
CSE696 Week 4: Counting Classes and Probabilistic ComputationCSE696 Week 4: Counting Classes and Probabilistic Computation
  
The question "how many solutions are there?" subsumes the question "is there a solution?"  TheThe question "how many solutions are there?" subsumes the question "is there a solution?"  The  
surprise is that it also captures all of the alternation in the polynomial hierarchy, as shown by thesurprise is that it also captures all of the alternation in the polynomial hierarchy, as shown by the  
theorem of Seinosuke Toda in 1988-89 that theorem of Seinosuke Toda in 1988-89 that  is contained in  is contained in , which in turn is contained in, which in turn is contained in  PHPH BPBP ⊕⊕PP[[ ]]

.  Well, this tells us we have lots more things to define, so let's get to it---first in sections .  Well, this tells us we have lots more things to define, so let's get to it---first in sections 9.1--9.29.1--9.2 of of  PP
#P#P

Arora-Barak, then Arora-Barak, then Chapter 7Chapter 7, then Toda's theorem in section , then Toda's theorem in section 9.39.3..
  
Definition 1Definition 1: A function : A function  belongs to  belongs to  (pronounced "sharp-P" more often than "number- (pronounced "sharp-P" more often than "number-hh ::  𝛴 𝛴     NN** →→ #P#P

P") if there is a predicate P") if there is a predicate  in  in  and a polynomial  and a polynomial  such that for all  such that for all ,,  RR xx,, yy(( )) PP pp xx
..    hh xx   ==   |||| yy ::   ||yy||  ≤≤  p p ||xx||   ∧∧  R R xx,, yy ||||(( )) {{ (( )) (( ))}}

  
We can abbreviate this by writing We can abbreviate this by writing  to mimic the "lambda style"  to mimic the "lambda style"  style of style of  hh xx   ==  # # yy.. RR xx,, yy(( )) pp (( )) 𝜆z𝜆z.. AA zz(( ))
writing functions.  (But, maybe we will not need to do so.)  We have already defined the notion ofwriting functions.  (But, maybe we will not need to do so.)  We have already defined the notion of  

 as there being a function  as there being a function  such that  such that .  [Not as .  [Not as , curiously.]  That is,, curiously.]  That is,  g g ≤≤  h hpp
mm f f ∈∈   FPFP g g ==  h h ∘∘ ff ff ∘∘ hh

 equals the number of solutions to the predicate  equals the number of solutions to the predicate  on  on .  Compare: For languages.  Compare: For languages  gg xx(( )) RR x'x',, yyhh(( )) x' x' ==  f f xx(( ))

 viewed as  viewed as --  valued functions,  valued functions,  via  via  means  means . . AA,, BB 00 11 A A ≤≤  B Bpp
mm ff AA xx   ==  B B ff xx(( )) (( (( ))))   

  
Theorem 1Theorem 1: The function : The function the number of satisfying assignments of the unquantifiedthe number of satisfying assignments of the unquantified  #sat#sat 𝜙𝜙   ==(( ))

propositional Boolean formula propositional Boolean formula  is complete for  is complete for  under  under ..    𝜙𝜙 #P#P ≤≤
pp
mm

  
ProofProof: That : That  belongs to  belongs to  is immediate from the predicate " is immediate from the predicate "  satisfies  satisfies " being linear(?) time" being linear(?) time  #sat#sat #P#P aa 𝜙𝜙

decidable.  Let any decidable.  Let any  defined by  defined by  and  and  be given.  The essence is that the Cook-Levin be given.  The essence is that the Cook-Levin  h h ∈∈   #P#P RR xx,, yy(( )) pp nn(( ))

construction of construction of  and then the formula  and then the formula  is  is parsimoniousparsimonious, meaning that once , meaning that once  is fixed, the is fixed, the  CC xx,, yynn(( )) 𝜙𝜙nn xx
number of number of  such that  such that  holds equals the number of staisfying assignments to the resulting holds equals the number of staisfying assignments to the resulting  yy RR xx,, yy(( ))

formula formula .  The reason is that everything in the body of .  The reason is that everything in the body of  is equational, so that any assignment to is equational, so that any assignment to  𝜙𝜙xx 𝜙𝜙xx

 forces the values of all other variables, up through the output wire variable  forces the values of all other variables, up through the output wire variable .  (This also.  (This also  yy ,, …… ,, yy11 pp wwoo

holds true under relativizations, so for any oracle holds true under relativizations, so for any oracle , ,  is complete for  is complete for  under many-one under many-one  AA #sat#satAA #P#PAA

reductions in reductions in ---without needing to use ---without needing to use .)  .)  FPFP FPFPAA ☒☒
  
