The question "how many solutions are there?" subsumes the question "is there a solution?" The surprise is that it also captures all of the alternation in the polynomial hierarchy, as shown by the theorem of Seinosuke Toda in 1988-89 that PH is contained in $BP[⊕P]$, which in turn is contained in $P^{#P}$. Well, this tells us we have lots more things to define, so let's get to it---first in sections 9.1--9.2 of Arora-Barak, then Chapter 7, then Toda's theorem in section 9.3.

Definition 1: A function $h : \Sigma^* \to \mathbb{N}$ belongs to $#P$ (pronounced "sharp-P" more often than "number-P") if there is a predicate $R(x, y)$ in P and a polynomial p such that for all x, $h(x) = \|\{y : |y| \leq p(|x|) \land R(x, y)\}\|$.

We can abbreviate this by writing $h(x) = #^P y. R(x, y)$ to mimic the "lambda style" $\lambda z. A(z)$ style of writing functions. (But, maybe we will not need to do so.) We have already defined the notion of $g \leq_p h$ as there being a function $f \in \text{FP}$ such that $g = h \circ f$. [Not as $f \circ h$, curiously.] That is, $g(x)$ equals the number of solutions to the predicate $R_\phi'(x', y)$ on $x' = f(x)$. Compare: For languages A, B viewed as 0-1 valued functions, $A \leq_p B$ via f means $A(x) = B(f(x))$.

Theorem 1: The function $\#\text{sat}(\phi) = \text{the number of satisfying assignments of the unquantified propositional Boolean formula } \phi$ is complete for $#P$ under \leq_p.

Proof: That $\#\text{sat}$ belongs to $#P$ is immediate from the predicate "a satisfies ϕ" being linear(?!) time decidable. Let any $h \in \#P$ defined by $R(x, y)$ and $p(n)$ be given. The essence is that the Cook-Levin construction of $C_n(x, y)$ and then the formula ϕ_n is *parsimonious*, meaning that once x is fixed, the number of y such that $R(x, y)$ holds equals the number of satisfying assignments to the resulting formula ϕ_x. The reason is that everything in the body of ϕ_x is equational, so that any assignment to y_1, \ldots, y_p forces the values of all other variables, up through the output wire variable w_ϕ. (This also holds true under relativizations, so for any oracle A, $\#\text{sat}^A$ is complete for $#P^A$ under many-one reductions in FP---without needing to use FP^A.)

It is natural first to ask, what *language* class is commensurate with $#P$? We've already mentioned $P^{#P}$, which equals $P^{\#\text{sat}}$. We will see some senses by which this may be bigger than necessary, just like P^{NP} is bigger (or so we believe) than NP. Hence our second question is, what about languages that polynomial-time many-one reduce to $\#\text{sat}$? This leads to a type-compatibility issue insofar as g has range $\{0, 1\}$ but h in $g = h \circ f$ has range \mathbb{N}, and this will soon lead us to consider the subclass of NP called UP. The issue is "finessed" by starting with language(s) that are equivalent to evaluating $h(x)$.

Here are three choices:

1. $G_h = \{(x, r) : r = h(x)\}$. This is standardly called the "graph" of the function h.
2. $L_h = \{(x, r) : r \leq h(x)\}$. This is the "less-than-or-equal graph."
3. $P_h = \{(x, u) : u$ is a prefix of the function value $h(x)$ in standard binary notation$\}$.
Using the graph G_h may seem most natural. But can we compute $h(x)$ in polynomial time using G_h as oracle? Using G_h leads to a complexity class called $C_{=P}$, which is not well understood even now (IMHO).

The other two languages do work as oracles for computing $h(x)$ numerically in polynomial time (quadratic time as far as the oracle usage is concerned, per the footnote toward the end of the Week 3 notes). With L_h one uses binary search, which is the more numerically natural process. Now we can give a simpler equivalent definition to the standard one:

Definition 2: A language L belongs to PP if and only if $L \leq^P_m L_h$ for some function h in $\#P$, via a polynomial-time computable function $f(x) = (x', r)$ in which $|x'|$ depends only on $|x|$.

