> Then distinguishing among the 27 possibilities (all of them not the empty set)
involves only g bits of information. Note, incidentally, that Holevo's theorem implies that 71-vertex
graphs G cannot be losslessly encoded by 7-qubit states,unless G is n-sparse in some pertinent
sense. Therefore, any setting that allows |S| > 1 involves some information smearing.

At witness scale, the running time is not quadratically not sub-linear but merely quadratically sub-

exponential: O(\/ITI) = nOM2a02 \which is still 2-to-the-linear exponential time,not even 29(0™ .

The third aspect is how this gibes with the quantum circuit size s = s(n1) representation of effort. My
belief is that s(11) understates the effort quadratically---in particular, that a bank of n Hadamard gates

applied to a highly entangled state costs order-12 not order-1 units of effort. Thus | am "Shor-sure" but
Grover-skeptic. Well, we should examine the quantum circuits, after seeing the idea of the algorithm.

How Grover Search Works

Grover's algorithm actually operates completely within a 2-dimensional subspace of CN. The
subspace is spanned by two vectors: hg and the vectorj = H®7|09). (Unless S = {0,1}4 in toto,
which makes them equal.) We do not know hs in advance, but we do knowj. The "miss" vector
mg = h_g also belongs to the subspace, since it equals

VN-j - VISl -hs . VN-Js| Vis|
, sothat] = ——mg +
VN-1S] VN VN

We don't know myg either, but provided S is given by a polynomial-time decidable witness predicate
R(x, y) of our problem instance x, then we can reflect around it by means of the Grover oracle

hs.

-1 if R(x,y)
Ug[xy, xy] = —1R(W)={ _ ’ .
rlxy, 2yl = (1) 1 if=R(x, 1)
When x is fixed, the Grover oracle drops down to an N X N diagonal matrix G, with entry
G,ly,yl = —=1ify € Sand G, [y, y] = 1 otherwise. To compute it, we can apply an idea that the
textbook calls "flipping a switch" in section 6.5 but might be better called the idea of using an extra qubit
as a catalyst. The catalyst is that we initialize the extra qubit not to |0) or | 1) but to

d = Hi1) = (10>~ 11).

We can create a quantum circuit C of deterministic gates only (Toffoli plus constant initializations) for
the reversable form of the Boolean function f,(y) = R(x, y), which is the (g + 1)-bit function

Fo(yb) = y(b® f(y)). Now define g,(y) = Co(ly> ®d) using our catalyst. We get

8:0) = Colly) 22| = SRR - (1)1 £,0)) - 19| =£.00))

ly1) - y0y ¢ _q
) —\[2 if f(y) _ {|y>®(—d) ifR(x,y) _ DRI ed
ly0> —y1) f F(y) = 0 ly)®d if =R(x,)
V2

If we "throw away" the last qubit (say by measuring it and ignoring the result) then we get the Grover
oracle action on the first g qubits. So for polynomial-time witness predicates R(x, i), the Grover oracle
is feasible to compute.

The key next point is that in the geometry of the 2-dimensional space, the Grover oracle represents
reflection around the miss vector mg. Note first that G,mgs = mg because no nonzero entry gets
negated. And G,hg = —hg because all the nonzero entries get negated. Therefore the action of G,
in this space is reflection about m;.

The other operation we want is reflection about j. In general, reflection of a vector v around a vector x
involves first taking the projection of v onto x, which is (v, x)x. Then we want to move v by twice the
difference of that to v:

The matrix operator that creates the projection of an argument v along x is the outer product |x){x|,

whose [i, j] entry is xix_]-. The Dirac notation is especially handy here, because we can do

lx)<x]- o) = [x)<xlv) = (x,0)x).

So the operator that creates the reflection is 2| x){x| — I. In the case x = j this is given by the matrix

2] —I where each entry of J is Z\l] and I is the N X N identity matrix.

Because we are talking about exponential-sized matrices, it is relevant to ask about the feasibility of
computing their actions. An equation by which to build the reflection about j is

2]—1 — H®q(_1)NOR(1..q)H®q_

The (—1)NOR(-4) js implemented via a controlled-Z gate on one qubit with controls on the other (g — 1)

qubits---it doesn't matter which, as the gate is symmetric. By itself, that gate computes (—1)AND(1“”’),

so it is sandwiched between two banks of NOT gates to get the action of NOR. To see why this
works, consider first that on any basis input |x), H®|x) = %Ey(—l)"@ﬂy). Applying the

(_1)NOR(1..q) gives

X0+ S2eony = =3 (1) - —=lo)

1
VN VN VW

1

VN

Applying H®7 again gives

=3 XL - S D) = LB W (D) - =3 12)

Now the outer sum over y in the first term vanishes except when z = x, so we get

NDEESNB L EENBE S P

This is actually (—1) times what we expected, but the global scalar does not matter. The last thing to

say is what whenever v belongs to our 2-dimensional subspace, the reflection of v around j stays within
the subspace.