It is natural first to ask, what It is natural first to ask, what languagelanguage class is commensurate with  class is commensurate with ?  We've already mentioned ?  We've already mentioned ,,  #P#P PP#P#P

which equals which equals .  We will see some senses by which this may be bigger than necessary, just like.  We will see some senses by which this may be bigger than necessary, just like  PP
##satsat

 is bigger (or so we believe) than  is bigger (or so we believe) than .  Hence our second question is, what about languages that.  Hence our second question is, what about languages that  PPNPNP NPNP

polynomial-time polynomial-time many-onemany-one reduce to  reduce to .  This leads to a type-compatibility issue insofar as .  This leads to a type-compatibility issue insofar as  has has  #sat#sat gg
range range  but  but  in  in  has range  has range , and this will soon lead us to consider the subclass of , and this will soon lead us to consider the subclass of   00,, 11{{ }} hh g g ==  h h ∘∘ ff NN NPNP

called called .  The issue is "finessed" by starting with langauge(s) that are equivalent to evaluating .  The issue is "finessed" by starting with langauge(s) that are equivalent to evaluating ..    UPUP hh xx(( ))
Here are three choices:Here are three choices:
  

1. 1. .   This is standardly called the "graph" of the function .   This is standardly called the "graph" of the function ..GG   ==   xx,, rr ::  r  r ==  h h xxhh {{(( )) (( ))}} hh
2. 2. .  This is the "less-than-or-equal graph.".  This is the "less-than-or-equal graph."LL   ==   xx,, rr   ::  r  r ≤≤  h h xxhh {{(( )) (( ))}}

3. 3.  is a prefix of the function value  is a prefix of the function value  in standard binary notation in standard binary notation ..PP   ==   xx,, uu ::  u uhh {{(( )) hh xx(( )) }}
  

  

  



Using the graph Using the graph  may seem most natural.  But can we compute  may seem most natural.  But can we compute  in polynomial time using  in polynomial time using  as as  GGhh hh xx(( )) GGhh

oracle?  Using oracle?  Using  leads to a complexity class called  leads to a complexity class called , which is not well understood even now, which is not well understood even now  GGhh CC PP==

(IMHO).(IMHO).
  
The other two languages do work as oracles for computing The other two languages do work as oracles for computing  numerically in polynomial time numerically in polynomial time  hh xx(( ))
(quadratic time as far as the oracle usage is concerned, per the footnote toward the end of the Week 3(quadratic time as far as the oracle usage is concerned, per the footnote toward the end of the Week 3  
notes).  With notes).  With  one uses binary search, which is the more numerically natural process.  Now we can one uses binary search, which is the more numerically natural process.  Now we can  LLhh

give a simpler equivalent definition to the standard one:give a simpler equivalent definition to the standard one:
  
Definition 2Definition 2: A language : A language  belongs to  belongs to  if and only if  if and only if  for some function  for some function  in  in , via a, via a  LL PPPP L L ≤≤  L Lpp

mm hh hh #P#P

polynomial-time computable function polynomial-time computable function  in which  in which  depends only on  depends only on ..ff xx   ==   x'x',, rr(( )) (( )) ||x'x'|| ||xx||
  
The clause with "via" is technical but makes it easier to prove a lemma en-route to the standardThe clause with "via" is technical but makes it easier to prove a lemma en-route to the standard  
definition and its interpretation.definition and its interpretation.
  
Lemma 2Lemma 2: For any : For any  we can find a polynomial-time predicate  we can find a polynomial-time predicate  and a polynomial  and a polynomial  such such  L L ∈∈   PPPP RR xx,, yy(( )) pp
that for all that for all , ,  if and only if a majority of strings  if and only if a majority of strings  of length up to  of length up to  give  give ..xx x x ∈∈  L L yy pp nn(( )) RR xx,, yy(( ))
  
ProofProof: By : By  in  in , we can take , we can take  and  and  defining  defining  in  in  such that  such that  via a polynomial- via a polynomial-hh #P#P RR xx,, yy00(( )) ppoo hh #P#P L L ≤≤  L Lpp

mm hh

time computable function time computable function .  Let us use the notation .  Let us use the notation  and  and  depending only on depending only on  ff x'x',, rr   ==  f f xx(( )) (( )) n' n' ==   ||x'x'||