The clause with "via" is technical but makes it easier to prove a lemma en-route to the standard definition and its interpretation.

Lemma 2: For any $L \in \text{PP}$ we can find a polynomial-time predicate $R(x, y)$ and a polynomial p such that for all $x, x \in L$ if and only if a majority of strings y of length up to $p(n)$ give $R(x, y)$.

Proof: By h in $\#P$, we can take $R_0(x, y)$ and p_o defining h in $\#P$ such that $L \leq^P_m L_h$ via a polynomial-time computable function f. Let us use the notation $(x', r) = f(x)$ and $n' = |x'|$ depending only on $n = |x|$. Take $p(n) = p_0(n') + 1$. A useful point to note is that the number of binary strings y of length up to $p(n)$ is odd, and that those of length exactly $p(n)$ make up a bare majority. So we need only arrange that if there are at least r witnesses of the original predicate $R_0(x', y)$ with $|y| \leq p_0(n') = p(n) - 1$, then those together with $2^{p(n)} - r$ witnesses of length $p(n)$ make up a majority. Accordingly, define

$$R(x, y) = \begin{cases} 1 & \text{if } |y| < p(|x|) \text{ then } R_0(x', y) \text{ else } y \geq w_r, \\ 0 & \end{cases}$$

where w_r means the string in $\{0, 1\}^{p(n)}$ with binary expansion r. To see why this works, let s be the actual value of $h(x')$, that is, the number of y giving $R_0(x', y)$. If $r = s$, which is the greatest r for which $(x', r) \in L_h$ then we get s witnesses y of length $< p(n)$ from $R_0(x', y)$ and exactly $2^{p(n)} - r = 2^{p(n)} - s$ witnesses y of length $p(n)$, adding up to exactly $2^{p(n)}$. This is a bare majority, as required to say $x \in L$. If $r < s$, then (x', r) is still in L_h, so we want to accept x, which happens because we get even more witnesses of length $p(n)$ from the lower value of r. But if $r > s$ then the number of witnesses comes short of a majority. ✗
[Self-study exercise: Work this out without the convenience of \(n' \) depending only on \(n \).]

[Saturday's lecture will pick up by reviewing the lemma just above with my new picture, then continue as below---maybe getting to the matrix example but short of defining BPP.]

The same idea applied with \(r = 1 \) and the "majority" formulation yield the following.

Proposition 3: \(\text{NP} \subseteq \text{PP} \). ☳

Proposition 4: PP is closed under complements, so also \(\text{co-NP} \) is contained in PP. ☳

For a long time, it was unknown whether \(\text{PP} \) is closed under intersection. This was originally shown via algebra. Then Scott Aaronson used the algebra to give a more conceptual explanation by showing that \(\text{PP} \) equals "BQP with postselection"---a class which is just as obviously closed under all Boolean operations as \(\text{P}^{\text{PP}} \) is. [We'll appreciate this and how the "1/2 + o(1)" bare-majority advantage of \(\text{PP} \) gets related to "1 − o(1)" advantage of the more-powerful quantum post-selection operation after we cover BQP. The unfair power of post-selection comes from being able to condition \(\Pr[y = 1 | w = 1] \) on events \(w \) whose probability of being 1 is positive but exponentially small.] In consequence, the Boolean closure of \(\text{NP} \) is contained within \(\text{PP} \). Yet we still do not know whether \(\text{P}^{\text{NP}} \subseteq \text{PP} \), let alone higher parts of the polynomial hierarchy, in contrast to the theorem that \(\text{PH} \subseteq \text{P}^{\text{PP}} \), which we will cover upon jumping back to chapter 9 in section 9.3.

