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Complete Sets in AHComplete Sets in AH
  
It is much harder to define a language in the arithmetical hierarchy that is It is much harder to define a language in the arithmetical hierarchy that is notnot complete for one of the complete for one of the  

 or  or  levels, or for  levels, or for .  Note that all decidable languages count as complete for.  Note that all decidable languages count as complete for  ∑∑
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• • It is a mild exercise to construct a langauge It is a mild exercise to construct a langauge  that is undecidable yet not complete for that is undecidable yet not complete for  A A ∈∈   RERE

 under  under .  We will do similar things within complexity classes using .  We will do similar things within complexity classes using ..RERE ≤≤ mm ≤≤
pp
mm

• • Creating an intermediate language under Creating an intermediate language under TuringTuring reductions  reductions , however, was a major open, however, was a major open  ≤≤ TT

problem for over a dozen years until solved by the problem for over a dozen years until solved by the finite injury piority methodfinite injury piority method of Friedberg and of Friedberg and  
Muchnik (independently) in 1956-57.Muchnik (independently) in 1956-57.

• • None of those intermediate languages is "natural" to define.  The simplest and most appealingNone of those intermediate languages is "natural" to define.  The simplest and most appealing  
definitions always give complete sets.definitions always give complete sets.

• • The intuitive reason is the The intuitive reason is the proteanprotean nature of logic and computation.  It is already simplest, so it nature of logic and computation.  It is already simplest, so it  
embeds itself readily into (basically all) other systems.embeds itself readily into (basically all) other systems.    

• • We can gain appreciation for this by looking at some more completeness proofs.We can gain appreciation for this by looking at some more completeness proofs.
  

Theorem 1Theorem 1: :  DTMs  DTMs : :  halts for all inputs halts for all inputs  is complete for   is complete for  ..TOT TOT ==   nonnon -- oracleoracle{{ MM MM }} ∏∏
  

00

22

  

ProofProof: It is in : It is in  since defined by  since defined by .  Let any .  Let any  defined by defined by  ∏∏
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∀∀xx ∃∃tt TT MM,, xx,, tt(( ))(( )) (( )) LLSS

 with  with  decidable be given.  To reduce  decidable be given.  To reduce  to  to , for any , for any , define, define  SS xx   ==   ∀∀yy ∃∃zz RR xx,, yy,, zz(( )) (( ))(( )) (( )) RR LLSS TOTTOT xx

 where the machine  where the machine  behaves as follows: on any input  behaves as follows: on any input , it tries , it tries  and and  ff xx   ==  M M   (( )) xx MMxx yy z z ==  0 0,, 11,, 22,, ……

accepts if and when accepts if and when  holds.  Then  holds.  Then  is total.   is total.  RR xx,, yy,, zz(( )) x x ∈∈  L L   ⟺⟺  M MSS xx ☒☒
  
ProblemProblem: How about the langauge of deterministic OTMs that are total for all oracles?  The above: How about the langauge of deterministic OTMs that are total for all oracles?  The above  

shows that it is many-one hard for shows that it is many-one hard for .  Does it belong to .  Does it belong to ?  (This is where König's Lemma may?  (This is where König's Lemma may  ∏∏
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come in handy.)come in handy.)
  

Theorem 2Theorem 2: :  is complete for  is complete for ..FIN FIN ==   MM ::  L L MM   is finiteis finite{{ (( )) }} ∑∑
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ProofProof: It belongs since defined by : It belongs since defined by .  One of the rules of.  One of the rules of  ∃∃ww ∀∀xx ||xx||  ≥≥   ||ww||    ∀∀ ¬¬TT MM,, xx,,(( ))(( )) →→ (( cc)) (( cc))

conversion to conversion to prenex normal formprenex normal form is that  is that  is equivalent to  is equivalent to .  So we.  So we  R R   ∀∀xx SS xx→→ (( )) (( )) ∀∀xx R R  S S xx(( )) →→ (( ))

have have with the part in with the part in  decidable. decidable.MM ∈∈ FIN FIN ⟺⟺ ∃∃ww ∀∀xx ∀∀ ||xx||  ≥≥   ||ww||    ¬¬TT MM,, xx,,   (( ))(( ))(( cc)) →→ (( cc)) ⋯⋯[[ ]]

  
The language The language is the literal complement of is the literal complement of , and we've just shown it, and we've just shown it  INF INF == MM ::  L L MM   is infiniteis infinite   {{ (( )) }} FINFIN

  

  

  

  

  

    



to be in to be in .  So we need only reduce .  So we need only reduce  above to  above to .  The above reduction doesn't quite do that,.  The above reduction doesn't quite do that,  ∏∏
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but we can modify it with an idea called "Looking Back."  Make but we can modify it with an idea called "Looking Back."  Make  on input  on input  try the previous  try the previous  on on  M'M'xx yy MMxx

each each  first.  Only if all those accept does  first.  Only if all those accept does  begin operating on  begin operating on  itself. itself.  y' y' <<  y y M'M' yyxx(( )) yy
  
The upshot is that if The upshot is that if  then some (least)  then some (least)  fails, i.e., is such that  fails, i.e., is such that  fails, so that fails, so that  x x ∉∉  L LSS yy00 ∃∃zz RR xx,, yy ,, zz(( )) (( 00 ))

 never halts.  Then for all  never halts.  Then for all , ,  falls into  falls into  and so never halts.  This makes  and so never halts.  This makes   MM yyxx(( 00)) y y ≥≥  y y00 M'M' yyxx(( )) yy00 LL M'M'(( xx))

finite.  Whereas if finite.  Whereas if  then  then  is not only infinite but equals  is not only infinite but equals .  By the rule.  By the rule  x x ∈∈  L LSS LL M'M'(( xx)) 𝛴𝛴
**

, this reduces any given language in , this reduces any given language in  to  to .  .  A A ≤≤  B  B ⟺⟺     ≤≤   mm AA mm BB ∑∑
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Index sets and Subrecursive ClassesIndex sets and Subrecursive Classes
  
Now Now  is an  is an index setindex set, that is, a set of the form , that is, a set of the form  for some class  for some class  of c.e. of c.e.  FINFIN II   ==   MM ::  L L MM   ∈∈   CCCC {{ (( )) }} CC

languages.  It is languages.  It is  where  where  is the class of finite languages.   is the class of finite languages.  Rice's TheoremRice's Theorem says that every index says that every index  IIFINFIN FINFIN

set other than set other than  and  and  is undecidable.  (Note that the subscripted  is undecidable.  (Note that the subscripted  is the empty  is the empty classclass  II   ==  ∅ ∅∅∅ II   ==  𝛴 𝛴RERE
** ∅∅

of languages, whereas the other of languages, whereas the other  is the empty langauge.)  This is "weak beer"---we can classify index is the empty langauge.)  This is "weak beer"---we can classify index  ∅∅
sets more precisely.sets more precisely.    
  