.  Take .  Take .  A useful point to note is that the number of binary strings .  A useful point to note is that the number of binary strings  of of  n n ==   ||xx|| pp nn   ==  p p n'n' ++ 11(( )) 00(( )) yy
length up to length up to  is odd, and that those of length exactly  is odd, and that those of length exactly  make up a bare majority.  So we need make up a bare majority.  So we need  pp nn(( )) pp nn(( ))

only arrange that if there are at least only arrange that if there are at least  witnesses of the original predicate  witnesses of the original predicate  with with  rr RR x'x',, yy00(( ))

, then those together with , then those together with  witnesses of length  witnesses of length  make up a make up a  ||yy||  ≤≤  p p n'n'   ==  p p nn -- 1100(( )) (( )) 22 -- rrpp nn(( )) pp nn(( ))
majority.  Accordingly, definemajority.  Accordingly, define
  

RR xx,, yy   ==  if  if ||yy||  <<  p p xx  then R then R x'x',, yy  else y  else y ≥≥  w w ,,(( )) ((|| ||)) 00(( )) rr

  
where where  means the string in  means the string in  with binary expansion  with binary expansion .  To see why this works, let .  To see why this works, let  be the be the  wwrr 00,, 11{{ }}pp nn(( )) rr ss
actual value of actual value of , that is, the number of , that is, the number of  giving  giving .  If .  If , which is the greatest , which is the greatest  for for  hh x'x'(( )) yy RR x'x',, yy00(( )) r r ==  s s rr
which which , then we get , then we get  witnesses  witnesses  of length  of length  from  from  and exactly and exactly  x'x',, rr   ∈∈  L L(( )) hh ss yy <<  p p nn(( )) RR x'x',, yy00(( ))

witnesses witnesses  of length  of length , adding up to exactly , adding up to exactly .  This is a bare majority, as.  This is a bare majority, as  22 -- r r == 22 -- s s pp nn(( )) pp nn(( )) yy pp nn(( )) 22pp nn(( ))

required to say required to say .  If .  If , then , then  is still in  is still in , so we want to accept , so we want to accept , which happens, which happens  x x ∈∈  L L r r <<  s s x'x',, rr(( )) LLhh xx
because we get even more witnesses of length because we get even more witnesses of length  from the lower value of  from the lower value of .  But if .  But if  then the then the  pp nn(( )) rr r r >>  s s
number of witnesses comes short of a majority.  number of witnesses comes short of a majority.  ☒☒
  

  

  

exclude exclude  strings stringsrr

 witnesses total witnesses totalss Green is majorityGreen is majority
provided provided r r ≤≤  s s..

 strings in top layer strings in top layer22nn

 strings below strings below22 -- 11nn



  
[Self-study exercise: Work this out without the convenience of [Self-study exercise: Work this out without the convenience of  depending only on  depending only on .].]n'n' nn
  
[[Saturday's lecture will pick up by reviewing the lemma just above with my new picture, thenSaturday's lecture will pick up by reviewing the lemma just above with my new picture, then  
continue as below---maybe getting to the matrix example but short of definingcontinue as below---maybe getting to the matrix example but short of defining  .].]BPPBPP

  
The same idea applied with The same idea applied with  and the "majority" formulation yield the following. and the "majority" formulation yield the following.r r ==  1 1
  
Proposition 3Proposition 3: : .  .  NPNP  ⊆⊆   PPPP ☒☒
  
Proposition 4Proposition 4: :  is closed under complements, so also  is closed under complements, so also co-NPco-NP is contained in  is contained in .  .  PPPP PPPP ☒☒
  
For a long time, it was unknown whether For a long time, it was unknown whether  is closed under intersection.  This was originally shown via is closed under intersection.  This was originally shown via  PPPP

algebra.  Then Scott Aaronson used the algebra to give a more conceptual explanation by showing thatalgebra.  Then Scott Aaronson used the algebra to give a more conceptual explanation by showing that  
 equals "BQP with postselection"---a class which is just as obviously closed under all Boolean equals "BQP with postselection"---a class which is just as obviously closed under all Boolean  PPPP

operations as operations as  is.  [We'll appreciate this and how the " is.  [We'll appreciate this and how the " " bare-majority advantage of " bare-majority advantage of   PP
PPPP 11 // 2 2 ++  o o 11(( )) PPPP

gets related to "gets related to " " advantage of the more-powerful quantum post-selection operation after we" advantage of the more-powerful quantum post-selection operation after we  1 1 --  o o 11(( ))

cover cover .  The unfair power of post-selection comes from being able to condition .  The unfair power of post-selection comes from being able to condition   BPPBPP yy == 11||ww == 11PrPr[[ ]]

on events on events  whose probability of being  whose probability of being  is positive but exponentially small.]  In consequence, the is positive but exponentially small.]  In consequence, the  ww 11

