Complete Sets in AH

It is much harder to define a language in the arithmetical hierarchy that is not complete for one of the \(\Sigma^0_k \) or \(\Pi^0_k \) levels, or for \(\Delta^0_k = \text{REC} \Sigma^0_{k-1} \). Note that all decidable languages count as complete for \text{REC}, and the numbering scheme identifies this with both \(\Delta^0_0 \) and \(\Delta^0_1 \), whereas \(\text{REC}^K \) is denoted by \(\Delta^0_2 \).

- It is a mild exercise to construct a language \(A \in \text{RE} \) that is undecidable yet not complete for \text{RE} under \(\leq_m \). We will do similar things within complexity classes using \(\leq^p_m \).
- Creating an intermediate language under Turing reductions \(\leq_T \), however, was a major open problem for over a dozen years until solved by the finite injury priority method of Friedberg and Muchnik (independently) in 1956-57.
- None of those intermediate languages is "natural" to define. The simplest and most appealing definitions always give complete sets.
- The intuitive reason is the protean nature of logic and computation. It is already simplest, so it embeds itself readily into (basically all) other systems.
- We can gain appreciation for this by looking at some more completeness proofs.

Theorem 1: \(TOT = \{ \text{non-oracle DTMs } M: M \text{ halts for all inputs} \} \) is complete for \(\Pi^0_2 \).

Proof: It is in \(\Pi^0_2 \) since defined by \((\forall x)(\exists t)T(M, x, t)\). Let any \(L_S \) defined by \(S(x) = (\forall y)(\exists z)R(x, y, z) \) with \(R \) decidable be given. To reduce \(L_S \) to \(TOT \), for any \(x \), define \(f(x) = M_x \) where the machine \(M_x \) behaves as follows: on any input \(y \), it tries \(z = 0, 1, 2, \ldots \) and accepts if and when \(R(x, y, z) \) holds. Then \(x \in L_S \iff M_x \) is total. \(\Box \)

Problem: How about the language of deterministic OTMs that are total for all oracles? The above shows that it is many-one hard for \(\Pi^0_2 \). Does it belong to \(\Pi^0_2 \)? (This is where König's Lemma may come in handy.)

Theorem 2: \(FIN = \{ M: L(M) \text{ is finite} \} \) is complete for \(\Sigma^0_2 \).

Proof: It belongs since defined by \((\exists w)(\forall x)\left[|x| \geq |w| \rightarrow (\forall \bar{x})\neg T(M, x, \bar{x}) \right] \). One of the rules of conversion to prenex normal form is that \(R \rightarrow (\forall x)S(x) \) is equivalent to \((\forall x)(R \rightarrow S(x)) \). So we have \(M \in FIN \iff (\exists w)(\forall x)(\forall \bar{x})\left[|x| \geq |w| \rightarrow \neg T(M, x, \bar{x}) \right] \) with the part in \(\left[\cdots \right] \) decidable.

The language \(INF = \{ M: L(M) \text{ is infinite} \} \) is the literal complement of \(FIN \), and we've just shown it
to be in \prod_2^0. So we need only reduce L_S above to INF. The above reduction doesn't quite do that, but we can modify it with an idea called "Looking Back." Make M'_x on input y try the previous M_x on each $y' < y$ first. Only if all those accept does $M'_x(y)$ begin operating on y itself.

The upshot is that if $x \notin L_S$ then some (least) y_0 fails, i.e., is such that $(\exists z)R(x, y_0, z)$ fails, so that $M_x(y_0)$ never halts. Then for all $y \geq y_0$, $M_x'(y)$ falls into y_0 and so never halts. This makes $L(M_x')$ finite. Whereas if $x \in L_S$ then $L(M_x')$ is not only infinite but equals Σ^*. By the rule

$$\forall m \leq_m B \Leftrightarrow \exists \tilde{A} \leq_m \tilde{B},$$

this reduces any given language in Σ_2^0 to FIN. □

Index sets and Subrecursive Classes

Now FIN is an index set, that is, a set of the form $I_C = \{M : L(M) \in C\}$ for some class C of c.e. languages. It is I_{FIN} where FIN is the class of finite languages. Rice's Theorem says that every index set other than $I_{\varnothing} = \varnothing$ and $I_{RE} = \Sigma^*$ is undecidable. (Note that the subscripted \varnothing is the empty class of languages, whereas the other \varnothing is the empty language.) This is "weak beer"—we can classify index sets more precisely.