One technical point to note is the definition of One technical point to note is the definition of  for a given pair of Turing machines  for a given pair of Turing machines   LL MM   ==  L L MM(( 11)) (( 22)) MM11

and and .  If we know in advance that both .  If we know in advance that both  and  and  are total, then we have  are total, then we have   MM22 MM11 MM22 ∀∀xx MM xx   ==  M M xx(( ))[[ 11(( )) 22(( ))]]

and the part in and the part in  is decidable, so we get a  is decidable, so we get a  definition.  But if one or both are not total, then we definition.  But if one or both are not total, then we  ⋯⋯[[ ]] 𝛱𝛱11

must invoke a further quantification over computations.  Then:must invoke a further quantification over computations.  Then:
  

LL MM   ==  L L MM   ≡≡   ∀∀xx ∃∃cc TT MM ,, xx,, cc   ⟷⟷   ∃∃dd TT MM ,, xx,, dd(( 11)) (( 22)) (( ))[[(( )) (( 11 )) (( )) (( 22 ))]]

  
We cannot simply bring out both We cannot simply bring out both  quantifiers.  But we can write the equivalence in two pieces: quantifiers.  But we can write the equivalence in two pieces:∃∃
  
∀∀xx ∃∃cc TT MM ,, xx,, cc   ∧∧   ∃∃dd TT MM ,, xx,, dd   ∨∨   ∀∀c'c' ¬¬TT MM ,, xx,, c'c'   ∧∧   ∀∀d'd' ¬¬TT MM ,, xx,, d'd'(( ))[[(((( )) (( 11 )) (( )) (( 22 )))) (((( )) (( 11 )) (( )) (( 22 ))))]]

  
Then condensing givesThen condensing gives
  
∀∀xx ∃∃cc,, dd TT MM ,, xx,, cc   ∧∧  T T MM ,, xx,, dd   ∨∨   ∀∀c'c' ¬¬TT MM ,, xx,, c'c'   ∧∧¬¬TT MM ,, xx,, c'c'(( ))[[(((( )) (( 11 )) (( 22 )))) (((( )) (( 11 )) (( 22 ))))]]

  
Now Now  is not quantified on the left of the central  is not quantified on the left of the central , so we can bring out the , so we can bring out the  first and finally get a first and finally get a  c'c' ∨∨ ∀∀c'c'(( ))

 predicate: predicate:𝛱𝛱22

  
..∀∀xx,, c'c' ∃∃cc,, dd TT MM ,, xx,, cc   ∧∧  T T MM ,, xx,, dd   ∨∨   ¬¬TT MM ,, xx,, c'c'   ∧∧¬¬TT MM ,, xx,, c'c'(( ))(( ))[[(( (( 11 )) (( 22 )))) (( (( 11 )) (( 22 ))))]]

  
This is now amazingly hard to read, but it works.  So equality of two machines' languages is always This is now amazingly hard to read, but it works.  So equality of two machines' languages is always   𝛱𝛱22

at worst.  The consequence of interest to us is:at worst.  The consequence of interest to us is:
  

  

  

  



Proposition 3Proposition 3: : IfIf you have a recursive enumeration  you have a recursive enumeration  of machines that generate a class  of machines that generate a class , then the, then the  QQ[[ kk]] CC

index set index set  is  is -definable via -definable via     IICC 𝛴𝛴33 ∃∃kk LL MM   ==  L L QQ ..  ☒ ☒(( )) (( )) (( kk))

  
This holds regardless of whether the machines This holds regardless of whether the machines  are total, but that will be our main source of interest: are total, but that will be our main source of interest:QQkk

  
Definition 1Definition 1: A class : A class  of recursive languages is  of recursive languages is recursively presentablerecursively presentable ( (r.p.r.p.) if there is a recursive) if there is a recursive  CC

enumeration enumeration  of  of totaltotal machines such that  machines such that ..    QQ[[ kk]]∞∞k=1k=1 CC  ==   LL QQ{{ (( kk))}}

  
For example, For example,  and  and  are r.p. by their associated "natural" enumerations of machines.  The latter's are r.p. by their associated "natural" enumerations of machines.  The latter's  PP NPNP

machines machines  are nondeterministic, but we can use the exponential-time DTMs  are nondeterministic, but we can use the exponential-time DTMs  obtained by a obtained by a  NN[[ kk]] MM[[ kk]]

fixed NTM-to-DTM conversion in their place.  Perhaps less obvious is that the class fixed NTM-to-DTM conversion in their place.  Perhaps less obvious is that the class  of  of --NPCNPC NPNP

complete languages is r.p.: Use a recursive presentation complete languages is r.p.: Use a recursive presentation  of the class  of the class  of polynomial-time of polynomial-time  FF[[ kk]] FPFP

computable functions and ahhh...let's come back to this.computable functions and ahhh...let's come back to this.
  

Anyway, every r.p. class Anyway, every r.p. class  has  has .  And aside from .  And aside from  and its complement  and its complement , most of, most of  CC II   ∈∈   CC
∑∑
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them are complete for them are complete for  under  under .  Before putting that up for consideration, let's motivate the r.p..  Before putting that up for consideration, let's motivate the r.p.  ∑∑
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notion some more.notion some more.    
  