Boolean closure of Boolean closure of  is contained within  is contained within .  Yet we still do not know whether .  Yet we still do not know whether , let alone, let alone  NPNP PPPP PP   ⊆⊆   PPPPNPNP

higher parts of the polynomial hierarchy, in contrast to the theorem that higher parts of the polynomial hierarchy, in contrast to the theorem that , which we will cover, which we will cover  PHPH ⊆⊆   PPPPPP

upon jumping back to chapter 9 in section 9.3.upon jumping back to chapter 9 in section 9.3.
  
Note also: Note also:  because we can execute the binary search procedure via extra oracle calls. because we can execute the binary search procedure via extra oracle calls.    PP   ==   PP#P#P PPPP

But they may not equal But they may not equal  by itself.  The relationship between  by itself.  The relationship between  and  and  is like that between many- is like that between many-PPPP PPPP PPPPPP

one reductions and Turing reductions quite in general, as will come out next.  We do haveone reductions and Turing reductions quite in general, as will come out next.  We do have  
..#P#P  ==   FPFP  ⟺⟺  #sat  #sat ∈∈   FPFP  ⟺⟺   PP   ==   PP  ⟺⟺   PPPP  ==   PPPPPP

  
  
Counting and PredicatesCounting and Predicates
  
Here is a state of affairs that has caused considerable confusion: A language Here is a state of affairs that has caused considerable confusion: A language  can come with can come with  L L ∈∈   NPNP

many different witness predicates many different witness predicates , which we tacitly suppose to be bundled with length-bounding, which we tacitly suppose to be bundled with length-bounding  RR xx,, yy(( ))

polynomials polynomials .  Do we consider .  Do we consider  alone or  alone or  to be "the thing"?  Well,  to be "the thing"?  Well,  should be  should be thethe thing thing  pp LL LL,, RR(( )) RR

because it uniquely induces because it uniquely induces  as  as .  Once .  Once  is specified, we get the counting is specified, we get the counting  LL LL   ==   xx ::   ∃∃ yy RR xx,, yyRR
pp (( )) RR

function function , but note that it pertains to , but note that it pertains to , not alone to , not alone to ..hh xx   ==  # # yy.. RR xx,, yyRR(( )) pp (( )) RR LL
  

1. 1. Every Every  gives a parsimonious reduction from  gives a parsimonious reduction from  to  to ..LL,, RR(( )) hhRR #sat#sat
2. 2. If If  is  is -complete via an invertible reduction -complete via an invertible reduction  from SAT, then  from SAT, then  has a witness predicate  has a witness predicate   LL NPNP gg LL R'R'

such that the induced reduction from such that the induced reduction from  to  to  is parsimonious.  Namely: is parsimonious.  Namely:#sat#sat ffR'R'

..R'R' xx,, yy   ==  sat sat gg xx ,, yy  if x if x ∈∈ ranran gg  else R else R xx,, yy(( )) -1-1(( )) (( )) (( ))

  

  



3. 3. There are invertible There are invertible -complete languages -complete languages  whose "natural" witness predicate  whose "natural" witness predicate  definitely definitely  NPNP LL RR
does not allow a parsimonious reduction from does not allow a parsimonious reduction from  to  to .  For example, whether a graph is 4-.  For example, whether a graph is 4-#sat#sat hhRR

edge colorable is edge colorable is -complete, but the only graph having a unique 4-edge coloring (not-complete, but the only graph having a unique 4-edge coloring (not  NPNP

counting permutations of the colors) is the star with 5 nodes and four points.counting permutations of the colors) is the star with 5 nodes and four points.
4. 4. Whether there are Whether there are -complete languages without invertible reductions from SAT is a-complete languages without invertible reductions from SAT is a  NPNP

subversive question.  The subversive question.  The Berman-Hartmanis ConjectureBerman-Hartmanis Conjecture asserts that all  asserts that all -complete-complete  NPNP

languages are languages are p-isomorphicp-isomorphic, meaning equivalent under polynomial-time computable and, meaning equivalent under polynomial-time computable and  
invertible permutations of invertible permutations of ..    𝛴𝛴**

