
CSE696 Lectures Week 2, Feb. 2021: Completeness and Diagonalization in the HierarchiesCSE696 Lectures Week 2, Feb. 2021: Completeness and Diagonalization in the Hierarchies

Complete Sets in AHComplete Sets in AH

It is much harder to define a language in the arithmetical hierarchy that is It is much harder to define a language in the arithmetical hierarchy that is notnot complete for one of the complete for one of the

 or or levels, or for levels, or for . Note that all decidable languages count as complete for. Note that all decidable languages count as complete for ∑∑

00

kk
∏∏

00

kk
ΔΔ == RECREC

00
kk

𝛴𝛴
00
k-1k-1

, and the numbering scheme identifies this with both , and the numbering scheme identifies this with both and and , whereas , whereas is denoted by is denoted by .. RECREC ΔΔ00
00 ΔΔ00

11 RECREC
KK ΔΔ00

22

• • It is a mild exercise to construct a langauge It is a mild exercise to construct a langauge that is undecidable yet not complete for that is undecidable yet not complete for A A ∈∈ RERE

 under under . We will do similar things within complexity classes using . We will do similar things within complexity classes using ..RERE ≤≤ mm ≤≤
pp
mm

• • Creating an intermediate language under Creating an intermediate language under TuringTuring reductions reductions , however, was a major open, however, was a major open ≤≤ TT

problem for over a dozen years until solved by the problem for over a dozen years until solved by the finite injury piority methodfinite injury piority method of Friedberg and of Friedberg and
Muchnik (independently) in 1956-57.Muchnik (independently) in 1956-57.

• • None of those intermediate languages is "natural" to define. The simplest and most appealingNone of those intermediate languages is "natural" to define. The simplest and most appealing
definitions always give complete sets.definitions always give complete sets.

• • The intuitive reason is the The intuitive reason is the proteanprotean nature of logic and computation. It is already simplest, so it nature of logic and computation. It is already simplest, so it
embeds itself readily into (basically all) other systems.embeds itself readily into (basically all) other systems.

• • We can gain appreciation for this by looking at some more completeness proofs.We can gain appreciation for this by looking at some more completeness proofs.

Theorem 1Theorem 1: : DTMs DTMs : : halts for all inputs halts for all inputs is complete for is complete for ..TOT TOT == nonnon -- oracleoracle{{ MM MM }} ∏∏

00

22

ProofProof: It is in : It is in since defined by since defined by . Let any . Let any defined by defined by ∏∏

00

22
∀∀xx ∃∃tt TT MM,, xx,, tt(())(()) (()) LLSS

 with with decidable be given. To reduce decidable be given. To reduce to to , for any , for any , define, define SS xx == ∀∀yy ∃∃zz RR xx,, yy,, zz(()) (())(()) (()) RR LLSS TOTTOT xx

 where the machine where the machine behaves as follows: on any input behaves as follows: on any input , it tries , it tries and and ff xx == M M (()) xx MMxx yy z z == 0 0,, 11,, 22,, ……

accepts if and when accepts if and when holds. Then holds. Then is total. is total. RR xx,, yy,, zz(()) x x ∈∈ L L ⟺⟺ M MSS xx ☒☒

ProblemProblem: How about the langauge of deterministic OTMs that are total for all oracles? The above: How about the langauge of deterministic OTMs that are total for all oracles? The above

shows that it is many-one hard for shows that it is many-one hard for . Does it belong to . Does it belong to ? (This is where König's Lemma may? (This is where König's Lemma may ∏∏

00

22
∏∏

00

22

come in handy.)come in handy.)

Theorem 2Theorem 2: : is complete for is complete for ..FIN FIN == MM :: L L MM is finiteis finite{{ (()) }} ∑∑

00

22

ProofProof: It belongs since defined by : It belongs since defined by . One of the rules of. One of the rules of ∃∃ww ∀∀xx ||xx|| ≥≥ ||ww|| ∀∀ ¬¬TT MM,, xx,,(())(()) →→ ((cc)) ((cc))

conversion to conversion to prenex normal formprenex normal form is that is that is equivalent to is equivalent to . So we. So we R R ∀∀xx SS xx→→ (()) (()) ∀∀xx R R S S xx(()) →→ (())

have have with the part in with the part in decidable. decidable.MM ∈∈ FIN FIN ⟺⟺ ∃∃ww ∀∀xx ∀∀ ||xx|| ≥≥ ||ww|| ¬¬TT MM,, xx,, (())(())((cc)) →→ ((cc)) ⋯⋯[[]]

The language The language is the literal complement of is the literal complement of , and we've just shown it, and we've just shown it INF INF == MM :: L L MM is infiniteis infinite {{ (()) }} FINFIN

to be in to be in . So we need only reduce . So we need only reduce above to above to . The above reduction doesn't quite do that,. The above reduction doesn't quite do that, ∏∏

00

22
LLSS INFINF

but we can modify it with an idea called "Looking Back." Make but we can modify it with an idea called "Looking Back." Make on input on input try the previous try the previous on on M'M'xx yy MMxx

each each first. Only if all those accept does first. Only if all those accept does begin operating on begin operating on itself. itself. y' y' << y y M'M' yyxx(()) yy

The upshot is that if The upshot is that if then some (least) then some (least) fails, i.e., is such that fails, i.e., is such that fails, so that fails, so that x x ∉∉ L LSS yy00 ∃∃zz RR xx,, yy ,, zz(()) ((00))

 never halts. Then for all never halts. Then for all , , falls into falls into and so never halts. This makes and so never halts. This makes MM yyxx((00)) y y ≥≥ y y00 M'M' yyxx(()) yy00 LL M'M'((xx))

finite. Whereas if finite. Whereas if then then is not only infinite but equals is not only infinite but equals . By the rule. By the rule x x ∈∈ L LSS LL M'M'((xx)) 𝛴𝛴
**

, this reduces any given language in , this reduces any given language in to to . . A A ≤≤ B B ⟺⟺ ≤≤ mm AA mm BB ∑∑