The Search Process

Let a stand for the angle between j and mg. Then a = COS_1<j, mg) = sin~! G, hs). When
|S| = o(N) we can estimate

Visi

a = Sin_1<jrh5> ~ <j/hS> =

VN

i . : . : n/2 mn mw [N __
The number of iterations (each a pair of reflections) we will need is about — = — = —_[/—. This
2a 4da 4NV S

isalways about the square root of the expected time for guessing uniformly at random and verifying. If
we know |S|, then we know how many iterations to make before measuring; if we don't know |S|, then
there are further tradeoffs discussed later. In any event, unless |S| = (2(N), we have a = 0(1), so that

the angle « is best pictured as very small. When |S| < \/ITI we have

1 1

R G

as the most relevant range of angles. Now to summarize what we know and don't know:

1. We know a vector j in the two-dimensional subspace H generated by the hit vector hs and its
orthogonal complement, the miss vector mg.

2. The goal is to build a quantum state ¢» whose vector is within € of hg, so that measuring ¢ will
with probability = 1 — € yield a member of S.

3. We know that j is close to mg, so thatjl is close to hg (or opposite to hg---either way,
measuring jl would yield a solution whp.), but we have no idea how to constructjl within H.

4. What we do have are feasible circuit components computing reflection around mg and reflection
aound j that stay within H.

5. If we know |S|, then we know the number of iterations that produces a vector ¢ closest to h;s.
Moreover, ¢ will be within angle & of hg.

Here is a diagram of the iteration process. It is different from most other diagrams by emphasizing the
smallness of & and not giving the impression thatjl is knowable by aligning it with vertical or horizontal
axes. The iteration starts by reflecting the known vector j around mg. The next five iterations (each a
rotation by 2« effected by two reflections) are shown and color-coded.

(04 jJ‘ (but we don't know how to construct it)

i I
hs = mg (the desired target)

It may seem strange that we cannot jump straight to jl from j or otherwise leverage the initial proximity
to mg in a way that would at least allow taking bigger steps toward hg than repeated rotation by 2a. It
looks even more enticing upon realizing that getting within 45° of hg, that means anywhere in the lower-

right quadrant shown, gives at least a sin? (%) = % chance of the measurement giving a string in S.

The picture makes it look like we could hit that quadrant quickly just by throwing darts at it. But the
point is that the "dartboard" H is hidden inside a vastly higher dimensional space, and we have no
direct information besides the j vector of how it lies.

In fact, the above process is tightly optimal. The first incarnation of a "Polynomial Method" in quantum
computing (Boyer, Brassard, Hayer, Tapp, 1996) was to show cases where Q(\/m calls to the Grover

oracle are necessary. Zalka (1999) gave bounds that are tight up to the constant being %.

If |S| is unknown, we can guess a stopping time t < \/N uniformly at random. Now the "dartboard"
reasoning works in our favor since everything happens within the subspace H, and the expected time
to find a solution is only a constant factor greater than when |S| is known.

Circuit Implementation and Problematic Aspects

The Grover oracle is deterministic except for the single Hadamard gate used to initialize the catalyst
qubit to the difference state d. We do not have to re-initialize it, however, because the output after the
y) ®d. The issue is the reflection about mg. Done straightforwardly, it

evaluation remains (—1)R®*¥)

https://arxiv.org/abs/quant-ph/9605034
https://arxiv.org/abs/quant-ph/9711070v2

is heavy on the H gates, as evinced by the following example in Davy Wybiral's quantum web applet.
Here the Grover oracle is x; A X, A x3 A X, A x5 giving S = {01101}. This is implemented as a multi-
controlled flip of the catalyst line (where a single H follows the initial 1) with X gates to make x; and
X,. The initial bank of Hadamards on the first five qubits is to create the j vector on them. The four

other banks, however, are for the two reflections aboutj. The angle « is sin! (1/\/3_2) = 0.1777...

T
radians. The desired number of iterations is 4— = 4.42; the diagram counts as 2.5 iterations. This is
a

close enough to show more probability accumulating on the string 01101 on the first five qubits.

e>{ s Hx o+« HxHzHxH=sHx o s HxHzHxH=Hx —o—
\0>-——o——-x—¢—x-——o——-x—i—x-——o—
0>« ——@—{ +* Hx @ x Hs —@—+Hx | xH+ —@—
o>+ Hx @ % Hx @ xH+"Hx —@— % Hx|@xH+#Hx —@—
@>{ " @« Hx @+ xH+ | —@«Hx| @ xH+" | —@—
o — d =

0.11132812+0.000000001 |011000> 1.2394% -
-0.11132812+0.00000000i [O11001> 1.2394%
0.33007813+0.000000001 [011010> 10.8952%
-0.33007813+0.00000000i [011011> 10.8952%
0.11132813+0.00000000i |011100> 1.2394%

If we make a polynomial simulation out of this, however, the Hadamard gates for the reflections give
rise to 20 new variables. The number of Feynman paths grows by a factor of more than 1,000 per
iteration. (This also causes major branching in the witness space for problem 3 on assignment 4.) This
growth quickly chokes the path-counting simulation written in C++ which I've demo'ed.

The multi-controlled Z gate has its own element of excess. Yes, OK, the Grover oracle in this case is
also multi-controlled, but one expects to expend more effort on it---and it could be a larger network of
gates with only one control each. The reflection about j, however, really uses all the controls. IBM
researchers have found even the double-controlled Toffoli gate to be difficult to engineer, which is why
their preferred basis consists of H, CNOT, and the T gate.