5. 5. If If  many-one reduces to  many-one reduces to , meaning there is a function , meaning there is a function  such that for all Boolean such that for all Boolean  #sat#sat hhRR f f ∈∈  FP FP
formulas formulas , , , then we have:, then we have:𝜙𝜙 #sat#sat 𝜙𝜙   ==  h h ff 𝜙𝜙(( )) RR(( (( ))))
  
  ,,𝜙𝜙 ∈∈ SATSAT ⟺⟺  #sat #sat 𝜙𝜙 ≥≥ 11 ⟺⟺ hh ff 𝜙𝜙 ≥≥ 1 1 ⟺⟺  # # yy.. RR ff 𝜙𝜙 ,, yy ≥≥ 1 1 ⟺⟺ ff 𝜙𝜙 ∈∈ LL(( )) RR(( (( )))) pp (( (( )) )) (( )) RR

  
 so  so  is  is -complete.-complete.LLRR NPNP

6. 6. However, there are polynomial-time predicates However, there are polynomial-time predicates  such that  such that  is  is -complete under poly-time-complete under poly-time  RR ffRR #P#P

TuringTuring reductions and yet  reductions and yet  belongs to  belongs to .  The most amazing one IMHO is counting the.  The most amazing one IMHO is counting the  LLRR PP

number of satisfying assignments to a 2CNF formula number of satisfying assignments to a 2CNF formula   with no negated variableswith no negated variables.  Such a .  Such a  is is  𝜓𝜓 𝜓𝜓

trivially satisfiable, let alone that 2SAT belongs to trivially satisfiable, let alone that 2SAT belongs to .  The most historically important such.  The most historically important such  PP

problem is the following one.problem is the following one.
  
The "The " -Rooks Problem"-Rooks Problem": Given an : Given an  chessboard in which every square is marked either  chessboard in which every square is marked either  or or  NN N N ××  N N 00

 can we place  can we place  rooks on the squares marked  rooks on the squares marked  so that no two rooks attack each other? so that no two rooks attack each other?11,, NN 11
  
This is both easier and harder than the famous This is both easier and harder than the famous -Queens Problem: the latter allows you to use every-Queens Problem: the latter allows you to use every  NN
square of the chessboard but queens can attack each other diagonally too.  Well, chess is a red herringsquare of the chessboard but queens can attack each other diagonally too.  Well, chess is a red herring  
here---the problem has two more familiar interpretations.here---the problem has two more familiar interpretations.
  
Bipartite Perfect MatchingBipartite Perfect Matching: Given an : Given an  bipartite graph  bipartite graph , can we find , can we find  edges that edges that  N N ××  N N VV ,, VV ,, EE(( 11 22 )) NN
connect every vertex in connect every vertex in  to a distinct node in  to a distinct node in ??VV11 VV22

  
Binary PermanentBinary Permanent: Given an : Given an  binary matrix  binary matrix , can we find a nonzero , can we find a nonzero diagonal productdiagonal product, so that, so that  N N ××  N N AA

??permperm AA   >>  0 0(( ))
  
The permanent function is what you get from the formula for the determinant if you "simplify" it byThe permanent function is what you get from the formula for the determinant if you "simplify" it by  
removing the minus signs.  That is, letting removing the minus signs.  That is, letting  denote the set of permutations of  denote the set of permutations of  elements: elements:SSNN NN
  

AA   ==   --11 AA ii,, 𝜎𝜎 iidetdet(( )) ∑∑
  

𝜎∈S𝜎∈SNN

∏∏
NN

i=1i=1

(( ))signsign 𝜎𝜎(( )) [[ (( ))]]

permperm AA   == AA ii,, 𝜎𝜎 ii   (( )) ∑∑
  

𝜎∈S𝜎∈SNN

∏∏
NN

i=1i=1

[[ (( ))]]

  

  

  