00

22
FINFIN ☒☒

Index sets and Subrecursive ClassesIndex sets and Subrecursive Classes

Now Now is an is an index setindex set, that is, a set of the form , that is, a set of the form for some class for some class of c.e. of c.e. FINFIN II == MM :: L L MM ∈∈ CCCC {{ (()) }} CC

languages. It is languages. It is where where is the class of finite languages. is the class of finite languages. Rice's TheoremRice's Theorem says that every index says that every index IIFINFIN FINFIN

set other than set other than and and is undecidable. (Note that the subscripted is undecidable. (Note that the subscripted is the empty is the empty classclass II == ∅ ∅∅∅ II == 𝛴 𝛴RERE
** ∅∅

of languages, whereas the other of languages, whereas the other is the empty langauge.) This is "weak beer"---we can classify index is the empty langauge.) This is "weak beer"---we can classify index ∅∅
sets more precisely.sets more precisely.

One technical point to note is the definition of One technical point to note is the definition of for a given pair of Turing machines for a given pair of Turing machines LL MM == L L MM((11)) ((22)) MM11

and and . If we know in advance that both . If we know in advance that both and and are total, then we have are total, then we have MM22 MM11 MM22 ∀∀xx MM xx == M M xx(())[[11(()) 22(())]]

and the part in and the part in is decidable, so we get a is decidable, so we get a definition. But if one or both are not total, then we definition. But if one or both are not total, then we ⋯⋯[[]] 𝛱𝛱11

must invoke a further quantification over computations. Then:must invoke a further quantification over computations. Then:

LL MM == L L MM ≡≡ ∀∀xx ∃∃cc TT MM ,, xx,, cc ⟷⟷ ∃∃dd TT MM ,, xx,, dd((11)) ((22)) (())[[(()) ((11)) (()) ((22))]]

We cannot simply bring out both We cannot simply bring out both quantifiers. But we can write the equivalence in two pieces: quantifiers. But we can write the equivalence in two pieces:∃∃

∀∀xx ∃∃cc TT MM ,, xx,, cc ∧∧ ∃∃dd TT MM ,, xx,, dd ∨∨ ∀∀c'c' ¬¬TT MM ,, xx,, c'c' ∧∧ ∀∀d'd' ¬¬TT MM ,, xx,, d'd'(())[[(((()) ((11)) (()) ((22)))) (((()) ((11)) (()) ((22))))]]

Then condensing givesThen condensing gives

∀∀xx ∃∃cc,, dd TT MM ,, xx,, cc ∧∧ T T MM ,, xx,, dd ∨∨ ∀∀c'c' ¬¬TT MM ,, xx,, c'c' ∧∧¬¬TT MM ,, xx,, c'c'(())[[(((()) ((11)) ((22)))) (((()) ((11)) ((22))))]]

Now Now is not quantified on the left of the central is not quantified on the left of the central , so we can bring out the , so we can bring out the first and finally get a first and finally get a c'c' ∨∨ ∀∀c'c'(())

 predicate: predicate:𝛱𝛱22

..∀∀xx,, c'c' ∃∃cc,, dd TT MM ,, xx,, cc ∧∧ T T MM ,, xx,, dd ∨∨ ¬¬TT MM ,, xx,, c'c' ∧∧¬¬TT MM ,, xx,, c'c'(())(())[[((((11)) ((22)))) ((((11)) ((22))))]]

This is now amazingly hard to read, but it works. So equality of two machines' languages is always This is now amazingly hard to read, but it works. So equality of two machines' languages is always 𝛱𝛱22

at worst. The consequence of interest to us is:at worst. The consequence of interest to us is:

Proposition 3Proposition 3: : IfIf you have a recursive enumeration you have a recursive enumeration of machines that generate a class of machines that generate a class , then the, then the QQ[[kk]] CC

index set index set is is -definable via -definable via IICC 𝛴𝛴33 ∃∃kk LL MM == L L QQ .. ☒ ☒(()) (()) ((kk))

This holds regardless of whether the machines This holds regardless of whether the machines are total, but that will be our main source of interest: are total, but that will be our main source of interest:QQkk

Definition 1Definition 1: A class : A class of recursive languages is of recursive languages is recursively presentablerecursively presentable ((r.p.r.p.) if there is a recursive) if there is a recursive CC

enumeration enumeration of of totaltotal machines such that machines such that .. QQ[[kk]]∞∞k=1k=1 CC == LL QQ{{ ((kk))}}

For example, For example, and and are r.p. by their associated "natural" enumerations of machines. The latter's are r.p. by their associated "natural" enumerations of machines. The latter's PP NPNP

machines machines are nondeterministic, but we can use the exponential-time DTMs are nondeterministic, but we can use the exponential-time DTMs obtained by a obtained by a NN[[kk]] MM[[kk]]

fixed NTM-to-DTM conversion in their place. Perhaps less obvious is that the class fixed NTM-to-DTM conversion in their place. Perhaps less obvious is that the class of of --NPCNPC NPNP

complete languages is r.p.: Use a recursive presentation complete languages is r.p.: Use a recursive presentation of the class of the class of polynomial-time of polynomial-time FF[[kk]] FPFP

computable functions and ahhh...let's come back to this.computable functions and ahhh...let's come back to this.

Anyway, every r.p. class Anyway, every r.p. class has has . And aside from . And aside from and its complement and its complement , most of, most of CC II ∈∈ CC
∑∑

00

33
FINFIN INFINF

them are complete for them are complete for under under . Before putting that up for consideration, let's motivate the r.p.. Before putting that up for consideration, let's motivate the r.p. ∑∑

00

33
≤≤ mm

notion some more.notion some more.