One technical point to note is the definition of $L(M_1) = L(M_2)$ for a given pair of Turing machines M_1 and M_2. If we know in advance that both M_1 and M_2 are total, then we have $(\forall x)[M_1(x) = M_2(x)]$ and the part in $[\cdots]$ is decidable, so we get a Π_1 definition. But if one or both are not total, then we must invoke a further quantification over computations. Then:

$$L(M_1) = L(M_2) \equiv (\forall x)[(\exists c)T(M_1, x, c) \leftrightarrow (\exists d)T(M_2, x, d)]$$

We cannot simply bring out both \exists quantifiers. But we can write the equivalence in two pieces:

$$(\forall x)[(\exists c)T(M_1, x, c) \wedge (\exists d)T(M_2, x, d)] \lor ((\forall c')\neg T(M_1, x, c') \wedge (\forall d')\neg T(M_2, x, d'))$$

Then condensing gives

$$(\forall x)[(\exists c, d)T(M_1, x, c) \wedge T(M_2, x, d)] \lor ((\forall c')\neg T(M_1, x, c') \wedge \neg T(M_2, x, c'))$$

Now c' is not quantified on the left of the central \lor, so we can bring out the $(\forall c')$ first and finally get a Π_2 predicate:

$$(\forall x, c')[(\exists c, d)[T(M_1, x, c) \wedge T(M_2, x, d)] \lor (\neg T(M_1, x, c') \wedge \neg T(M_2, x, c'))].$$

This is now amazingly hard to read, but it works. So equality of two machines' languages is always Π_2 at worst. The consequence of interest to us is:
Proposition 3: If you have a recursive enumeration \([Q_k]_{k=1}^{\infty}\) of machines that generate a class \(C\), then the index set \(I_C\) is \(\Sigma_3\)-definable via \((\exists k) L(M) = L(Q_k)\). □

This holds regardless of whether the machines \(Q_k\) are total, but that will be our main source of interest:

Definition 1: A class \(C\) of recursive languages is **recursively presentable (r.p.)** if there is a recursive enumeration \([Q_k]_{k=1}^{\infty}\) of total machines such that \(C = \{L(Q_k)\}\).

For example, \(P\) and \(NP\) are r.p. by their associated "natural" enumerations of machines. The latter's machines \([N_k]\) are nondeterministic, but we can use the exponential-time DTMs \([M_k]\) obtained by a fixed NTM-to-DTM conversion in their place. Perhaps less obvious is that the class \(NPC\) of \(NP\)-complete languages is r.p.: Use a recursive presentation \([F_k]\) of the class \(FP\) of polynomial-time computable functions and ahhh...let's come back to this.

Anyway, every r.p. class \(C\) has \(I_C = \sum_{3}^{0}\). And aside from \(FIN\) and its complement \(INF\), most of them are complete for \(\sum_{3}^{0}\) under \(\leq m\). Before putting that up for consideration, let's motivate the r.p. notion some more.

Recursive Presentations and "Looking Back"

Here are two other definitions, the second of which is a tacit admission that asymptotic complexity ignores concrete bounds. I use the strict definition of \(DTIME[t(n)]\) as languages accepted by TMs \(M\) such that for all \(x\), \(M(x)\) halts within \(t(|x|)\) steps. Some use the lax definition that applies this only "for sufficiently large" \(x\). A machine \(M\) that abides by the latter can always be converted to the former by giving it a "finite lookup lable": Suppose \(n_0\) is the constant so that \(M(x) \downarrow\) within \(t(n)\) steps whenever \(n = |x| \geq n_0\). For the finitely many \(x\) of length below \(n_0\), we put the yes/no answers into tabular form as a binary tree and encode that as extra states that govern the first up-to-\(n_0\) steps of \(M(x)\) on any \(x\). Since we assume \(t(n) \geq n + 1\) for any running-time function, the new machine \(M'\) runs in time \(t(n)\) strictly while accepting the same language.