Note also: \(\text{P}^\# \text{P} = \text{P}^{\text{PP}} \) because we can execute the binary search procedure via extra oracle calls. But they may not equal \(\text{PP} \) by itself. The relationship between \(\text{PP} \) and \(\text{P}^{\text{PP}} \) is like that between many-one reductions and Turing reductions quite in general, as will come out next. We do have \(\# \text{P} = \text{FP} \Leftrightarrow \# \text{sat} \in \text{FP} \Leftrightarrow \text{P}^{\text{PP}} = \text{P} \Leftrightarrow \text{PP} = \text{P} \).

Counting and Predicates

Here is a state of affairs that has caused considerable confusion: A language \(L \in \text{NP} \) can come with many different witness predicates \(R(x, y) \), which we tacitly suppose to be bundled with length-bounding polynomials \(p \). Do we consider \(L \) alone or \((L, R)\) to be "the thing"? Well, \(R \) should be the thing because it uniquely induces \(L \) as \(L_R = \{x : (\exists y)^p R(x, y)\} \). Once \(R \) is specified, we get the counting function \(h_R(x) = \#^p y. R(x, y) \), but note that it pertains to \(R \), not alone to \(L \).

1. Every \((L, R)\) gives a parsimonious reduction from \(h_R \) to \(\# \text{sat} \).
2. If \(L \) is \(\text{NP} \)-complete via an invertible reduction \(g \) from \text{SAT}, then \(L \) has a witness predicate \(R' \) such that the induced reduction from \(\# \text{sat} \) to \(f_{R'} \) is parsimonious. Namely: \(R'(x, y) = \text{sat} (g^{-1}(x), y) \) if \(x \in \text{ran}(g) \) else \(R(x, y) \).
3. There are invertible NP-complete languages L whose "natural" witness predicate R definitely does not allow a parsimonious reduction from #sat to h_R. For example, whether a graph is 4-edge colorable is NP-complete, but the only graph having a unique 4-edge coloring (not counting permutations of the colors) is the star with 5 nodes and four points.

4. Whether there are NP-complete languages without invertible reductions from SAT is a subversive question. The Berman-Hartmanis Conjecture asserts that all NP-complete languages are p-isomorphic, meaning equivalent under polynomial-time computable and invertible permutations of Σ^*.

5. If #sat many-one reduces to h_R, meaning there is a function $f \in FP$ such that for all Boolean formulas ϕ, $\text{#sat}(\phi) = h_R(f(\phi))$, then we have:

$$\phi \in \text{SAT} \iff \text{#sat}(\phi) \geq 1 \iff h_R(f(\phi)) \geq 1 \iff \#^Ry, R(f(\phi), y) \geq 1 \iff f(\phi) \in L_R,$$

so L_R is NP-complete.

6. However, there are polynomial-time predicates R such that f_R is $\#P$-complete under poly-time Turing reductions and yet L_R belongs to P. The most amazing one IMHO is counting the number of satisfying assignments to a 2CNF formula ψ with no negated variables. Such a ψ is trivially satisfiable, let alone that 2SAT belongs to P. The most historically important such problem is the following one.

The "N-Rooks Problem": Given an $N \times N$ chessboard in which every square is marked either 0 or 1, can we place N rooks on the squares marked 1 so that no two rooks attack each other?

This is both easier and harder than the famous N-Queens Problem: the latter allows you to use every square of the chessboard but queens can attack each other diagonally too. Well, chess is a red herring here—the problem has two more familiar interpretations.

Bipartite Perfect Matching: Given an $N \times N$ bipartite graph (V_1, V_2, E), can we find N edges that connect every vertex in V_1 to a distinct node in V_2?

Binary Permanent: Given an $N \times N$ binary matrix A, can we find a nonzero diagonal product, so that $\text{perm}(A) > 0$?