Recursive Presentations and "Looking Back"Recursive Presentations and "Looking Back"

Here are two other definitions, the second of which is a tacit admission that asymptotic complexityHere are two other definitions, the second of which is a tacit admission that asymptotic complexity
ignores concrete bounds. I use the strict definition of ignores concrete bounds. I use the strict definition of as languages accepted by TMs as languages accepted by TMs DTIMEDTIME tt nn[[(())]] MM

such that for all such that for all , , halts within halts within steps. Some use the lax definition that applies this only "for steps. Some use the lax definition that applies this only "for xx MM xx(()) tt ||xx||(())

sufficiently large" sufficiently large" . A machine . A machine that abides by the latter can always be converted to the former by that abides by the latter can always be converted to the former by xx MM

giving it a "finite lookup lable": Suppose giving it a "finite lookup lable": Suppose is the constant so that is the constant so that within within steps whenever steps whenever nn00 MM xx ↓↓(()) tt nn(())

. For the finitely many . For the finitely many of length below of length below , we put the yes/no answers into tabular, we put the yes/no answers into tabular n n == ||xx|| ≥≥ n n00 xx nn00

form as a binary tree and encode that as extra states that govern the first up-to-form as a binary tree and encode that as extra states that govern the first up-to- steps of steps of on on nn00 MM xx(())

any any . Since we assume . Since we assume for any running-time function, the new machine for any running-time function, the new machine runs in time runs in time xx tt nn ≥≥ n n ++ 11(()) M'M'

 strictly while accepting the same language. strictly while accepting the same language. tt nn(())

Definition 2Definition 2: A class : A class is is boundedbounded if there is a computable function if there is a computable function such that such that CC tt nn(())

CC ⊆⊆ DTIMEDTIME tt nn ..[[(())]]

Definition 3Definition 3: : is is closed under finite variationsclosed under finite variations ((c.f.v.c.f.v.) if for all) if for all and and such that the such that the CC A A ∈∈ CC BB

symmetric difference symmetric difference is finite, is finite, .. A A △△ B B B B ∈∈ CC

Lemma 3Lemma 3: Every r.p. class is bounded.: Every r.p. class is bounded.

ProofProof: For all : For all , define , define to be the maximum of the time taken by to be the maximum of the time taken by for all for all and and of of nn tt nn(()) QQ xxkk(()) k k ≤≤ n n xx

length (up to) length (up to) . Because each . Because each is total, this is a computable function. For all is total, this is a computable function. For all , the running time of, the running time of nn QQkk kk

 on inputs on inputs of length of length and higher is bounded by and higher is bounded by by definition. Thus it meets the "lax" by definition. Thus it meets the "lax" QQkk xx kk tt ||xx||(())

definition of running in time definition of running in time . As discussed above, the results for . As discussed above, the results for of length up to of length up to can be can be tt nn(()) xx kk -- 11

stored in a finite table to create a machine stored in a finite table to create a machine that accepts the same language as that accepts the same language as and runs in time and runs in time Q'Q'kk QQkk

 for those for those . This not only tells us that every language in . This not only tells us that every language in belongs to belongs to ,, ||xx|| ++ 1 1 ≤≤ t t ||xx||(()) xx CC DTIMEDTIME tt nn[[(())]]

but because the change from but because the change from to to is is effectiveeffective, it tells us that the recursive presentation can be, it tells us that the recursive presentation can be QQkk Q'Q'kk

changed to changed to so that each machine obeys the so that each machine obeys the time bound strictly. time bound strictly. Q'Q'[[kk]]∞∞k=1k=1 tt nn(()) ☒☒

When a class is c.f.v., then we don't even have to care about doing the finite-table patch. Now thisWhen a class is c.f.v., then we don't even have to care about doing the finite-table patch. Now this
comes in handy to show that the comes in handy to show that the -complete languages are recursively presentable. Take the-complete languages are recursively presentable. Take the NPNP

presentation presentation of of from above. Our first thought might be to define for each from above. Our first thought might be to define for each the machine the machineFF[[kk]] FPFP kk

MM xx :: computecompute y y == F F xx and acceptand accept x x if and only ifif and only if y y ∈∈ SAT SAT..kk(()) kk(())

Then Then via the polynomial-time function computed by via the polynomial-time function computed by . So . So captures the class captures the class LL MM ≤≤ SAT SAT((kk))
pp
mm FFkk MM[[kk]]

of languages that polynomial-time many-one reduce to of languages that polynomial-time many-one reduce to ---which is just another way to get a---which is just another way to get a SATSAT

recursive presentation of recursive presentation of . We need to intersect the logic with the condition that . We need to intersect the logic with the condition that reduces to the reduces to the NPNP SATSAT

language in turn. For each pair language in turn. For each pair define define to run as follows: to run as follows:jj,, kk MMj,kj,k

Hierarchy Operations and Recursive PresentationsHierarchy Operations and Recursive Presentations

This idea readily translates into something more general: Suppose that This idea readily translates into something more general: Suppose that and and are r.p. classes with are r.p. classes with CC DD

presentations presentations and and and that, crucially, and that, crucially, contains some language contains some language together with all oftogether with all of QQ[[jj]] RR[[kk]] C C ∩∩ D D AA00

its finite variationsits finite variations. Then we can build . Then we can build on input on input to first spend to first spend steps looking for a witness steps looking for a witness MMj,kj,k xx nn

that that , so that , so that . If it finds and verifies one. If it finds and verifies one w w == 𝜖 𝜖,, 00,, 11,, 0000,, 0101,, …… QQ ww ≠≠ R R wwjj(()) kk(()) LL QQ ≠≠ L L RR((jj)) ((kk))

within within steps, then steps, then accepts accepts if and only if if and only if . Thus . Thus becomes a finite variation of becomes a finite variation of nn MMj,kj,k xx x x ∈∈ A A00 LL MM((j,kj,k))

, but that's OK---it is still a language in , but that's OK---it is still a language in . Now let any language . Now let any language in in be given. Then be given. Then AA00 C C ∩∩ D D LL C C ∩∩ D D

there are machines there are machines and and such that such that . Then the new machine . Then the new machine on on QQjj RRkk LL QQ == L L == L L RR((jj)) ((kk)) MMj,kj,k

input xinput x
n n == ||xx||;;