Definition 2: A class \(C\) is **bounded** if there is a computable function \(t(n)\) such that \(C \subseteq DTIME[t(n)]\).

Definition 3: \(C\) is **closed under finite variations** (c.f.v.) if for all \(A \in C\) and \(B\) such that the symmetric difference \(A \triangle B\) is finite, \(B \in C\).

Lemma 3: Every r.p. class is bounded.

Proof: For all \(n\), define \(t(n)\) to be the maximum of the time taken by \(Q_k(x)\) for all \(k \leq n\) and \(x\) of length (up to) \(n\). Because each \(Q_k\) is total, this is a computable function. For all \(k\), the running time of \(Q_k\) on inputs \(x\) of length \(k\) and higher is bounded by \(t(|x|)\) by definition. Thus it meets the "lax"
definition of running in time $t(n)$. As discussed above, the results for x of length up to $k - 1$ can be stored in a finite table to create a machine Q'_k that accepts the same language as Q_k and runs in time $|x| + 1 \leq t(|x|)$ for those x. This not only tells us that every language in C belongs to $\text{DTIME}[t(n)]$, but because the change from Q_k to Q'_k is effective, it tells us that the recursive presentation can be changed to $[Q'_k]_{k=1}^\infty$ so that each machine obeys the $t(n)$ time bound strictly. \hfill \Box

When a class is c.f.v., then we don't even have to care about doing the finite-table patch. Now this comes in handy to show that the NP-complete languages are recursively presentable. Take the presentation $[F_k]$ of FP from above. Our first thought might be to define for each k the machine $M_k(x)$: compute $y = F_k(x)$ and accept x if and only if $y \in \text{SAT}$.

Then $L(M_k) \leq_p \text{SAT}$ via the polynomial-time function computed by F_k. So $[M_k]$ captures the class of languages that polynomial-time many-one reduce to SAT—which is just another way to get a recursive presentation of NP. We need to intersect the logic with the condition that SAT reduces to the language in turn. For each pair j, k define $M_{j,k}$ to run as follows:

![Diagram](https://example.com/diagram.png)

Hierarchy Operations and Recursive Presentations

This idea readily translates into something more general: Suppose that C and \mathbb{D} are r.p. classes with presentations $[Q_j]$ and $[R_k]$ and that, crucially, $C \cap \mathbb{D}$ contains some language A_0 together with all of its finite variations. Then we can build $M_{j,k}$ on input x to first spend n steps looking for a witness $w = \varepsilon, 0, 1, 00, 01, \ldots$ to test whether $w \in \text{SAT} \iff M_{j,k}$ accepts $F_j(w)$. Was a w found where this test completes but fails? Yes: Accept x if and only if $x \in \text{SAT}$. No: Accept x if and only if $F_k(x) \in \text{SAT}$.
whenever input x never finds a bad witness w. So $M_{j,k}$, if it finds no bad witness within n steps, is
coded to return $Q_j(x)$. Thus, $L(M_{j,k}) = L$, and we conclude that $[M_{j,k}]$ is a recursive presentation of
$C \cap D$.

To get a recursive presentation of $C \cup D$, we can just merge together the original machines Q_j and
R_k with no extra coding. The "merge" idea extends to infinite unions, provided we have an effective
handle on the presentations for each class. Thus, given that the individual classes P, NP, NP^{NP}, ...
are each r.p., it follows that their union PH is r.p. As for how to get the individual classes, the proof last
week suggests and operator that we will use often.

Definition 4: For any class C, define $NP[C]$ to be the class of languages L such that for some
polynomial p and language $R \in C, L = \{x: (\exists y)\langle x, y \rangle \in R\}$.