Now despite the fact that the determinant is computable in polynomial time (indeed, the same order ofNow despite the fact that the determinant is computable in polynomial time (indeed, the same order of  
time it takes to multiply two time it takes to multiply two  matrices), the "simpler" function  matrices), the "simpler" function  is  is -hard.  Unlike "-hard.  Unlike " --N N ××  N N permperm AA(( )) NPNP NPNP

complete", the term "complete", the term " -hard" usually refers to polynomial-time Turing reductions.  The term "-hard" usually refers to polynomial-time Turing reductions.  The term " --NPNP #P#P
complete" always requires specifying the reductions because the Turing case has so much influence---complete" always requires specifying the reductions because the Turing case has so much influence---
indeed, Arora-Barak define it that way in section 9.2.  This arguably stems from the famous theoremindeed, Arora-Barak define it that way in section 9.2.  This arguably stems from the famous theorem  
that explained why trying to find an easy procedure for computing that explained why trying to find an easy procedure for computing  had met with a century of had met with a century of  permperm AA(( ))
failure.failure.
  
Theorem 5Theorem 5 [Leslie Valiant, late 1970s]: The permanent function (of 0-1 matrices or more generally) is [Leslie Valiant, late 1970s]: The permanent function (of 0-1 matrices or more generally) is  
complete for complete for  under polynomial-time Turing reductions. under polynomial-time Turing reductions.#P#P
  
I will skip the proof given later in chapter 9 by Arora and Barak---we will do I will skip the proof given later in chapter 9 by Arora and Barak---we will do -completeness under-completeness under  #P#P

 by extending  by extending  into algebraic functions (related to quantum circuits) instead.  But it contrasts into algebraic functions (related to quantum circuits) instead.  But it contrasts  ≤≤
pp
mm #sat#sat

with the famous theorem that did much to coalesce the feeling about with the famous theorem that did much to coalesce the feeling about  as being the benchmark class as being the benchmark class  PP

for "feasibility" to begin with:for "feasibility" to begin with:
  
Theorem 6Theorem 6 [Edmonds, 1965; before?*]:  [Edmonds, 1965; before?*]: [Bipartite][Bipartite]  Perfect MatchingPerfect Matching is in  is in ..PP
  
[*What Edmonds actually did was prove that for every non-maximal matching in a bipartite graph there[*What Edmonds actually did was prove that for every non-maximal matching in a bipartite graph there  
is a path that begins and ends with unmatched nodes and alternates edges in and not in the matching.is a path that begins and ends with unmatched nodes and alternates edges in and not in the matching.    
Flipping the in/not-in status of the edges in that path then yields a bigger matching.  Finding such aFlipping the in/not-in status of the edges in that path then yields a bigger matching.  Finding such a  
path in polynomial-time, as Edmonds showed how to do, then yields a poly-time algorithm for the wholepath in polynomial-time, as Edmonds showed how to do, then yields a poly-time algorithm for the whole  
problem.  Then earlier algorithms were later proved to operate in polynomial time as well.]  It remains aproblem.  Then earlier algorithms were later proved to operate in polynomial time as well.]  It remains a  
philosophical mystery why finding a perfect matching (or telling that one doesn't exist) is easy butphilosophical mystery why finding a perfect matching (or telling that one doesn't exist) is easy but  
counting them is hard.  We, however, move on to this:counting them is hard.  We, however, move on to this:
  
Equation SolvingEquation Solving: Given polynomial equations : Given polynomial equations  over a over a  pp xx ,, …… ,, xx   ==  0 0,,   …… ,,  p p xx ,, …… ,, xx   ==  0 011(( 11 nn)) ss(( 11 nn))

field field , is there a common solution (and if so, how many)?, is there a common solution (and if so, how many)?  FF

  
The challenge is not so much to prove this The challenge is not so much to prove this -complete (usually under -complete (usually under ) as to find cases that are) as to find cases that are  #P#P ≤≤

pp
mm

notnot  -complete.  If the equations include -complete.  If the equations include  through  through , then we are down to, then we are down to  #P#P xx   --  x x   ==  0 022
11 11 xx   --  x x   ==  0 022

nn nn

asking about solutions in which each asking about solutions in which each  is restricted to be  is restricted to be  or  or .  Call this the ".  Call this the "binary restrictionbinary restriction".  Then".  Then  xxii 00 11
just replace each 3CNF clause in an instance of 3SAT by a corresponding degree-3 equation---forjust replace each 3CNF clause in an instance of 3SAT by a corresponding degree-3 equation---for  
instance, instance,  becomes  becomes ..    xx   ∨∨     ∨∨  x x(( ii xx⏨⏨jj kk)) 11 -- xx xx 11 -- xx   ==  0 0(( ii)) jj(( kk))