Spend up to Spend up to steps on steps on to to nn w w == 𝜖 𝜖,, 00,, 11,, 0000,, 0101,, ……

test whether test whether . . w w ∈∈ SAT SAT ⟺⟺ M M accepts F accepts F wwj,kj,k jj(())

Was a Was a found where this found where thisww
test completes but test completes but failsfails??

yesyes

nono

Accept Accept if and if andxx

only if only if xx ∈∈ SATSAT

Accept Accept if and only if if and only if xx FF xx ∈∈ SAT SATkk(())

MM == j,kj,k

whatever input whatever input never finds a bad witness never finds a bad witness . So . So , if it finds no bad witness within , if it finds no bad witness within steps, is steps, is xx ww MMj,kj,k nn

coded to return coded to return . Thus, . Thus, , and we conclude that , and we conclude that is a recursive presentation of is a recursive presentation of QQ xxjj(()) LL MM == L L((j,kj,k)) MM[[j,kj,k]]

..C C ∩∩ D D

To get a recursive presentation of To get a recursive presentation of , we can just merge together the original machines , we can just merge together the original machines and and C C ∪∪ D D QQjj

 with no extra coding. The "merge" idea extends to infinite unions, provided we have an effective with no extra coding. The "merge" idea extends to infinite unions, provided we have an effective RRkk

handle on the presentations for each class. Thus, handle on the presentations for each class. Thus, givengiven that the individual classes that the individual classes , , , , , ..., ... PP NPNP NPNPNPNP

are each r.p., it follows that their union are each r.p., it follows that their union is r.p. As for how to get the individual classes, the proof last is r.p. As for how to get the individual classes, the proof last PHPH

week suggests and operator that we will use often.week suggests and operator that we will use often.

Definition 4Definition 4: For any class : For any class , define , define to be the class of languages to be the class of languages such that for some such that for some CC NPNP CC[[]] LL

polynomial polynomial and language and language , , ..pp R R ∈∈ CC L L == xx :: ∃∃ yy ⟨⟨xx,, yy⟩⟩ ∈∈ R Rpp

Then Then . The operator . The operator is is idempotentidempotent, a fancy term for saying, a fancy term for saying NPNP == NPNP PP[[]] NPNP ⋅⋅[[]]

for every for every . This is basically because of how two adjacent . This is basically because of how two adjacent quantifiers can be quantifiers can be NPNP NPNP[[[[CC == NPNP CC]]]] [[]] CC ∃∃

combined into one. But combined into one. But gives us something different: by the proof of the gives us something different: by the proof of the NPNP coco -- NPNP[[(([[CC]]))]]

equivalence between quantifiers and oracle levels in the "weak PH theorem," it gives equivalence between quantifiers and oracle levels in the "weak PH theorem," it gives . Then. Then ∑∑

pp

22

iterating the iterating the and and co-co- operations gives all of the polynomial hierarchy. The missing pieces we operations gives all of the polynomial hierarchy. The missing pieces we NPNP ⋅⋅[[]]

need to show it all to be recursively presentable are:need to show it all to be recursively presentable are:

Lemma 4Lemma 4: If : If is r.p. then so are is r.p. then so are] and co-] and co- ..CC NPNP CC[[CC

ProofProof: Let : Let present present by total machines. Then for each by total machines. Then for each , let , let be a TM that on any input be a TM that on any input tries tries RR[[kk]] CC kk QQkk xx

all all such that such that (where (where is the polynomial length bound in the application of the operator is the polynomial length bound in the application of the operator yy ||yy|| ≤≤ p p ||xx||(()) pp

) and accepts) and accepts if and when if and when accepts accepts . Then, although . Then, although will likely run in exponential will likely run in exponential NPNP ⋅⋅[[]] xx RRkk ⟨⟨xx,, yy⟩⟩ QQkk

time, it is still total, and every language in time, it is still total, and every language in] is captured as] is captured as for some for some , so , so is a is a NPNP CC[[LL QQ((kk)) kk QQ[[kk]]

recursive presentation of recursive presentation of]. [But one thing we can say in-passing is that if]. [But one thing we can say in-passing is that if runs in polynomial runs in polynomial NPNP CC[[RRkk

space, then so does space, then so does , because it needs only the additional space for , because it needs only the additional space for . This tells us that every level. This tells us that every level QQkk yy

of the polynomial hierarchy stays within of the polynomial hierarchy stays within .].]PSPACEPSPACE

And for co-And for co- , because each , because each is a total machine, we can complement its accepting and rejecting is a total machine, we can complement its accepting and rejecting CC RRkk

states to make states to make so that so that is the complement of is the complement of . . R'R'kk LL R'R'((kk)) LL RR((kk)) ☒☒

However, it does not follow that the complement of the class However, it does not follow that the complement of the class itself is r.p. Well, when itself is r.p. Well, when is bounded, is bounded, CC CC

the complement of the complement of (in (in , say) is unbounded. But even if we do a difference , say) is unbounded. But even if we do a difference of r.p. of r.p. CC RERE E E == D D ⧵⧵ CC

classes, which stays bounded, we will see that in general classes, which stays bounded, we will see that in general is is notnot r.p. It does, however, still have index r.p. It does, however, still have index EE

set set belonging to belonging to . The reason is a knock-on effect. Whereas. The reason is a knock-on effect. WhereasIIEE ∑∑

00

33

LL MM ∉∉ CC ≡≡ ∀∀kk LL MM ≠≠ LL RR ≡≡ ∀∀kk ∃∃xx ∃∃cc TT MM,, xx,, cc XOR XOR ∃∃dd TT RR ,, xx,, dd (()) (()) (()) ((kk)) (())(())[[(()) (()) (()) ((kk))]]

yields no better than yields no better than in prenex form, we get a leg up by the fact of also defining in prenex form, we get a leg up by the fact of also defining . Let. Let ∀∃∀∀∃∀ LL MM ∈∈ DD(())

 present present and let and let present present . Then:. Then:RR[[kk]] CC QQ[[jj]] DD