Then $NP = NP[P]$. The operator $NP[\cdot]$ is *idempotent*, a fancy term for saying
$NP[NP[C]] = NP[C]$ for every C. This is basically because of how two adjacent \exists quantifiers can be
combined into one. But $NP[\text{co-(NP[C])}]$ gives us something different: by the proof of the
equivalence between quantifiers and oracle levels in the "weak PH theorem," it gives $\sum 2^p$. Then
iterating the $NP[\cdot]$ and co- operations gives all of the polynomial hierarchy. The missing pieces we
need to show it all to be recursively presentable are:

Lemma 4: If C is r.p. then so are $NP[C]$ and co-C.

Proof: Let $[R_k]$ present C by total machines. Then for each k, let Q_k be a TM that on any input x tries
all y such that $|y| \leq p(|x|)$ (where p is the polynomial length bound in the application of the operator
$NP[\cdot]$) and accepts x if and when R_k accepts $\langle x, y \rangle$. Then, although Q_k will likely run in exponential
time, it is still total, and every language in $NP[C]$ is captured as $L(Q_k)$ for some k, so $[Q_k]$ is a
recursive presentation of $NP[C]$. [But one thing we can say in-passing is that if R_k runs in polynomial
space, then so does Q_k, because it needs only the additional space for y. This tells us that every level
of the polynomial hierarchy stays within $PSPACE$.]

And for co-C, because each R_k is a total machine, we can complement its accepting and rejecting
states to make R^c_k so that $L(R^c_k)$ is the complement of $L(R_k)$. ☒

However, it does not follow that the complement of the class C itself is r.p. Well, when C is bounded,
the complement of C (in RE, say) is unbounded. But even if we do a difference $E = D \setminus C$ of r.p.
classes, which stays bounded, we will see that in general E is not r.p. It does, however, still have index
set I_E belonging to $\sum 0^3$. The reason is a knock-on effect. Whereas

$L(M) \notin C \equiv (\forall k)L(M) \neq L(R_k) \equiv (\forall k)(\exists x)[(\exists c)T(M, x, c) XOR (\exists d)T(R_k, x, d)]$
yields no better than $\forall \exists \forall$ in prenex form, we get a leg up by the fact of also defining $L(M) \in \mathcal{D}$. Let $[R_k]$ present C and let $[Q_j]$ present D. Then:

$$L(M) \in \mathcal{D} \setminus C \equiv (\exists j)[L(M) = L(Q_j) \land (\forall k)L(Q_j) \neq L(R_k)].$$

Now because Q_j and R_k are both total, the $L(Q_j) \neq L(R_k)$ part becomes

$$(\exists j) \ldots (\forall k)(\exists x)[Q_j(x) \neq R_k(x)]$$

where the part in \ldots is now decidable. Since we have already seen that $(\exists j)[L(M) = L(Q_j)]$ is a Σ_3-predicate, this becomes the conjunction of two Σ_3-predicates, which is a Σ_3-predicate.

Structure of PH and a Possible Non-R.P. Class

The $\NP[\cdot]$ operator has one immediate utility: it speeds the proof of the "collapse lemma":

Lemma 5: For any k, if $\sum_k^p = \prod_k^p$ then $PH = \sum_k^p \cap \prod_k^p$.

In particular ($k = 1$), if $NP = \co-NP$, then the whole polynomial hierarchy "collapses" to $NP \cap \co-NP$. And of course, if $NP = P$ then it all collapses to P.

Proof: For $k = 1$, we start with $\NP[\co-(\NP[P])] = \NP[\co-NP]$ and apply our hypothesis to make that $= \NP[\NP] = \NP$. So $\sum_2^p = \sum_1^p$, and we already hypothesized $\sum_1^p = \prod_1^p$, so it all equals $\sum_1^p \cap \prod_1^p$. Further use of \co- and $\NP[\cdot]$ just winds up trying to build on the same quicksand. The full proof just replaces "1" by "k" here. ☑

Corollary 6: If $PSPACE = PH$, then for some k, $PSPACE = PH = \sum_k^p \cap \prod_k^p$.