  
Recursive Presentations and "Looking Back"Recursive Presentations and "Looking Back"
  
Here are two other definitions, the second of which is a tacit admission that asymptotic complexityHere are two other definitions, the second of which is a tacit admission that asymptotic complexity  
ignores concrete bounds.  I use the strict definition of ignores concrete bounds.  I use the strict definition of  as languages accepted by TMs  as languages accepted by TMs   DTIMEDTIME tt nn[[ (( ))]] MM

such that for all such that for all , ,  halts within  halts within  steps.  Some use the lax definition that applies this only "for steps.  Some use the lax definition that applies this only "for  xx MM xx(( )) tt ||xx||(( ))

sufficiently large" sufficiently large" .  A machine .  A machine  that abides by the latter can always be converted to the former by that abides by the latter can always be converted to the former by  xx MM

giving it a "finite lookup lable": Suppose giving it a "finite lookup lable": Suppose  is the constant so that  is the constant so that within within  steps whenever steps whenever  nn00 MM xx ↓↓(( )) tt nn(( ))

.  For the finitely many .  For the finitely many  of length below  of length below , we put the yes/no answers into tabular, we put the yes/no answers into tabular  n n ==   ||xx||  ≥≥  n n00 xx nn00

form as a binary tree and encode that as extra states that govern the first up-to-form as a binary tree and encode that as extra states that govern the first up-to-  steps of  steps of  on on  nn00 MM xx(( ))

any any .  Since we assume .  Since we assume  for any running-time function, the new machine  for any running-time function, the new machine  runs in time runs in time  xx tt nn   ≥≥  n n ++ 11(( )) M'M'

 strictly while accepting the same language. strictly while accepting the same language.    tt nn(( ))

  
Definition 2Definition 2: A class : A class  is  is boundedbounded if there is a computable function  if there is a computable function  such that such that  CC tt nn(( ))

CC  ⊆⊆   DTIMEDTIME tt nn ..[[ (( ))]]

  
Definition 3Definition 3: :  is  is closed under finite variationsclosed under finite variations ( (c.f.v.c.f.v.) if for all ) if for all  and  and  such that the such that the  CC A A ∈∈   CC BB

symmetric difference symmetric difference  is finite,  is finite, ..    A A △△  B B B B ∈∈   CC

  
Lemma 3Lemma 3: Every r.p. class is bounded.: Every r.p. class is bounded.
  
ProofProof: For all : For all , define , define  to be the maximum of the time taken by  to be the maximum of the time taken by  for all  for all  and  and  of of  nn tt nn(( )) QQ xxkk(( )) k k ≤≤  n n xx

length (up to) length (up to) .  Because each .  Because each  is total, this is a computable function.  For all  is total, this is a computable function.  For all , the running time of, the running time of  nn QQkk kk

 on inputs  on inputs  of length  of length  and higher is bounded by  and higher is bounded by  by definition.  Thus it meets the "lax" by definition.  Thus it meets the "lax"  QQkk xx kk tt ||xx||(( ))

  

  

  

  



definition of running in time definition of running in time .  As discussed above, the results for .  As discussed above, the results for  of length up to  of length up to  can be can be  tt nn(( )) xx kk -- 11

stored in a finite table to create a machine stored in a finite table to create a machine  that accepts the same language as  that accepts the same language as  and runs in time and runs in time  Q'Q'kk QQkk

 for those  for those .  This not only tells us that every language in .  This not only tells us that every language in  belongs to  belongs to ,,  ||xx|| ++ 1 1 ≤≤  t t ||xx||(( )) xx CC DTIMEDTIME tt nn[[ (( ))]]

but because the change from but because the change from  to  to  is  is effectiveeffective, it tells us that the recursive presentation can be, it tells us that the recursive presentation can be  QQkk Q'Q'kk

changed to changed to  so that each machine obeys the  so that each machine obeys the  time bound strictly.  time bound strictly.     Q'Q'[[ kk]]∞∞k=1k=1 tt nn(( )) ☒☒
  
When a class is c.f.v., then we don't even have to care about doing the finite-table patch.  Now thisWhen a class is c.f.v., then we don't even have to care about doing the finite-table patch.  Now this  
comes in handy to show that the comes in handy to show that the -complete languages are recursively presentable.  Take the-complete languages are recursively presentable.  Take the  NPNP

presentation presentation  of  of  from above.  Our first thought might be to define for each  from above.  Our first thought might be to define for each  the machine the machineFF[[ kk]] FPFP kk
  
MM xx ::   computecompute y  y ==  F F xx   and acceptand accept x  x if and only ifif and only if y  y ∈∈  SAT SAT..kk(( )) kk(( ))

  

Then Then  via the polynomial-time function computed by  via the polynomial-time function computed by .  So .  So  captures the class captures the class  LL MM   ≤≤  SAT SAT(( kk))
pp
mm FFkk MM[[ kk]]

of languages that polynomial-time many-one reduce to of languages that polynomial-time many-one reduce to ---which is just another way to get a---which is just another way to get a  SATSAT

recursive presentation of recursive presentation of .  We need to intersect the logic with the condition that .  We need to intersect the logic with the condition that  reduces to the reduces to the  NPNP SATSAT

language in turn.  For each pair language in turn.  For each pair  define  define  to run as follows: to run as follows:jj,, kk MMj,kj,k

  

  
Hierarchy Operations and Recursive PresentationsHierarchy Operations and Recursive Presentations
  
This idea readily translates into something more general: Suppose that This idea readily translates into something more general: Suppose that  and  and  are r.p. classes with are r.p. classes with  CC DD

presentations presentations  and  and  and that, crucially,  and that, crucially,  contains some language  contains some language   together with all oftogether with all of  QQ[[ jj]] RR[[ kk]] C C ∩∩  D D AA00

its finite variationsits finite variations.  Then we can build .  Then we can build  on input  on input  to first spend  to first spend  steps looking for a witness steps looking for a witness  MMj,kj,k xx nn

that that , so that , so that .  If it finds and verifies one.  If it finds and verifies one  w w ==  𝜖 𝜖,, 00,, 11,, 0000,, 0101,, …… QQ ww   ≠≠  R R wwjj(( )) kk(( )) LL QQ   ≠≠  L L RR(( jj)) (( kk))

within within  steps, then  steps, then  accepts  accepts  if and only if  if and only if .  Thus .  Thus  becomes a finite variation of becomes a finite variation of  nn MMj,kj,k xx x x ∈∈  A A00 LL MM(( j,kj,k))

, but that's OK---it is still a language in , but that's OK---it is still a language in .  Now let any language .  Now let any language  in  in  be given.  Then be given.  Then  AA00 C C ∩∩  D D LL C C ∩∩  D D

there are machines there are machines  and  and  such that  such that .  Then the new machine .  Then the new machine  on on  QQjj RRkk LL QQ   ==  L  L ==  L L RR(( jj)) (( kk)) MMj,kj,k

  

  

input xinput x
n n ==   ||xx||;;

Spend up to Spend up to  steps on  steps on to to nn w w ==  𝜖 𝜖,, 00,, 11,, 0000,, 0101,, ……

test whether test whether .  .  w w ∈∈  SAT  SAT ⟺⟺  M M  accepts F accepts F wwj,kj,k jj(( ))