  
Under the binary restriction, one can even reduce from Under the binary restriction, one can even reduce from  to equations that are  to equations that are linearlinear.  This does not.  This does not  #sat#sat
contradict the polyniomial-time solvability of general linear equations because the equations definingcontradict the polyniomial-time solvability of general linear equations because the equations defining  
the restriction are quadratic.  When the 0-1 property applies also to the possible the restriction are quadratic.  When the 0-1 property applies also to the possible valuesvalues, one can also, one can also  
multiply all the equations together in the formmultiply all the equations together in the form  
  

,,1 1 --  p p ⋯⋯ 11 -- pp       --    1      1   ==    0   0(( 11)) (( ss))
  

thus getting a single multi-variable polynomial equation---albeit a polynomial of degree on the order of thus getting a single multi-variable polynomial equation---albeit a polynomial of degree on the order of   ss

  

  



that would have exponentially many terms if you multiplied it out.  There are relaxations of the 0-1that would have exponentially many terms if you multiplied it out.  There are relaxations of the 0-1  
property on values and/or arguments that also make this work.  They all have parsimonious reductionsproperty on values and/or arguments that also make this work.  They all have parsimonious reductions  
from from ..    #sat#sat
  
One more note before moving on: There are numerous other restrictions one can place on equation-One more note before moving on: There are numerous other restrictions one can place on equation-
solving problems.  A famous case where the counting problem does belong to solving problems.  A famous case where the counting problem does belong to  is counting solutions is counting solutions  
toto  

PP

a single quadratic polynomial over the binary field a single quadratic polynomial over the binary field .  Make it a quadratic polynomial with values.  Make it a quadratic polynomial with values  FF22

modulo modulo , however, and the solution-counting problem  "sproings back" to being , however, and the solution-counting problem  "sproings back" to being -complete (under-complete (under  44 #P#P
many-one reductions).  Following on from newer work by Valiant, Jin-Yi Cai has made a large-scalemany-one reductions).  Following on from newer work by Valiant, Jin-Yi Cai has made a large-scale  
project of studying this easy-or-complete "Dichotomy" phenomenon.  It is IMHO even more compellingproject of studying this easy-or-complete "Dichotomy" phenomenon.  It is IMHO even more compelling  
than the paucity of "natural" problems that are believed to be neither in than the paucity of "natural" problems that are believed to be neither in  nor  nor -complete, of which-complete, of which  PP NPNP

Factoring, Graph Isomorphism, and the Minimum Circuit Size Problem (given a binary string Factoring, Graph Isomorphism, and the Minimum Circuit Size Problem (given a binary string  of length of length  zz

, and a number , and a number , in there a , in there a -input circuit -input circuit  of size at most  of size at most  such that for all  such that for all , ,  equals equals  n n ==  2 2kk rr kk CC rr i i ≤≤  n n zzii

the value of the value of  on the  on the -th element of -th element of ?) are the only ones with staying power, IMHO.  But we will?) are the only ones with staying power, IMHO.  But we will  CC ii 00,, 11{{ }}kk

be in a position to ask whether quantum circuits may furnish a broad intermediate class of algebraicbe in a position to ask whether quantum circuits may furnish a broad intermediate class of algebraic  
problems between problems between  and  and -complete.-complete.PP #P#P
  
  
Bounded-Error Probabilistic ComputationBounded-Error Probabilistic Computation
  
Let's first motivate this with an example I used also in CSE596---it also connects to the note just above:Let's first motivate this with an example I used also in CSE596---it also connects to the note just above:
  
For any natural number For any natural number , ,  stands for the integers modulo  stands for the integers modulo .  If .  If  is a prime number  is a prime number , then , then  is is  mm ZZmm mm mm pp ZZpp

a a fieldfield (so that one can divide as well as multiply) and we write it as  (so that one can divide as well as multiply) and we write it as .  The simplest such case is.  The simplest such case is  FFpp

 which is  which is  with the usual addition modulo  with the usual addition modulo and multiplication.  The field structure helps usand multiplication.  The field structure helps us  p p ==  2 2 00,, 11{{ }} 2 2 
prove the following result more easily.prove the following result more easily.
  