Proof: If the TQBF language belongs to PH, then it belongs to \sum_k^p for some finite k. But TQBF is $PSPACE$-complete and mapping-reduces to its complement, so $\sum_k^p = \prod_k^p$ follows. ☑

Hall Of Mirrors Effect: For any oracle A, if $\sum_k^{p,A} = \prod_k^{p,A}$ then $PH^A = \sum_k^{p,A} \cap \prod_k^{p,A}$.

"Proof": Everything done in CSE596 and so far in this course relativizes!

It is, however, possible to have PH collapse, indeed to have $P = NP$, without having $PSPACE$
collapse into it. Here's an attempt to make a picture of the polynomial hierarchy that is more suggestive of its "vital signs":

The Polynomial Hierarchy, the Hard Counting Classes, and Polynomial Space.

Dots indicate complete sets, diamonds their likely absence.

Now we introduce a curious attempt at a class that could have an index set that is not Σ_3-definable.

Definition 5 [KWR, 1982]: $H = \text{the intersection of } \mathcal{P}^A \text{ over all oracles } A \text{ that make } \mathcal{P}^A = \mathcal{N}^P^A$.

Proposition 7: $\mathcal{PH} \subseteq H \subseteq \text{PSPACE}$, and $H \not= \mathcal{PH} \rightarrow \mathcal{NP} \not= \mathcal{P}$, indeed that the polynomial hierarchy is infinite.
Proof: Because \(P^{TQBF} = NP^{TQBF} = PSPACE \), we get \(H \subseteq PSPACE \). If \(A \) is any oracle such that \(P^A = NP^A \), then by the relativized collapse lemma ("hall of mirrors"), \(PH^A = P^A \), so \(PH \subseteq P^A \), so the unrelativized \(PH \) stays inside \(P^A \) for every such \(A \), so \(PH \subseteq H \). If the polynomial hierarchy collapses to \(\sum_k P_k \) (for any \(k \)), then the language \(B_k \) becomes an oracle relative to which \(NP^{B_k} = P^{B_k} \), so \(H \) equals \(\sum_k P_k \) equals \(PH \) in that case. Thus \(H \neq PH \) makes the whole polynomial hierarchy infinite... \(\Box \)

...Which is what we believe, but does this idea help to prove it? I thought once maybe yes, but now we should not be so starry-eyed. [However, it may follow by building on stuff to come next that \(H = PH \) without any hypothesis, which would kill my idea but would have other interests.]

Proving \(H = PH \) would also imply that \(H \) is recursively presentable. That in turn would imply that the index set \(I_H \), in other words, the language \(\{ M : L(M) \in H \} \), belongs to \(\sum_3^0 \). Can we give a \(\Sigma_3 \)-definition for \(I_H \) without needing any hypothesis? This leads to a second "psych" observation about logic and the arithmetical hierarchy:

1. It is hard to find natural examples of languages that are not complete for some level of \(AH \).
2. It is also hard to think of natural examples of languages that do not belong to \(\sum_3^0 \) or \(\prod_3^0 \). To

(para-)quote Hartley Rogers, whose textbook Elements of Recursion Theory is a bellwether in that field, "It is hard for the human mind to grab more than three quantifier alternations at a time. Many lemmas in published mathematics are really ways of enabling the mind to get past a couple more quantifier alternations."

The Rogers quote tends toward \(I_H \) being \(\Sigma_3 \)-definable even if \(H \neq PH \). Even if \(H \) is not r.p., it is the next-best thing as an intersection of classes \(P^A \) that are individually r.p. In a topological sense, r.p. classes behave like closed sets—and an intersection of closed sets is closed. The key property of a closed set \(C \) in a metric space is that if \(a \) is a point not in \(C \), then there is an open ball around \(a \) that is disjoint from \(C \). If \(a \) does not belong to an intersection \(\cap_i C_i \) of closed sets, then there is a single \(C_i \) such that \(a \notin C_i \). This means that the key hypotheses of the diagonalization theorem we will use to prove Ladner's Theorem will hold even if we replace an r.p. class by an intersection of them. So \(H \) is "as good as r.p." anyway.

Structure of Reductions

Two more "structural" complexity notions will build a framework for reducibility relations.