Was a Was a  found where this found where thisww
test completes but test completes but failsfails??

yesyes

nono

Accept Accept  if and if andxx

only if only if xx ∈∈ SATSAT

Accept Accept  if and only if  if and only if xx FF xx ∈∈  SAT SATkk(( ))

MM   ==   j,kj,k



whatever input whatever input  never finds a bad witness  never finds a bad witness . So . So , if it finds no bad witness within , if it finds no bad witness within  steps, is steps, is  xx ww MMj,kj,k nn

coded to return coded to return .  Thus, .  Thus, , and we conclude that , and we conclude that  is a recursive presentation of is a recursive presentation of  QQ xxjj(( )) LL MM   ==  L L(( j,kj,k)) MM[[ j,kj,k]]

..C C ∩∩  D D

  
To get a recursive presentation of To get a recursive presentation of , we can just merge together the original machines , we can just merge together the original machines  and and  C C ∪∪  D D QQjj

 with no extra coding.  The "merge" idea extends to infinite unions, provided we have an effective with no extra coding.  The "merge" idea extends to infinite unions, provided we have an effective  RRkk

handle on the presentations for each class.  Thus, handle on the presentations for each class.  Thus, givengiven that the individual classes  that the individual classes , , , , , ..., ...  PP NPNP NPNPNPNP

are each r.p., it follows that their union are each r.p., it follows that their union  is r.p.  As for how to get the individual classes, the proof last is r.p.  As for how to get the individual classes, the proof last  PHPH

week suggests and operator that we will use often.week suggests and operator that we will use often.
  
Definition 4Definition 4: For any class : For any class , define , define  to be the class of languages  to be the class of languages  such that for some such that for some  CC NPNP CC[[ ]] LL

polynomial polynomial  and language  and language , , ..pp R R ∈∈   CC L L ==   xx ::   ∃∃ yy ⟨⟨xx,, yy⟩⟩  ∈∈  R Rpp

  
Then Then .  The operator .  The operator  is  is idempotentidempotent, a fancy term for saying, a fancy term for saying  NPNP  ==   NPNP PP[[ ]] NPNP ⋅⋅[[ ]]

for every for every .  This is basically because of how two adjacent .  This is basically because of how two adjacent  quantifiers can be quantifiers can be  NPNP NPNP[[ [[CC   == NPNP CC     ]]]] [[ ]] CC ∃∃

combined into one.  But combined into one.  But  gives us something different: by the proof of the gives us something different: by the proof of the  NPNP coco -- NPNP[[ (( [[CC]]))]]

equivalence between quantifiers and oracle levels in the "weak PH theorem," it gives equivalence between quantifiers and oracle levels in the "weak PH theorem," it gives .  Then.  Then  ∑∑
  

pp

22

iterating the iterating the  and  and co-co- operations gives all of the polynomial hierarchy.  The missing pieces we operations gives all of the polynomial hierarchy.  The missing pieces we  NPNP ⋅⋅[[ ]]

need to show it all to be recursively presentable are:need to show it all to be recursively presentable are:
  
Lemma 4Lemma 4: If : If  is r.p. then so are  is r.p. then so are ] and co-] and co- ..CC NPNP CC[[ CC

  
ProofProof: Let : Let  present  present  by total machines.  Then for each  by total machines.  Then for each , let , let  be a TM that on any input  be a TM that on any input  tries tries  RR[[ kk]] CC kk QQkk xx

all all  such that  such that  (where  (where  is the polynomial length bound in the application of the operator is the polynomial length bound in the application of the operator  yy ||yy||  ≤≤  p p ||xx||(( )) pp

) and accepts ) and accepts  if and when  if and when  accepts  accepts .  Then, although .  Then, although  will likely run in exponential will likely run in exponential  NPNP ⋅⋅[[ ]] xx RRkk ⟨⟨xx,, yy⟩⟩ QQkk

time, it is still total, and every language in time, it is still total, and every language in ] is captured as ] is captured as  for some  for some , so , so  is a is a  NPNP CC[[ LL QQ(( kk)) kk QQ[[ kk]]

recursive presentation of recursive presentation of ].  [But one thing we can say in-passing is that if ].  [But one thing we can say in-passing is that if  runs in polynomial runs in polynomial  NPNP CC[[ RRkk

space, then so does space, then so does , because it needs only the additional space for , because it needs only the additional space for .  This tells us that every level.  This tells us that every level  QQkk yy

of the polynomial hierarchy stays within of the polynomial hierarchy stays within .].]PSPACEPSPACE

  
And for co-And for co- , because each , because each  is a total machine, we can complement its accepting and rejecting is a total machine, we can complement its accepting and rejecting  CC RRkk

states to make states to make  so that  so that  is the complement of  is the complement of .  .  R'R'kk LL R'R'(( kk)) LL RR(( kk)) ☒☒
  
However, it does not follow that the complement of the class However, it does not follow that the complement of the class  itself is r.p.  Well, when  itself is r.p.  Well, when  is bounded, is bounded,  CC CC

the complement of the complement of  (in  (in , say) is unbounded.  But even if we do a difference , say) is unbounded.  But even if we do a difference  of r.p. of r.p.  CC RERE E E ==  D D  ⧵⧵   CC

classes, which stays bounded, we will see that in general classes, which stays bounded, we will see that in general  is  is notnot r.p.  It does, however, still have index r.p.  It does, however, still have index  EE

set set  belonging to  belonging to .  The reason is a knock-on effect.  Whereas.  The reason is a knock-on effect.  WhereasIIEE ∑∑
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LL MM   ∉∉ CC  ≡≡ ∀∀kk LL MM   ≠≠ LL RR   ≡≡ ∀∀kk ∃∃xx ∃∃cc TT MM,, xx,, cc  XOR  XOR ∃∃dd TT RR ,, xx,, dd   (( )) (( )) (( )) (( kk)) (( ))(( ))[[(( )) (( )) (( )) (( kk ))]]

  

  

  



yields no better than yields no better than  in prenex form, we get a leg up by the fact of also defining  in prenex form, we get a leg up by the fact of also defining .  Let.  Let  ∀∃∀∀∃∀ LL MM   ∈∈   DD(( ))

 present  present  and let  and let  present  present .  Then:.  Then:RR[[ kk]] CC QQ[[ jj]] DD