..LL MM ∈∈ DD ⧵⧵ CC ≡≡ ∃∃jj LL MM == L L QQ ∧∧ ∀∀kk LL QQ ≠≠ LL RR(()) (())[[(()) ((jj)) (()) ((jj)) ((kk))]]

Now because Now because and and are both total, the are both total, the part becomes part becomes QQjj RRkk LL QQ ≠≠ LL RR((jj)) ((kk))

∃∃jj …… ∀∀kk ∃∃xx QQ xx ≠≠ R R xx(()) (())(())[[jj(()) kk(())]]

where the part in where the part in is now is now decidabledecidable. Since we have already seen that . Since we have already seen that is a is a ……[[]] ∃∃jj LL MM == L L QQ(())[[(()) ((jj))

-predicate, this becomes the conjunction of two -predicate, this becomes the conjunction of two -predicates, which is a -predicates, which is a -predicate.-predicate.𝛴𝛴33 𝛴𝛴33 𝛴𝛴33

Structure of PH and a Possible Non-R.P. ClassStructure of PH and a Possible Non-R.P. Class

The The operator has one immediate utility: it speeds the proof of the "collapse lemma": operator has one immediate utility: it speeds the proof of the "collapse lemma":NPNP ⋅⋅[[]]

Lemma 5Lemma 5: For any : For any , if , if = = then then kk ∑∑

pp

kk
∏∏

pp

kk
PHPH == ∩∩ .. ∑∑

pp

kk
∏∏

pp

kk

In particular (In particular (, if , if NPNP = = co-NPco-NP, then the whole polynomial hierarchy "collapses" to , then the whole polynomial hierarchy "collapses" to NPNP co-NP.co-NP. kk == 11)) ∩∩
And of course, if And of course, if NPNP = = P P then it all collapses tothen it all collapses to P. P.

ProofProof: For : For , we start with , we start with and apply our hypothesis to makeand apply our hypothesis to make kk == 11 NPNP coco -- NPNP[[(([[PP == NPNP coco --NPNP]]))]] [[]]

that that . So . So = = , and we already hypothesized , and we already hypothesized = = so it all equals so it all equals == NPNP NPNP == NPNP[[]] ∑∑

pp

22
∑∑

pp

11
∑∑

pp

11
∏∏

pp

11

. Further use of . Further use of co-co- and and just winds up trying to build on the same quicksand. The just winds up trying to build on the same quicksand. The ∩∩ ∑∑

pp

11
∏∏

pp

11
NPNP ⋅⋅[[]]

full proof just replaces "1" by "full proof just replaces "1" by " " here. " here. kk ☒☒

Corollary 6Corollary 6: If : If , then for some , then for some , , = = PSPACE PSPACE == PH PH kk PSPACE PSPACE == PH PH ∩∩ ..∑∑

pp

kk
∏∏

pp

kk

Proof: If the TQBF language belongs to Proof: If the TQBF language belongs to , then it belongs to , then it belongs to for some finite for some finite . But TQBF is. But TQBF is PHPH ∑∑

pp

kk
kk

-complete and mapping-reduces to its complement, so -complete and mapping-reduces to its complement, so = = follows. follows. PSPACEPSPACE ∑∑

pp

kk
∏∏

pp

kk
☒☒

Hall Of Mirrors EffectHall Of Mirrors Effect: For any oracle : For any oracle , if , if = = then then AA ∑∑

p,Ap,A

kk
∏∏

p,Ap,A

kk
PHPH == ∩∩ .. AA ∑∑

p,Ap,A

kk
∏∏

p,Ap,A

kk

"Proof""Proof": Everything done in CSE596 and so far in this course relativizes!: Everything done in CSE596 and so far in this course relativizes!

It is, however, possible to have It is, however, possible to have collapse, indeed to have collapse, indeed to have , without having , without having PHPH P P == NP NP PSPACEPSPACE

collapse into it. Here's an attempt to make a picture of the polynomial hierarchy that is more suggestivecollapse into it. Here's an attempt to make a picture of the polynomial hierarchy that is more suggestive
of its "vital signs":of its "vital signs":

Now we introduce a curious attempt at a class that could have an index set that is not Now we introduce a curious attempt at a class that could have an index set that is not -definable.-definable.𝛴𝛴33

Definition 5Definition 5 [KWR, 1982]: [KWR, 1982]: the intersection of the intersection of over all oracles over all oracles that make that make ..HH == PPAA AA PP == NPNPAA AA

Proposition 7Proposition 7:: , and , and , indeed that the polynomial, indeed that the polynomial PH PH ⊆⊆ H H ⊆⊆ PSPACE PSPACE H H ≠≠ PH PH ⟹⟹ NP NP ≠≠ P P

hierarchy is infinite.hierarchy is infinite.

NPNP co-NPco-NP

PP

∑∑
 pp

22
∏∏ pp

22

∑∑
 pp

33
∏∏ pp

33

PP
NPNP

PP
NPNP

NPNP

BB22

BB33

SATSAT TAUTTAUT

o o o
o o o

TQBFTQBF

The Polynomial Hierarchy,The Polynomial Hierarchy,
the Hard Counting Classes,the Hard Counting Classes,
and Polynomial Space.and Polynomial Space.