Lemma 7Lemma 7: Suppose : Suppose  are  are  matrices over  matrices over  such that  such that .  Then.  ThenAA,, BB,, CC n n ××  n n FFpp AB AB ≠≠  C C

  ..    ABu ABu ≠≠  Cu Cu   ≥≥   PrPru∈u∈FFnn
pp
[[ ]]

pp -- 11

pp
  
ProofProof: Write : Write .  Note that we are not going to .  Note that we are not going to calculatecalculate  , because that would take the, because that would take the  D D ==  AB  AB --  C C DD
(standardly cubic) time for multiplying (standardly cubic) time for multiplying  and  and  that we are trying to avoid, but we are allowed to  that we are trying to avoid, but we are allowed to argueargue  AA BB
based on its existencebased on its existence.   By linearity, .   By linearity, .  So .  So  has at least one row  has at least one row  with a with a  ABu ABu ≠≠  Cu  Cu ⟺⟺  Du  Du ≠≠  0 0 DD ii
nonzero entry, and its use may give a nonzero entry in the nonzero entry, and its use may give a nonzero entry in the -th place of the column vector -th place of the column vector ..    ii v v ==  Du Du
Note thatNote that

..vv   ==   DD ii,, jj uuii ∑∑
nn

j=1j=1

[[ ]] jj

  
Let Let  be a column in which row  be a column in which row  has entry  has entry .  For any vector .  For any vector , we can write, we can writejj00 ii c c ==  D D ii,, jj   ≠≠  0 0[[ 00]] uu
  

  

  



..vv   ==  cu cu   ++  a    where    a  a    where    a == DD ii,, jj uuii jj00
∑∑

  

j≠jj≠j00
[[ ]] jj

  
The key observation is that because The key observation is that because  is a field, for any  is a field, for any , the values , the values  run through all  run through all   FFpp c c ≠≠  0 0 cucujj00 pp
possible values as possible values as  runs through all  runs through all  possibilities.  Regardless of the value of  possibilities.  Regardless of the value of  determined by the determined by the  uujj00 pp aa
rest of row rest of row  and the rest of the vector  and the rest of the vector , the values , the values  run through all  run through all  possibilities with equal possibilities with equal  ii uu cucu ++  a ajj00 pp

probability.  Hence the probability that probability.  Hence the probability that  is exactly  is exactly .  The probability of getting .  The probability of getting  (which (which  vv   ≠≠  0 0ii
p-1p-1

pp v v ≠≠  0 0

could come from other nonzero entries too) is at least as great.  could come from other nonzero entries too) is at least as great.  ☒☒
  
The upshot is:The upshot is:
  

• • If If  then you will never be deceived: you will always get equal values from  then you will never be deceived: you will always get equal values from  and and  AB AB ==  C C AA BuBu(( ))

 and will correctly answer "yes, equal." and will correctly answer "yes, equal."CuCu
• • If If  and you try  and you try  vectors  vectors  at random, if you ever get  at random, if you ever get  then you will know then you will know  AB AB ≠≠  C C kk uu AA BuBu   ≠≠  Cu Cu(( ))

to answer "no, unequal" with 100% confidence.to answer "no, unequal" with 100% confidence.    

• • If you get equality each time, you will answer "yes, equal" but there is a If you get equality each time, you will answer "yes, equal" but there is a  chance of being chance of being  11

ppkk

wrong.wrong.    
  
If you consider, say, a 1-in-If you consider, say, a 1-in-  chance of being wrong as minuscule, then you only need to pick  chance of being wrong as minuscule, then you only need to pick  so that so that  nn33 kk

, so , so  will suffice.  Presuming  will suffice.  Presuming  is fixed, this means  is fixed, this means  trials will suffice. trials will suffice.    pp   >>  n nkk 33 k k ==   nn
33

pploglog
loglog pp OO  n n((loglog ))

The resulting The resulting  running time handily beats the time for multiplying  running time handily beats the time for multiplying  out.  Thus out.  Thus  OO nn nn   ==   nn22 loglog OO 22 ABAB

we trade off we trade off surenesssureness for  for timetime..    
  
For arithmetic modulo For arithmetic modulo  not prime, or without any modulus, the analysis is messier---but not only is the not prime, or without any modulus, the analysis is messier---but not only is the  mm
essence the same, but the asymptotic order of essence the same, but the asymptotic order of  in terms of  in terms of  and the confidence target  and the confidence target  is much is much  kk nn 𝜖𝜖 nn(( ))

the same---it didn't really depend on the same---it didn't really depend on  to begin with. to begin with.    pp

  

  

  