  
..LL MM   ∈∈   DD  ⧵⧵   CC    ≡≡     ∃∃jj LL MM   ==  L L QQ   ∧∧ ∀∀kk LL QQ   ≠≠ LL RR(( )) (( ))[[ (( )) (( jj)) (( )) (( jj)) (( kk))]]

  
Now because Now because  and  and  are both total, the  are both total, the  part becomes part becomes  QQjj RRkk LL QQ   ≠≠ LL RR(( jj)) (( kk))

  
∃∃jj …… ∀∀kk ∃∃xx QQ xx   ≠≠  R R xx(( )) (( ))(( ))[[ jj(( )) kk(( ))]]

  
where the part in where the part in  is now  is now decidabledecidable.  Since we have already seen that .  Since we have already seen that  is a is a  ……[[ ]] ∃∃jj LL MM   ==  L L QQ(( ))[[ (( )) (( jj))

-predicate, this becomes the conjunction of two -predicate, this becomes the conjunction of two -predicates, which is a -predicates, which is a -predicate.-predicate.𝛴𝛴33 𝛴𝛴33 𝛴𝛴33

  
  
Structure of PH and a Possible Non-R.P. ClassStructure of PH and a Possible Non-R.P. Class
  
The The  operator has one immediate utility: it speeds the proof of the "collapse lemma": operator has one immediate utility: it speeds the proof of the "collapse lemma":NPNP ⋅⋅[[ ]]

  

Lemma 5Lemma 5: For any : For any , if , if  =  =  then  then kk ∑∑
  

pp

kk
∏∏

  
pp

kk
PHPH  ==   ∩∩   ..   ∑∑

  
pp

kk
∏∏

  
pp

kk

  
In particular (In particular ( , if , if NPNP =  = co-NPco-NP, then the whole polynomial hierarchy "collapses" to , then the whole polynomial hierarchy "collapses" to NPNP    co-NP.co-NP.    kk == 11)) ∩∩
And of course, if And of course, if NPNP =  = P P then it all collapses tothen it all collapses to P. P.    
  
ProofProof: For : For , we start with , we start with and apply our hypothesis to makeand apply our hypothesis to make  kk == 11 NPNP coco -- NPNP[[ (( [[PP   ==   NPNP coco --NPNP     ]]))]] [[ ]]

that that .  So .  So  =  = , and we already hypothesized , and we already hypothesized  =  =  so it all equals so it all equals  ==   NPNP NPNP   == NPNP[[ ]] ∑∑
  

pp

22
∑∑

pp

11
∑∑

pp

11
∏∏

  
pp

11

.  Further use of .  Further use of co-co- and  and  just winds up trying to build on the same quicksand.  The just winds up trying to build on the same quicksand.  The    ∩∩   ∑∑
  

pp

11
∏∏

  
pp

11
NPNP ⋅⋅[[ ]]

full proof just replaces "1" by "full proof just replaces "1" by " " here.  " here.  kk ☒☒
  

Corollary 6Corollary 6: If : If , then for some , then for some , ,  =  = PSPACE PSPACE ==  PH PH kk PSPACE PSPACE ==  PH PH   ∩∩   ..∑∑
  

pp

kk
∏∏

  
pp

kk

  

Proof: If the TQBF language belongs to Proof: If the TQBF language belongs to , then it belongs to , then it belongs to  for some finite  for some finite .  But TQBF is.  But TQBF is  PHPH ∑∑
  

pp

kk
kk

-complete and mapping-reduces to its complement, so -complete and mapping-reduces to its complement, so  =  =  follows.   follows.  PSPACEPSPACE ∑∑
  

pp

kk
∏∏

  
pp

kk
☒☒

  

Hall Of Mirrors EffectHall Of Mirrors Effect: For any oracle : For any oracle , if , if  =  =  then  then AA ∑∑
  

p,Ap,A

kk
∏∏

  
p,Ap,A

kk
PHPH   ==   ∩∩   ..   AA ∑∑

  
p,Ap,A

kk
∏∏

  
p,Ap,A

kk

  
"Proof""Proof": Everything done in CSE596 and so far in this course relativizes!: Everything done in CSE596 and so far in this course relativizes!
  
It is, however, possible to have It is, however, possible to have  collapse, indeed to have  collapse, indeed to have , without having , without having   PHPH P P ==  NP NP PSPACEPSPACE

  

  

    

  

  

  

  

    



collapse into it.  Here's an attempt to make a picture of the polynomial hierarchy that is more suggestivecollapse into it.  Here's an attempt to make a picture of the polynomial hierarchy that is more suggestive  
of its "vital signs":of its "vital signs":
  

  
  
Now we introduce a curious attempt at a class that could have an index set that is not Now we introduce a curious attempt at a class that could have an index set that is not -definable.-definable.𝛴𝛴33

  
Definition 5Definition 5 [KWR, 1982]:  [KWR, 1982]: the intersection of the intersection of  over all oracles  over all oracles  that make  that make ..HH == PPAA AA PP   ==   NPNPAA AA

  
Proposition 7Proposition 7::  , and , and , indeed that the polynomial, indeed that the polynomial  PH PH ⊆⊆  H  H ⊆⊆  PSPACE PSPACE H H ≠≠  PH  PH ⟹⟹  NP  NP ≠≠  P P

hierarchy is infinite.hierarchy is infinite.  

  

  

NPNP co-NPco-NP

PP

∑∑
  pp

22  
∏∏ pp

22

∑∑
  pp

33  
∏∏ pp

33
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PP
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BB22

BB33
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TQBFTQBF

The Polynomial Hierarchy,The Polynomial Hierarchy,
the Hard Counting Classes,the Hard Counting Classes,
and Polynomial Space.and Polynomial Space.