Definition 6: The join of two languages \(A \) and \(B \) is \(A0 \cup B1 = \{ x0 : x \in A \} \cup \{ y1 : y \in B \} \).
Often the join is written $A \oplus B$ although that can confuse with exclusive-or for the symmetric difference of A and B (which, however, I prefer to write as $A \triangle B$). It is immediate that $A \leq_r A \oplus B$ and $B \leq_r A \oplus B$ for basically any reducibility relation \leq_r, because all we have to do is tack on a 0 or a 1 to the string x given in the reduction. The key fact about the join is:

Lemma 8: For basically any reducibility \leq_r, not just \leq_r^p or \leq_r^m, if A, B, C are any languages such that $A \leq_r C$ and $B \leq_r C$, then $A \oplus B \leq_r C$.

Proof: Given any string x, if $x = 0$ then we know $x \not\in A \oplus B$, so we apply the presumed fixed action of the reduction when we know the given string is not in the source language. Otherwise, either $x = y0$ and belongs to $A \oplus B$ if and only if $y \in A$, or $x = y1$ and belongs to $A \oplus B$ if and only if $y \in B$. In the former case, we apply the reduction from A to C; in the latter case, we apply the reduction from B to C. For basically any \leq_r, the code managing the two potential applications of a \leq_r reduction belongs to the same class of functions or (oracle) machines that defines \leq_r to begin with. So we get $A \oplus B \leq_r C$.

The upshot is that $A \oplus B$ is a least upper bound for the reductions: it reduces to anything that both A and B reduce to. Technically speaking, this makes the partially ordered structure of (equivalence classes of) languages under \leq_r into an **upper semi-lattice**. Put another way: given any decidable languages A and B, there is always a language J such that $A \leq_r J$ and $B \leq_r J$, and whenever C is a language such that $A \leq_r C$ and $B \leq_r C$, we have $J \leq_r C$. The language J can always be taken as the join of A and B.

The geometrical analogy for diagramming many-one reductions suggests that the infimum (called a "meet" in lattice theory) should always exist, but there are cases where it does not.
Now here is a mirror-image question:

Research Question: Given any decidable languages \(A \) and \(B \), is there always a language \(I \) such that \(I \leq_r A \) and \(I \leq_r B \), and whenever \(C \) is a language such that \(C \leq_r A \) and \(C \leq_r B \), we have \(C \leq_r I \)?

Such a language \(I \), if it exists, could be called an "infimum" of \(A \) and \(B \). Well, for many known reducibilities, this is known to fail. But can you define a reasonable \(\leq_r \) so that it holds? And even for polynomial-time many-one reductions \(\leq^p_m \), the cases of \(A, B \) that lack an infimum are somewhat specialized. Let's try a natural case:

Question: Do SAT and TAUT have an infimum under \(\leq^p_m \)?

In this case, any language \(I \) such that \(I \leq^p_m SAT \) and \(I \leq^p_m TAUT \) belongs to \(NP \cap co-NP \). And every language \(C \) in \(NP \cap co-NP \) has that property. So this is equivalent to asking whether \(NP \cap co-NP \) includes a language \(I \) such that for every \(C \) in \(NP \cap co-NP \), \(C \leq^p_m I \). In other words:

Proposition 9: SAT and TAUT have an infimum under \(\leq^p_m \) if and only if \(NP \cap co-NP \) has a complete set under \(\leq^p_m \).

[Now, there are oracles \(X \) relative to which \(NP^X \cap co-NP^X \) does not have complete sets, but \(NP^X \) always has a complete set under \(\leq^p_m \) (where the reduction function does not need to consult \(X \)). It follows that this set and its complement do not have an infimum under \(\leq^p_m \). But this is trying to fly before we can jump---it will take a few weeks before we define and use "SAT\(^X\)" for arbitrary oracles \(X \). This does warn that Question" has "barriers" to being answered, but maybe the flexibility to seek an inspired formulation of \(\leq_r \) makes the Research Question" fair game.]

The second notion is a language that reduces to \(A \oplus B \) but is not an infimum. My name and notation are not standard, but the concept underlies the strongest "silly" results.