The permanent function is what you get from the formula for the determinant if you "simplify" it by removing the minus signs. That is, letting S_N denote the set of permutations of N elements:

$$\det(A) = \sum_{\sigma \in S_N} \prod_{i=1}^{N} (-1)^{\text{sign(}\sigma)} A[i, \sigma(i)]$$

$$\text{perm}(A) = \sum_{\sigma \in S_N} \prod_{i=1}^{N} A[i, \sigma(i)]$$
Now despite the fact that the determinant is computable in polynomial time (indeed, the same order of time it takes to multiply two \(N \times N \) matrices), the "simpler" function \(\text{perm}(A) \) is \(\text{NP} \)-hard. Unlike "\(\text{NP} \)-complete", the term "\(\text{NP} \)-hard" usually refers to polynomial-time Turing reductions. The term "\(\# \text{P} \)-complete" always requires specifying the reductions because the Turing case has so much influence---indeed, Arora-Barak define it that way in section 9.2. This arguably stems from the famous theorem that explained why trying to find an easy procedure for computing \(\text{perm}(A) \) had met with a century of failure.

Theorem 5 [Leslie Valiant, late 1970s]: The permanent function (of 0-1 matrices or more generally) is complete for \(\# \text{P} \) under polynomial-time Turing reductions.

I will skip the proof given later in chapter 9 by Arora and Barak---we will do \(\# \text{P} \)-completeness under \(\leq_{m}^{\text{P}} \) by extending \(\# \text{sat} \) into algebraic functions (related to quantum circuits) instead. But it contrasts with the famous theorem that did much to coalesce the feeling about \(P \) as being the benchmark class for "feasibility" to begin with:

Theorem 6 [Edmonds, 1965; before?*]: [Bipartite] **Perfect Matching** is in \(P \).

[*What Edmonds actually did was prove that for every non-maximal matching in a bipartite graph there is a path that begins and ends with unmatched nodes and alternates edges in and not in the matching. Flipping the in/not-in status of the edges in that path then yields a bigger matching. Finding such a path in polynomial-time, as Edmonds showed how to do, then yields a poly-time algorithm for the whole problem. Then earlier algorithms were later proved to operate in polynomial time as well.] It remains a philosophical mystery why finding a perfect matching (or telling that one doesn't exist) is easy but counting them is hard. We, however, move on to this:

Equation Solving: Given polynomial equations \(p_1(x_1, \ldots, x_n) = 0, \ldots, p_s(x_1, \ldots, x_n) = 0 \) over a field \(\mathbb{F} \), is there a common solution (and if so, how many)?

The challenge is not so much to prove this \(\# \text{P} \)-complete (usually under \(\leq_{m}^{\text{P}} \)) as to find cases that are not \(\# \text{P} \)-complete. If the equations include \(x_1^2 - x_1 = 0 \) through \(x_n^2 - x_n = 0 \), then we are down to asking about solutions in which each \(x_i \) is restricted to be 0 or 1. Call this the "binary restriction". Then just replace each 3CNF clause in an instance of 3SAT by a corresponding degree-3 equation---for instance, \((x_i \lor \bar{x}_j \lor x_k)\) becomes \((1 - x_i)x_j(1 - x_k) = 0\).

Under the binary restriction, one can even reduce from \(\# \text{sat} \) to equations that are linear. This does not contradict the polynomial-time solvability of general linear equations because the equations defining the restriction are quadratic. When the 0-1 property applies also to the possible values, one can also multiply all the equations together in the form

\[
(1 - p_1) \cdots (1 - p_s) - 1 = 0,
\]

thus getting a single multi-variable polynomial equation---albeit a polynomial of degree on the order of \(s \).
that would have exponentially many terms if you multiplied it out. There are relaxations of the 0-1 property on values and/or arguments that also make this work. They all have parsimonious reductions from \#\text{sat}.