Dots indicateDots indicate
complete sets,complete sets,
diamonds theirdiamonds their
likely absence.likely absence.
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ProofProof: Because : Because , we get , we get .  If .  If  is any oracle such that is any oracle such that  PP   ==   NPNP   ==   PSPACEPSPACE

TQBFTQBF TQBFTQBF
H H ⊆⊆  PSPACE PSPACE AA

, then by the relativized collapse lemma ("hall of mirrors"), , then by the relativized collapse lemma ("hall of mirrors"), , so , so , so, so  PP   ==   NPNPAA AA PHPH   ==   PPAA AA PHPH  ⊆⊆   PPAA

the unrelativized the unrelativized  stays inside  stays inside  for every such  for every such , so , so .  If the polynomial hierarchy.  If the polynomial hierarchy  PHPH PPAA AA PH PH ⊆⊆  H H

collpases to collpases to  (for any  (for any ), then the language ), then the language  becomes an oracle relatuive to which becomes an oracle relatuive to which  ∑∑
  

pp

kk
kk BBkk

, so , so  equals  equals  equals  equals  in that case.  Thus  in that case.  Thus  makes the whole polynomial makes the whole polynomial  NPNP   ==   PPBBkk BBkk
HH ∑∑

  
pp

kk
PHPH H H ≠≠  PH PH

hierarchy infinite... hierarchy infinite... ☒☒
  
...Which is what we believe, but does this idea help to prove it?  I thought once maybe yes, but now we...Which is what we believe, but does this idea help to prove it?  I thought once maybe yes, but now we  
should not be so starry-eyed.  [However, it may follow by building on stuff to come next that should not be so starry-eyed.  [However, it may follow by building on stuff to come next that   H H ==  PH PH

without any hypothesis, which would kill my idea but would have other interests.]without any hypothesis, which would kill my idea but would have other interests.]
  
Proving Proving  would also imply that  would also imply that  is recursively presentable.  That in turn would imply that the is recursively presentable.  That in turn would imply that the  H H ==  PH PH HH

index set index set , in other words, the language , in other words, the language , belongs to , belongs to .  Can we give a .  Can we give a --IIHH MM ::  L L MM   ∈∈   HH{{ (( )) }} ∑∑
  

00

33
𝛴𝛴33

definition for definition for  without needing any hypothesis?  This leads to a second "psych" observation about without needing any hypothesis?  This leads to a second "psych" observation about  IIHH
logic and the arithmetical hierarchy:logic and the arithmetical hierarchy:
  

1. 1. It is hard to find natural examples of languages that are It is hard to find natural examples of languages that are notnot complete for some level of AH. complete for some level of AH.

2. 2. It is also hard to think of natural examples of languages that do not belong to It is also hard to think of natural examples of languages that do not belong to  or  or . To. To  ∑∑
  

00

33
∏∏ 00

33

(para-)quote Hartley Rogers, whose textbook (para-)quote Hartley Rogers, whose textbook Elements of Recursion TheoryElements of Recursion Theory is a bellwether in is a bellwether in  
that field, "It is hard for the human mind to grab more than three quantifier alternations at a time.that field, "It is hard for the human mind to grab more than three quantifier alternations at a time.    
Many lemmas in published mathematics are really ways of enabling the mind to get past aMany lemmas in published mathematics are really ways of enabling the mind to get past a  
couple more quantifier alternations."couple more quantifier alternations."

  
The Rogers quote tends toward The Rogers quote tends toward  being  being -definable even if -definable even if .  Even if .  Even if  is not r.p., it is the is not r.p., it is the  IIHH 𝛴𝛴33 H H ≠≠  PH PH HH

next-best thing as an intersection of classes next-best thing as an intersection of classes  that are individually r.p.  In a topological sense, r.p. that are individually r.p.  In a topological sense, r.p.  PPAA

classes behave like closed sets---and an intersection of closed sets is closed.  The key property of aclasses behave like closed sets---and an intersection of closed sets is closed.  The key property of a  
closed set closed set  in a metric space is that if  in a metric space is that if  is a point not in  is a point not in , then there is an open ball around , then there is an open ball around  that is that is  CC aa CC aa

disjoint from disjoint from .  If .  If  does not belong to an intersection  does not belong to an intersection  of closed sets, then there is a single  of closed sets, then there is a single   CC aa ∩∩ CCii ii CCii

such that such that .  This means that the key hypotheses of the diagonalization theorem we will use to.  This means that the key hypotheses of the diagonalization theorem we will use to  a a ∉∉  C Cii

prove Ladner's Theorem will hold even if we replace an r.p. class by an intersection of them.  So prove Ladner's Theorem will hold even if we replace an r.p. class by an intersection of them.  So  is is  HH

"as good as r.p." anyway."as good as r.p." anyway.
  
  
Structure of ReductionsStructure of Reductions
  
Two more "structural" complexity notions will build a framework for reducibility relations.Two more "structural" complexity notions will build a framework for reducibility relations.
  
Definition 6Definition 6: The : The joinjoin of two langauges  of two langauges  and  and  is  is ..AA BB A0 A0 ∪∪  B1  B1 ==   x0x0 :: xx ∈∈ AA   ∪∪   y1y1 :: yy ∈∈ BB{{ }} {{ }}

  

  



  
Often the join is written Often the join is written  although that can confuse with exclusive-or for the symmetric difference although that can confuse with exclusive-or for the symmetric difference  AA⊕⊕BB

of of  and  and  (which, however, I prefer to write as  (which, however, I prefer to write as ).  It is immediate that ).  It is immediate that  and and  AA BB A A △△  B B A A ≤≤  A A⊕⊕BBrr

 for basically any reducibility relation  for basically any reducibility relation , because all we have to do is tack on a , because all we have to do is tack on a  or a  or a   B B ≤≤  A A⊕⊕BBrr ≤≤ rr 00 11

to the string to the string  given in the reduction.  The key fact about the join is: given in the reduction.  The key fact about the join is:xx
  
Lemma 8Lemma 8: For basically any reducibility : For basically any reducibility , not just , not just  or  or , if , if  are any languages such are any languages such  ≤≤ rr ≤≤

pp
mm ≤≤

pp
TT AA,, BB,, CC

that that  and  and , then , then ..A A ≤≤  C Crr B B ≤≤  C Crr AA⊕⊕B B ≤≤  C Crr

  
ProofProof: Given any string : Given any string , if , if  then we know  then we know , so we apply the presumed fixed action, so we apply the presumed fixed action  xx x x ==  𝜖 𝜖 x x ∉∉  A A⊕⊕BB
of the reduction when we know the given string is not in the source language.  Otherwise, eitherof the reduction when we know the given string is not in the source language.  Otherwise, either  

 and belongs to  and belongs to  if and only if  if and only if , or , or  and belongs to  and belongs to  if and only if if and only if  x x ==  y0 y0 AA⊕⊕BB y y ∈∈  A A x x ==  y1 y1 AA⊕⊕BB