Dots indicateDots indicate
complete sets,complete sets,
diamonds theirdiamonds their
likely absence.likely absence.

o o o
o o o

o o o
o o o

PSPACEPSPACE

PHPH

PERMPERM

P =P =
PPPP

PP
NPNP

PP#P#P

ProofProof: Because : Because , we get , we get . If . If is any oracle such that is any oracle such that PP == NPNP == PSPACEPSPACE

TQBFTQBF TQBFTQBF
H H ⊆⊆ PSPACE PSPACE AA

, then by the relativized collapse lemma ("hall of mirrors"), , then by the relativized collapse lemma ("hall of mirrors"), , so , so , so, so PP == NPNPAA AA PHPH == PPAA AA PHPH ⊆⊆ PPAA

the unrelativized the unrelativized stays inside stays inside for every such for every such , so , so . If the polynomial hierarchy. If the polynomial hierarchy PHPH PPAA AA PH PH ⊆⊆ H H

collpases to collpases to (for any (for any), then the language), then the language becomes an oracle relatuive to which becomes an oracle relatuive to which ∑∑

pp

kk
kk BBkk

, so , so equals equals equals equals in that case. Thus in that case. Thus makes the whole polynomial makes the whole polynomial NPNP == PPBBkk BBkk
HH ∑∑

pp

kk
PHPH H H ≠≠ PH PH

hierarchy infinite... hierarchy infinite... ☒☒

...Which is what we believe, but does this idea help to prove it? I thought once maybe yes, but now we...Which is what we believe, but does this idea help to prove it? I thought once maybe yes, but now we
should not be so starry-eyed. [However, it may follow by building on stuff to come next that should not be so starry-eyed. [However, it may follow by building on stuff to come next that H H == PH PH

without any hypothesis, which would kill my idea but would have other interests.]without any hypothesis, which would kill my idea but would have other interests.]

Proving Proving would also imply that would also imply that is recursively presentable. That in turn would imply that the is recursively presentable. That in turn would imply that the H H == PH PH HH

index set index set , in other words, the language , in other words, the language , belongs to , belongs to . Can we give a . Can we give a --IIHH MM :: L L MM ∈∈ HH{{ (()) }} ∑∑

00

33
𝛴𝛴33

definition for definition for without needing any hypothesis? This leads to a second "psych" observation about without needing any hypothesis? This leads to a second "psych" observation about IIHH
logic and the arithmetical hierarchy:logic and the arithmetical hierarchy:

1. 1. It is hard to find natural examples of languages that are It is hard to find natural examples of languages that are notnot complete for some level of AH. complete for some level of AH.

2. 2. It is also hard to think of natural examples of languages that do not belong to It is also hard to think of natural examples of languages that do not belong to or or . To. To ∑∑

00

33
∏∏ 00

33

(para-)quote Hartley Rogers, whose textbook (para-)quote Hartley Rogers, whose textbook Elements of Recursion TheoryElements of Recursion Theory is a bellwether in is a bellwether in
that field, "It is hard for the human mind to grab more than three quantifier alternations at a time.that field, "It is hard for the human mind to grab more than three quantifier alternations at a time.
Many lemmas in published mathematics are really ways of enabling the mind to get past aMany lemmas in published mathematics are really ways of enabling the mind to get past a
couple more quantifier alternations."couple more quantifier alternations."

The Rogers quote tends toward The Rogers quote tends toward being being -definable even if -definable even if . Even if . Even if is not r.p., it is the is not r.p., it is the IIHH 𝛴𝛴33 H H ≠≠ PH PH HH

next-best thing as an intersection of classes next-best thing as an intersection of classes that are individually r.p. In a topological sense, r.p. that are individually r.p. In a topological sense, r.p. PPAA

classes behave like closed sets---and an intersection of closed sets is closed. The key property of aclasses behave like closed sets---and an intersection of closed sets is closed. The key property of a
closed set closed set in a metric space is that if in a metric space is that if is a point not in is a point not in , then there is an open ball around , then there is an open ball around that is that is CC aa CC aa

disjoint from disjoint from . If . If does not belong to an intersection does not belong to an intersection of closed sets, then there is a single of closed sets, then there is a single CC aa ∩∩ CCii ii CCii

such that such that . This means that the key hypotheses of the diagonalization theorem we will use to. This means that the key hypotheses of the diagonalization theorem we will use to a a ∉∉ C Cii

prove Ladner's Theorem will hold even if we replace an r.p. class by an intersection of them. So prove Ladner's Theorem will hold even if we replace an r.p. class by an intersection of them. So is is HH

"as good as r.p." anyway."as good as r.p." anyway.

Structure of ReductionsStructure of Reductions

Two more "structural" complexity notions will build a framework for reducibility relations.Two more "structural" complexity notions will build a framework for reducibility relations.

Definition 6Definition 6: The : The joinjoin of two langauges of two langauges and and is is ..AA BB A0 A0 ∪∪ B1 B1 == x0x0 :: xx ∈∈ AA ∪∪ y1y1 :: yy ∈∈ BB{{ }} {{ }}

Often the join is written Often the join is written although that can confuse with exclusive-or for the symmetric difference although that can confuse with exclusive-or for the symmetric difference AA⊕⊕BB

of of and and (which, however, I prefer to write as (which, however, I prefer to write as). It is immediate that). It is immediate that and and AA BB A A △△ B B A A ≤≤ A A⊕⊕BBrr

 for basically any reducibility relation for basically any reducibility relation , because all we have to do is tack on a , because all we have to do is tack on a or a or a B B ≤≤ A A⊕⊕BBrr ≤≤ rr 00 11

to the string to the string given in the reduction. The key fact about the join is: given in the reduction. The key fact about the join is:xx

Lemma 8Lemma 8: For basically any reducibility : For basically any reducibility , not just , not just or or , if , if are any languages such are any languages such ≤≤ rr ≤≤

pp
mm ≤≤

pp
TT AA,, BB,, CC

that that and and , then , then ..A A ≤≤ C Crr B B ≤≤ C Crr AA⊕⊕B B ≤≤ C Crr

ProofProof: Given any string : Given any string , if , if then we know then we know , so we apply the presumed fixed action, so we apply the presumed fixed action xx x x == 𝜖 𝜖 x x ∉∉ A A⊕⊕BB
of the reduction when we know the given string is not in the source language. Otherwise, eitherof the reduction when we know the given string is not in the source language. Otherwise, either

 and belongs to and belongs to if and only if if and only if , or , or and belongs to and belongs to if and only if if and only if x x == y0 y0 AA⊕⊕BB y y ∈∈ A A x x == y1 y1 AA⊕⊕BB