One more note before moving on: There are numerous other restrictions one can place on equation-solving problems. A famous case where the counting problem does belong to P is counting solutions to a single quadratic polynomial over the binary field \mathbb{F}_2. Make it a quadratic polynomial with values modulo 4, however, and the solution-counting problem "sproings back" to being \#P-complete (under many-one reductions). Following on from newer work by Valiant, Jin-Yi Cai has made a large-scale project of studying this easy-or-complete "Dichotomy" phenomenon. It is IMHO even more compelling than the paucity of "natural" problems that are believed to be neither in P nor \#P-complete, of which Factoring, Graph Isomorphism, and the Minimum Circuit Size Problem (given a binary string z of length $n = 2^k$, and a number r, in there a k-input circuit C of size at most r such that for all $i \leq n$, z_i equals the value of C on the i-th element of $\{0, 1\}^k$?) are the only ones with staying power, IMHO. But we will be in a position to ask whether quantum circuits may furnish a broad intermediate class of algebraic problems between P and \#P-complete.

Bounded-Error Probabilistic Computation

Let's first motivate this with an example I used also in CSE596---it also connects to the note just above:

For any natural number m, \mathbb{Z}_m stands for the integers modulo m. If m is a prime number p, then \mathbb{Z}_p is a field (so that one can divide as well as multiply) and we write it as \mathbb{F}_p. The simplest such case is $p = 2$ which is $\{0, 1\}$ with the usual addition modulo 2 and multiplication. The field structure helps us prove the following result more easily.

Lemma 7: Suppose A, B, C are $n \times n$ matrices over \mathbb{F}_p such that $AB \neq C$. Then

$$\Pr_{u \in \mathbb{F}_p^n}[ABu \neq Cu] \geq \frac{p-1}{p}.$$

Proof: Write $D = AB - C$. Note that we are not going to calculate D, because that would take the (standardly cubic) time for multiplying A and B that we are trying to avoid, but we are allowed to argue based on its existence. By linearity, $ABu \neq Cu \iff Du \neq 0$. So D has at least one row i with a nonzero entry, and its use may give a nonzero entry in the i-th place of the column vector $v = Du$. Note that

$$v_i = \sum_{j=1}^n D[i, j]u_j.$$

Let j_0 be a column in which row i has entry $c = D[i, j_0] \neq 0$. For any vector u, we can write
\[v_i = cu_j + a \quad \text{where} \quad a = \sum_{j \neq j_0} D[i, j]u_j. \]

The key observation is that because \(\mathbb{F}_p \) is a field, for any \(c \neq 0 \), the values \(cu_j \) run through all \(p \) possible values as \(u_{j_0} \) runs through all \(p \) possibilities. Regardless of the value of \(a \) determined by the rest of row \(i \) and the rest of the vector \(u \), the values \(cu_{j_0} + a \) run through all \(p \) possibilities with equal probability. Hence the probability that \(v_i \neq 0 \) is exactly \(\frac{p-1}{p} \). The probability of getting \(v \neq 0 \) (which could come from other nonzero entries too) is at least as great. \(\blacklozenge \)

The upshot is:

- If \(AB = C \) then you will never be deceived: you will always get equal values from \(A(Bu) \) and \(Cu \) and will correctly answer "yes, equal."
- If \(AB \neq C \) and you try \(k \) vectors \(u \) at random, if you ever get \(A(Bu) \neq Cu \) then you will know to answer "no, unequal" with 100% confidence.
- If you get equality each time, you will answer "yes, equal" but there is a \(\frac{1}{p^k} \) chance of being wrong.

If you consider, say, a 1-in-\(n^3 \) chance of being wrong as minuscule, then you only need to pick \(k \) so that \(p^k > n^3 \), so \(k = \frac{3}{\log p} \log n \) will suffice. Presuming \(p \) is fixed, this means \(O(\log n) \) trials will suffice.

The resulting \(O(n^2 \log n) = \tilde{O}(n^2) \) running time handily beats the time for multiplying \(AB \) out. Thus we trade off sureness for time.

For arithmetic modulo \(m \) not prime, or without any modulus, the analysis is messier—-but not only is the essence the same, but the asymptotic order of \(k \) in terms of \(n \) and the confidence target \(\epsilon(n) \) is much the same—-it didn’t really depend on \(p \) to begin with.