.  In the former case, we apply the reduction from .  In the former case, we apply the reduction from  to  to ; in the latter case, we apply the; in the latter case, we apply the  y y ∈∈  B B AA CC

reduction from reduction from  to  to .  For basically any .  For basically any , the code managing the two potential applications of a, the code managing the two potential applications of a  BB CC ≤≤ rr

 reduction belongs to the same class of functions or (oracle) machines that defines  reduction belongs to the same class of functions or (oracle) machines that defines  to begin to begin  ≤≤ rr ≤≤ rr

with.  So we get with.  So we get . . AA⊕⊕B B ≤≤  C Crr ☒☒
  
The upshot is that The upshot is that  is a least upper bound for the reductions: it reduces to anything that both  is a least upper bound for the reductions: it reduces to anything that both   AA⊕⊕BB AA

and and  reduce to.  Technically speaking, this makes the partially ordered structure of (equivalence reduce to.  Technically speaking, this makes the partially ordered structure of (equivalence  BB

classes of) languages under classes of) languages under  into an  into an upper semi-latticeupper semi-lattice.  Put another way: given any decidable.  Put another way: given any decidable  ≤≤ rr

languages languages  and  and , there is always a language , there is always a language  such that  such that  and  and , and whenever , and whenever  is a is a  AA BB JJ A A ≤≤  J Jrr B B ≤≤  J Jrr CC

language such that language such that  and  and , we have , we have .  The language .  The language  can always be taken as can always be taken as  A A ≤≤  C Crr B B ≤≤  C Crr J J ≤≤  C Crr JJ

the join of the join of  and  and ..    AA BB
  
  

  
  

  

  

AA
BB

CC

JJ

??

II

The geometrical analogyThe geometrical analogy
for diagramming many-onefor diagramming many-one
reductions suggests thatreductions suggests that
the infimum (called a "meet"the infimum (called a "meet"
in lattice theory) shouldin lattice theory) should
always exist, but there arealways exist, but there are
cases where it does not.cases where it does not.



Now here is a mirror-image question:Now here is a mirror-image question:
  
Research QuestionResearch Question: Given any decidable languages : Given any decidable languages  and  and , is there always a language , is there always a language  such that such that  AA BB II

 and  and , and whenever , and whenever  is a language such that  is a language such that  and  and , we have, we have  I I ≤≤  A Arr I I ≤≤  B Brr CC C C ≤≤  A Arr C C ≤≤  B Brr

??C C ≤≤  I Irr

  
Such a language Such a language , if it exists, could be called an "infimum" of , if it exists, could be called an "infimum" of  and  and .  Well, for many known.  Well, for many known  II AA BB

reducibilities, this is known to fail.  But can you define a reasonable reducibilities, this is known to fail.  But can you define a reasonable  so that it holds?  And even for so that it holds?  And even for  ≤≤ rr

polynomial-time many-one reductions polynomial-time many-one reductions , the cases of , the cases of  that lack an infimum are somewhat that lack an infimum are somewhat  ≤≤
pp
mm AA,, BB

specialized.  Let's try a natural case:specialized.  Let's try a natural case:
  
Question'Question': Do SAT and TAUT have an infimum under : Do SAT and TAUT have an infimum under ??≤≤

pp
mm

  

In this case, any language In this case, any language  such that  such that  and  and  belongs to  belongs to NPNP    co-NPco-NP.  And.  And  II I I ≤≤  SAT SAT
pp
mm II ≤≤  TAUT TAUT

pp
mm ∩∩

every language every language  in  in NPNP    co-NPco-NP has that property.  So this is equivalent to asking whether  has that property.  So this is equivalent to asking whether NPNP    co-co-CC ∩∩ ∩∩

NPNP  includes a language includes a language  such that for every  such that for every  in  in NPNP    co-NPco-NP, , .  In other words:.  In other words:II CC ∩∩ C C ≤≤  I I
pp
mm

  
Proposition 9Proposition 9: : SAT and TAUT have an infimum under SAT and TAUT have an infimum under  if and only if  if and only if NPNP    co-NP co-NP has a completehas a complete  ≤≤

pp
mm ∩∩

set under set under ..≤≤
pp
mm

  
[Now, there are oracles [Now, there are oracles  relative to which  relative to which     co-co-  does not have complete sets, but  does not have complete sets, but   XX NPNPXX ∩∩ NPNPXX NPNPXX

always has a complete set underalways has a complete set under  (where the reduction function does not need to consult  (where the reduction function does not need to consult ).  It).  It  ≤≤
pp
mm XX

follows that this set and its complement do not have an infimum underfollows that this set and its complement do not have an infimum under .  But this is trying to fly.  But this is trying to fly  ≤≤
pp
mm

before we can jump---it will take a few weeks before we define and use "SATbefore we can jump---it will take a few weeks before we define and use "SAT " for arbitrary oracles " for arbitrary oracles ..      XX XX
This does warn that This does warn that Question' Question' has "barriers" to being answered, but maybe the flexibility to seek anhas "barriers" to being answered, but maybe the flexibility to seek an  
inspired formulation of inspired formulation of  makes the " makes the "Research QuestionResearch Question" fair game.]" fair game.]≤≤ rr

  
The second notion is a language that reduces to The second notion is a language that reduces to  but is not an infimum.  My name and notation but is not an infimum.  My name and notation  AA⊕⊕BB
are not standard, but the concept underlies the strongest "silly" results.are not standard, but the concept underlies the strongest "silly" results.
  
Definition 7Definition 7: The : The splicesplice of two languages  of two languages  and  and  by a third language  by a third language , which we'll write as, which we'll write as  AA BB EE

, is the language , is the language ..    EE|||| AA,, BB(( )) A A ∩∩  E E   ∪∪   B B ∩∩ ∼∼ EE   (( )) (( ))

  
The intent of The intent of  is to be an "easy" langauge (not just in polynomial or linear time but even notions of sub- is to be an "easy" langauge (not just in polynomial or linear time but even notions of sub-EE

linear time) but "extremely gappy".  Having linear time) but "extremely gappy".  Having  makes the splice  makes the splice -reduce to -reduce to .  "Gappy".  "Gappy"  E E ∈∈   PP ≤≤
pp
mm AA⊕⊕BB

means that there are long intervals of lengths means that there are long intervals of lengths  on which  on which  has no strings---and long intervals has no strings---and long intervals  nn …… nn00 11 EE

on which it includes every string.  That makes on which it includes every string.  That makes  imitate  imitate  for long intervals of lengths for long intervals of lengths  EE|||| AA,, BB(( )) AA

alternately with imitating alternately with imitating .  If .  If  is easy but  is easy but  is hard, then  is hard, then  will also be hard---but the long will also be hard---but the long  BB AA BB EE|||| AA,, BB(( ))

intervals where it looks like intervals where it looks like  will make it difficult to prove that it is not a finite variation of  will make it difficult to prove that it is not a finite variation of , which, which  AA AA
would make it easy after all.would make it easy after all.
  