. In the former case, we apply the reduction from . In the former case, we apply the reduction from to to ; in the latter case, we apply the; in the latter case, we apply the y y ∈∈ B B AA CC

reduction from reduction from to to . For basically any . For basically any , the code managing the two potential applications of a, the code managing the two potential applications of a BB CC ≤≤ rr

 reduction belongs to the same class of functions or (oracle) machines that defines reduction belongs to the same class of functions or (oracle) machines that defines to begin to begin ≤≤ rr ≤≤ rr

with. So we get with. So we get . . AA⊕⊕B B ≤≤ C Crr ☒☒

The upshot is that The upshot is that is a least upper bound for the reductions: it reduces to anything that both is a least upper bound for the reductions: it reduces to anything that both AA⊕⊕BB AA

and and reduce to. Technically speaking, this makes the partially ordered structure of (equivalence reduce to. Technically speaking, this makes the partially ordered structure of (equivalence BB

classes of) languages under classes of) languages under into an into an upper semi-latticeupper semi-lattice. Put another way: given any decidable. Put another way: given any decidable ≤≤ rr

languages languages and and , there is always a language , there is always a language such that such that and and , and whenever , and whenever is a is a AA BB JJ A A ≤≤ J Jrr B B ≤≤ J Jrr CC

language such that language such that and and , we have , we have . The language . The language can always be taken as can always be taken as A A ≤≤ C Crr B B ≤≤ C Crr J J ≤≤ C Crr JJ

the join of the join of and and .. AA BB

AA
BB

CC

JJ

??

II

The geometrical analogyThe geometrical analogy
for diagramming many-onefor diagramming many-one
reductions suggests thatreductions suggests that
the infimum (called a "meet"the infimum (called a "meet"
in lattice theory) shouldin lattice theory) should
always exist, but there arealways exist, but there are
cases where it does not.cases where it does not.

Now here is a mirror-image question:Now here is a mirror-image question:

Research QuestionResearch Question: Given any decidable languages : Given any decidable languages and and , is there always a language , is there always a language such that such that AA BB II

 and and , and whenever , and whenever is a language such that is a language such that and and , we have, we have I I ≤≤ A Arr I I ≤≤ B Brr CC C C ≤≤ A Arr C C ≤≤ B Brr

??C C ≤≤ I Irr

Such a language Such a language , if it exists, could be called an "infimum" of , if it exists, could be called an "infimum" of and and . Well, for many known. Well, for many known II AA BB

reducibilities, this is known to fail. But can you define a reasonable reducibilities, this is known to fail. But can you define a reasonable so that it holds? And even for so that it holds? And even for ≤≤ rr

polynomial-time many-one reductions polynomial-time many-one reductions , the cases of , the cases of that lack an infimum are somewhat that lack an infimum are somewhat ≤≤
pp
mm AA,, BB

specialized. Let's try a natural case:specialized. Let's try a natural case:

Question'Question': Do SAT and TAUT have an infimum under : Do SAT and TAUT have an infimum under ??≤≤

pp
mm

In this case, any language In this case, any language such that such that and and belongs to belongs to NPNP co-NPco-NP. And. And II I I ≤≤ SAT SAT
pp
mm II ≤≤ TAUT TAUT

pp
mm ∩∩

every language every language in in NPNP co-NPco-NP has that property. So this is equivalent to asking whether has that property. So this is equivalent to asking whether NPNP co-co-CC ∩∩ ∩∩

NPNP includes a language includes a language such that for every such that for every in in NPNP co-NPco-NP, , . In other words:. In other words:II CC ∩∩ C C ≤≤ I I
pp
mm

Proposition 9Proposition 9: : SAT and TAUT have an infimum under SAT and TAUT have an infimum under if and only if if and only if NPNP co-NP co-NP has a completehas a complete ≤≤

pp
mm ∩∩

set under set under ..≤≤
pp
mm

[Now, there are oracles [Now, there are oracles relative to which relative to which co-co- does not have complete sets, but does not have complete sets, but XX NPNPXX ∩∩ NPNPXX NPNPXX

always has a complete set underalways has a complete set under (where the reduction function does not need to consult (where the reduction function does not need to consult). It). It ≤≤
pp
mm XX

follows that this set and its complement do not have an infimum underfollows that this set and its complement do not have an infimum under . But this is trying to fly. But this is trying to fly ≤≤
pp
mm

before we can jump---it will take a few weeks before we define and use "SATbefore we can jump---it will take a few weeks before we define and use "SAT " for arbitrary oracles " for arbitrary oracles .. XX XX
This does warn that This does warn that Question' Question' has "barriers" to being answered, but maybe the flexibility to seek anhas "barriers" to being answered, but maybe the flexibility to seek an
inspired formulation of inspired formulation of makes the " makes the "Research QuestionResearch Question" fair game.]" fair game.]≤≤ rr

The second notion is a language that reduces to The second notion is a language that reduces to but is not an infimum. My name and notation but is not an infimum. My name and notation AA⊕⊕BB
are not standard, but the concept underlies the strongest "silly" results.are not standard, but the concept underlies the strongest "silly" results.

Definition 7Definition 7: The : The splicesplice of two languages of two languages and and by a third language by a third language , which we'll write as, which we'll write as AA BB EE

, is the language , is the language .. EE|||| AA,, BB(()) A A ∩∩ E E ∪∪ B B ∩∩ ∼∼ EE (()) (())

The intent of The intent of is to be an "easy" langauge (not just in polynomial or linear time but even notions of sub- is to be an "easy" langauge (not just in polynomial or linear time but even notions of sub-EE

linear time) but "extremely gappy". Having linear time) but "extremely gappy". Having makes the splice makes the splice -reduce to -reduce to . "Gappy". "Gappy" E E ∈∈ PP ≤≤
pp
mm AA⊕⊕BB

means that there are long intervals of lengths means that there are long intervals of lengths on which on which has no strings---and long intervals has no strings---and long intervals nn …… nn00 11 EE

on which it includes every string. That makes on which it includes every string. That makes imitate imitate for long intervals of lengths for long intervals of lengths EE|||| AA,, BB(()) AA

alternately with imitating alternately with imitating . If . If is easy but is easy but is hard, then is hard, then will also be hard---but the long will also be hard---but the long BB AA BB EE|||| AA,, BB(())

intervals where it looks like intervals where it looks like will make it difficult to prove that it is not a finite variation of will make it difficult to prove that it is not a finite variation of , which, which AA AA
would make it easy after all.would make it easy after all.