Definition 7: The **splice** of two languages \(A \) and \(B \) by a third language \(E \), which we'll write as \(E[(A,B)] \), is the language \((A \cap E) \cup (B \cap \sim E) \).

The intent of \(E \) is to be an "easy" language (not just in polynomial or linear time but even notions of sub-linear time) but "extremely gappy". Having \(E \in P \) makes the splice \(\leq^p_m \)-reduce to \(A \oplus B \). "Gappy" means that there are long intervals of lengths \(n_0 \ldots n_1 \) on which \(E \) has no strings---and long intervals on which it includes every string. That makes \(E[(A,B)] \) imitate \(A \) for long intervals of lengths alternately with imitating \(B \). If \(A \) is easy but \(B \) is hard, then \(E[(A,B)] \) will also be hard---but the long intervals where it looks like \(A \) will make it difficult to prove that it is not a finite variation of \(A \), which would make it easy after all.
Diagonalization and Ladner's Theorem

The following theorem was proved by Uwe Schöning as a generalization of Ladner's Theorem and its sequels. I tweaked it a little to become the following:

Theorem 10: Let C_1 and C_2 be r.p. c.f.v. classes, and let A, B be languages such that $A \notin C_1$ and $B \notin C_2$. Then we can find $E \in \text{DTIME}[n+1]$ such that $E|(A, B)$ is in neither C_1 not C_2.

Before proving it, let's show how the conclusion of Ladner's Theorem follows: Suppose $P \neq \text{NP}$. Then $A = \text{SAT}$ does not belong to $C_1 = P$ and $B = \emptyset$ does not belong to $C_2 = \text{NPC}$. Then the language $D = E|(A, B)$ is neither in P nor NP-complete, but it \leq^p_m reduces to $\text{SAT} \oplus \emptyset$, so it belongs to NP. Hence D is NP-intermediate.

Proof: We will first describe a process while "looking forward", then we will view the same process "looking back." Let $[Q_j]$ be the presentation of C_1 and $[R_k]$ that of C_2. We begin in "accepting mode" by looking for the least string y such that $A(y) \neq Q_1(y)$. By $A \notin C_1$ there must be such an y, indeed by C_1 also being c.f.v., there must be infinitely many. We also keep count of the number t_1 of steps until such x is found. At that moment, a "genie" defines E to include all strings of length up through t_1. Then we switch over to "rejecting mode" and seek the first y of length $t_1 + 1$ or higher such that $B(y) \neq R_1(y)$. Again there must be one, and we take t'_1 to be the total elapsed number of steps upon finding and verifying it. Then the genie defines all strings of length $t_1 + 1$ through t'_1 to be non-members of E, i.e., members of $\sim E$. Then we switch back to "accepting mode" in order to seek y of length $t'_1 + 1$ or higher such that $A(y) \neq Q_2(y)$ and take t_2 to be the timestamp upon finding and verifying it. Then the search for y such that $B(y) \neq R_2(y)$ is commenced from length $t_2 + 1$. This process proceeds alternating forever. The language E it creates is such that $(E \cap A) \cup (\sim E \cap B)$ preserves all differences from every Q_j and R_k machine, so the language D is not in $C_1 \cup C_2$.

To tell the complexity of E, now we do the looking back: On any input x, take $n = |x|$ and run the forward process for n steps. If the process is in accepting mode at step n, then accept x, else reject x. This takes $n + 1$ steps and defines the same language E, because of how the "genie" extends the same accept mode or reject mode to include all string lengths out to the number t_i or t'_i of steps at the end of the stage in the process that includes time n. Thus, the complexity is as stated. ☒

Next time, I will finish these notes and move on to section 3.5 of the Arora-Barak draft http://theory.cs.princeton.edu/complexity/book.pdf on the oracle B making $P^B \neq \text{NP}^B$. Then I will go to sections 6.1 and 6.2. I will review how circuits were used to prove the Cook-Levin Theorem in CSE596 while also showing how circuits can have "oracle gates" to make this all work for "relativized SAT." From Week 4 onward, we will be occupied for awhile with chapter 7, plus section 9.1 and the first two pages of section 9.2.