  

  



  
Diagonalization and Ladner's TheoremDiagonalization and Ladner's Theorem
  
The following theorem was proved by Uwe Schöning as a generalization of Ladner's Theorem and itsThe following theorem was proved by Uwe Schöning as a generalization of Ladner's Theorem and its  
sequels.  I tweaked it a little to become the following:sequels.  I tweaked it a little to become the following:
  
Theorem 10Theorem 10: Let : Let  and  and  be r.p. c.f.v. classes, and let  be r.p. c.f.v. classes, and let  be languages such that  be languages such that  and and  CC11 CC22 AA,, BB A A ∉∉   CC11

.  Then we can find .  Then we can find  such that  such that  is in neither  is in neither  not  not ..B B ∉∉   CC22 E E ∈∈   DTIMEDTIME nn ++ 11[[ ]] EE|||| AA,, BB(( )) CC11 CC22

  
Before proving it, let's show how the conclusion of  Before proving it, let's show how the conclusion of  Ladner's TheoremLadner's Theorem follows: Suppose  follows: Suppose ..    PP  ≠≠   NPNP

Then Then  does not belong to  does not belong to  and  and  does not belong to  does not belong to .  Then the.  Then the  A A ==  SAT SAT CC   ==   PP11 B B ==  ∅ ∅ CC   ==   NPCNPC22

language language  is neither in  is neither in  nor  nor -complete, but it -complete, but it  reduces to  reduces to , so it, so it  D D ==  E E|||| AA,, BB(( )) PP NPNP ≤≤
pp
mm SAT SAT ⊕⊕  ∅ ∅

belongs to belongs to .  Hence .  Hence  is  is -intermediate.-intermediate.NPNP DD NPNP

  
ProofProof: We will first describe a process while "looking forward", then we will view the same process: We will first describe a process while "looking forward", then we will view the same process  
"looking back."  Let "looking back."  Let  be the presentation of  be the presentation of  and  and  that of  that of .  We begin in "accepting mode".  We begin in "accepting mode"  QQ[[ jj]] CC11 RR[[ kk]] CC22

by looking for the least string by looking for the least string  such that  such that .  By .  By  there must be such an  there must be such an ,,  yy AA yy   ≠≠  Q Q yy(( )) 11(( )) A A ∉∉   CC11 yy

indeed by indeed by  also being c.f.v., there must be infinitely many.  We also keep count of the number  also being c.f.v., there must be infinitely many.  We also keep count of the number  of of  CC11 tt11

steps until such steps until such  is found.  At that moment, a "genie" defines  is found.  At that moment, a "genie" defines  to include all strings of length up to include all strings of length up  xx EE

through through .  Then we switch over to "rejecting mode" and seek the first .  Then we switch over to "rejecting mode" and seek the first  of length  of length  or higher such or higher such  tt11 yy tt ++ 1111

that that .  Again there must be one, and we take .  Again there must be one, and we take  to be the total elapsed number of steps to be the total elapsed number of steps  BB yy   ≠≠  R R yy(( )) 11(( )) t't'11
upon finding and verifying it.  Then the genie defines all strings of length upon finding and verifying it.  Then the genie defines all strings of length  through  through  to be non- to be non-tt ++ 1111 t't'11
members of members of , i.e., members of , i.e., members of .  Then we switch back to "accepting mode" in order to seek .  Then we switch back to "accepting mode" in order to seek  of of  EE ∼∼ EE yy

length length  or higher such that  or higher such that  and lake  and lake  to be the timestamp upon finding and to be the timestamp upon finding and  t't' ++ 1111 AA yy   ≠≠  Q Q yy(( )) 22(( )) tt22

verifying it.  Then the search for verifying it.  Then the search for  such that  such that  is commenced from length  is commenced from length .  This.  This  yy BB yy   ≠≠  R R yy(( )) 22(( )) tt ++ 1122

process proceeds alternating forever.  The language process proceeds alternating forever.  The language  it creates is such that  it creates is such that   EE E E ∩∩  A A   ∪∪   ∼∼ E E ∩∩  B B(( )) (( ))

preserves all differences from every preserves all differences from every  and  and  machine, so the language  machine, so the language  is not in  is not in ..    QQjj RRkk DD CC   ∪∪   CC11 22

  
To tell the complexity of To tell the complexity of , now we do the looking back: On any input , now we do the looking back: On any input , take , take  and run the and run the  EE xx n n ==   ||xx||

forward process for forward process for  steps.  If the process is in accepting mode at step  steps.  If the process is in accepting mode at step , then accept , then accept , else reject , else reject ..    nn nn xx xx

This takes This takes  steps and defines the same language  steps and defines the same language , because of how the "genie" extends the, because of how the "genie" extends the  nn ++ 11 EE

same accept mode or reject mode to include all string lengths out to the number same accept mode or reject mode to include all string lengths out to the number  or  or  of steps at the of steps at the  ttii t't'ii
end of the stage in the process that includes time end of the stage in the process that includes time .  Thus, the complexity is as stated. .  Thus, the complexity is as stated. nn ☒☒
  
  
Next time, I will finish these notes and move on to section 3.5 of the Arora-Barak draftNext time, I will finish these notes and move on to section 3.5 of the Arora-Barak draft
http://theory.cs.princeton.edu/complexity/book.pdf  on the oracle http://theory.cs.princeton.edu/complexity/book.pdf  on the oracle  making  making .  Then I will go.  Then I will go  BB PP   ≠≠   NPNPBB BB

to sections 6.1 and 6.2.  I will review how circuits were used to prove the Cook-Levin Theorem into sections 6.1 and 6.2.  I will review how circuits were used to prove the Cook-Levin Theorem in  
CSE596 while also showing how circuits can have "oracle gates" to make this all work for "relativizedCSE596 while also showing how circuits can have "oracle gates" to make this all work for "relativized  
SAT."  From Week 4 onward, we will be occupied for awhile with chapter 7, plus section 9.1 and the firstSAT."  From Week 4 onward, we will be occupied for awhile with chapter 7, plus section 9.1 and the first  
two pages of section 9.2.two pages of section 9.2.

  

  