Diagonalization and Ladner's TheoremDiagonalization and Ladner's Theorem

The following theorem was proved by Uwe Schöning as a generalization of Ladner's Theorem and itsThe following theorem was proved by Uwe Schöning as a generalization of Ladner's Theorem and its
sequels. I tweaked it a little to become the following:sequels. I tweaked it a little to become the following:

Theorem 10Theorem 10: Let : Let and and be r.p. c.f.v. classes, and let be r.p. c.f.v. classes, and let be languages such that be languages such that and and CC11 CC22 AA,, BB A A ∉∉ CC11

. Then we can find . Then we can find such that such that is in neither is in neither not not ..B B ∉∉ CC22 E E ∈∈ DTIMEDTIME nn ++ 11[[]] EE|||| AA,, BB(()) CC11 CC22

Before proving it, let's show how the conclusion of Before proving it, let's show how the conclusion of Ladner's TheoremLadner's Theorem follows: Suppose follows: Suppose .. PP ≠≠ NPNP

Then Then does not belong to does not belong to and and does not belong to does not belong to . Then the. Then the A A == SAT SAT CC == PP11 B B == ∅ ∅ CC == NPCNPC22

language language is neither in is neither in nor nor -complete, but it -complete, but it reduces to reduces to , so it, so it D D == E E|||| AA,, BB(()) PP NPNP ≤≤
pp
mm SAT SAT ⊕⊕ ∅ ∅

belongs to belongs to . Hence . Hence is is -intermediate.-intermediate.NPNP DD NPNP

ProofProof: We will first describe a process while "looking forward", then we will view the same process: We will first describe a process while "looking forward", then we will view the same process
"looking back." Let "looking back." Let be the presentation of be the presentation of and and that of that of . We begin in "accepting mode". We begin in "accepting mode" QQ[[jj]] CC11 RR[[kk]] CC22

by looking for the least string by looking for the least string such that such that . By . By there must be such an there must be such an ,, yy AA yy ≠≠ Q Q yy(()) 11(()) A A ∉∉ CC11 yy

indeed by indeed by also being c.f.v., there must be infinitely many. We also keep count of the number also being c.f.v., there must be infinitely many. We also keep count of the number of of CC11 tt11

steps until such steps until such is found. At that moment, a "genie" defines is found. At that moment, a "genie" defines to include all strings of length up to include all strings of length up xx EE

through through . Then we switch over to "rejecting mode" and seek the first . Then we switch over to "rejecting mode" and seek the first of length of length or higher such or higher such tt11 yy tt ++ 1111

that that . Again there must be one, and we take . Again there must be one, and we take to be the total elapsed number of steps to be the total elapsed number of steps BB yy ≠≠ R R yy(()) 11(()) t't'11
upon finding and verifying it. Then the genie defines all strings of length upon finding and verifying it. Then the genie defines all strings of length through through to be non- to be non-tt ++ 1111 t't'11
members of members of , i.e., members of , i.e., members of . Then we switch back to "accepting mode" in order to seek . Then we switch back to "accepting mode" in order to seek of of EE ∼∼ EE yy

length length or higher such that or higher such that and lake and lake to be the timestamp upon finding and to be the timestamp upon finding and t't' ++ 1111 AA yy ≠≠ Q Q yy(()) 22(()) tt22

verifying it. Then the search for verifying it. Then the search for such that such that is commenced from length is commenced from length . This. This yy BB yy ≠≠ R R yy(()) 22(()) tt ++ 1122

process proceeds alternating forever. The language process proceeds alternating forever. The language it creates is such that it creates is such that EE E E ∩∩ A A ∪∪ ∼∼ E E ∩∩ B B(()) (())

preserves all differences from every preserves all differences from every and and machine, so the language machine, so the language is not in is not in .. QQjj RRkk DD CC ∪∪ CC11 22

To tell the complexity of To tell the complexity of , now we do the looking back: On any input , now we do the looking back: On any input , take , take and run the and run the EE xx n n == ||xx||

forward process for forward process for steps. If the process is in accepting mode at step steps. If the process is in accepting mode at step , then accept , then accept , else reject , else reject .. nn nn xx xx

This takes This takes steps and defines the same language steps and defines the same language , because of how the "genie" extends the, because of how the "genie" extends the nn ++ 11 EE

same accept mode or reject mode to include all string lengths out to the number same accept mode or reject mode to include all string lengths out to the number or or of steps at the of steps at the ttii t't'ii
end of the stage in the process that includes time end of the stage in the process that includes time . Thus, the complexity is as stated. . Thus, the complexity is as stated. nn ☒☒

Next time, I will finish these notes and move on to section 3.5 of the Arora-Barak draftNext time, I will finish these notes and move on to section 3.5 of the Arora-Barak draft
http://theory.cs.princeton.edu/complexity/book.pdf on the oracle http://theory.cs.princeton.edu/complexity/book.pdf on the oracle making making . Then I will go. Then I will go BB PP ≠≠ NPNPBB BB

to sections 6.1 and 6.2. I will review how circuits were used to prove the Cook-Levin Theorem into sections 6.1 and 6.2. I will review how circuits were used to prove the Cook-Levin Theorem in
CSE596 while also showing how circuits can have "oracle gates" to make this all work for "relativizedCSE596 while also showing how circuits can have "oracle gates" to make this all work for "relativized
SAT." From Week 4 onward, we will be occupied for awhile with chapter 7, plus section 9.1 and the firstSAT." From Week 4 onward, we will be occupied for awhile with chapter 7, plus section 9.1 and the first
two pages of section 9.2.two pages of section 9.2.

