
CSE696 Week 4: Counting Classes and Probabilistic ComputationCSE696 Week 4: Counting Classes and Probabilistic Computation

The question "how many solutions are there?" subsumes the question "is there a solution?" TheThe question "how many solutions are there?" subsumes the question "is there a solution?" The
surprise is that it also captures all of the alternation in the polynomial hierarchy, as shown by thesurprise is that it also captures all of the alternation in the polynomial hierarchy, as shown by the
theorem of Seinosuke Toda in 1988-89 that theorem of Seinosuke Toda in 1988-89 that is contained in is contained in , which in turn is contained in, which in turn is contained in PHPH BPBP ⊕⊕PP[[]]

. Well, this tells us we have lots more things to define, so let's get to it---first in sections . Well, this tells us we have lots more things to define, so let's get to it---first in sections 9.1--9.29.1--9.2 of of PP
#P#P

Arora-Barak, then Arora-Barak, then Chapter 7Chapter 7, then Toda's theorem in section , then Toda's theorem in section 9.39.3..

Definition 1Definition 1: A function : A function belongs to belongs to (pronounced "sharp-P" more often than "number- (pronounced "sharp-P" more often than "number-hh :: 𝛴 𝛴 NN** →→ #P#P

P") if there is a predicate P") if there is a predicate in in and a polynomial and a polynomial such that for all such that for all ,, RR xx,, yy(()) PP pp xx
.. hh xx == |||| yy :: ||yy|| ≤≤ p p ||xx|| ∧∧ R R xx,, yy ||||(()) {{ (()) (())}}

We can abbreviate this by writing We can abbreviate this by writing to mimic the "lambda style" to mimic the "lambda style" style of style of hh xx == # # yy.. RR xx,, yy(()) pp (()) 𝜆z𝜆z.. AA zz(())
writing functions. (But, maybe we will not need to do so.) We have already defined the notion ofwriting functions. (But, maybe we will not need to do so.) We have already defined the notion of

 as there being a function as there being a function such that such that . [Not as . [Not as , curiously.] That is,, curiously.] That is, g g ≤≤ h hpp
mm f f ∈∈ FPFP g g == h h ∘∘ ff ff ∘∘ hh

 equals the number of solutions to the predicate equals the number of solutions to the predicate on on . Compare: For languages. Compare: For languages gg xx(()) RR x'x',, yyhh(()) x' x' == f f xx(())

 viewed as viewed as -- valued functions, valued functions, via via means means . . AA,, BB 00 11 A A ≤≤ B Bpp
mm ff AA xx == B B ff xx(()) (((())))

Theorem 1Theorem 1: The function : The function the number of satisfying assignments of the unquantifiedthe number of satisfying assignments of the unquantified #sat#sat 𝜙𝜙 ==(())

propositional Boolean formula propositional Boolean formula is complete for is complete for under under .. 𝜙𝜙 #P#P ≤≤
pp
mm

ProofProof: That : That belongs to belongs to is immediate from the predicate " is immediate from the predicate " satisfies satisfies " being linear(?) time" being linear(?) time #sat#sat #P#P aa 𝜙𝜙

decidable. Let any decidable. Let any defined by defined by and and be given. The essence is that the Cook-Levin be given. The essence is that the Cook-Levin h h ∈∈ #P#P RR xx,, yy(()) pp nn(())

construction of construction of and then the formula and then the formula is is parsimoniousparsimonious, meaning that once , meaning that once is fixed, the is fixed, the CC xx,, yynn(()) 𝜙𝜙nn xx
number of number of such that such that holds equals the number of staisfying assignments to the resulting holds equals the number of staisfying assignments to the resulting yy RR xx,, yy(())

formula formula . The reason is that everything in the body of . The reason is that everything in the body of is equational, so that any assignment to is equational, so that any assignment to 𝜙𝜙xx 𝜙𝜙xx

 forces the values of all other variables, up through the output wire variable forces the values of all other variables, up through the output wire variable . (This also. (This also yy ,, …… ,, yy11 pp wwoo

holds true under relativizations, so for any oracle holds true under relativizations, so for any oracle , , is complete for is complete for under many-one under many-one AA #sat#satAA #P#PAA

reductions in reductions in ---without needing to use ---without needing to use .) .) FPFP FPFPAA ☒☒

It is natural first to ask, what It is natural first to ask, what languagelanguage class is commensurate with class is commensurate with ? We've already mentioned ? We've already mentioned ,, #P#P PP#P#P

which equals which equals . We will see some senses by which this may be bigger than necessary, just like. We will see some senses by which this may be bigger than necessary, just like PP
##satsat

 is bigger (or so we believe) than is bigger (or so we believe) than . Hence our second question is, what about languages that. Hence our second question is, what about languages that PPNPNP NPNP

polynomial-time polynomial-time many-onemany-one reduce to reduce to . This leads to a type-compatibility issue insofar as . This leads to a type-compatibility issue insofar as has has #sat#sat gg
range range but but in in has range has range , and this will soon lead us to consider the subclass of , and this will soon lead us to consider the subclass of 00,, 11{{ }} hh g g == h h ∘∘ ff NN NPNP

called called . The issue is "finessed" by starting with langauge(s) that are equivalent to evaluating . The issue is "finessed" by starting with langauge(s) that are equivalent to evaluating .. UPUP hh xx(())
Here are three choices:Here are three choices:

1. 1. . This is standardly called the "graph" of the function . This is standardly called the "graph" of the function ..GG == xx,, rr :: r r == h h xxhh {{(()) (())}} hh
2. 2. . This is the "less-than-or-equal graph.". This is the "less-than-or-equal graph."LL == xx,, rr :: r r ≤≤ h h xxhh {{(()) (())}}

3. 3. is a prefix of the function value is a prefix of the function value in standard binary notation in standard binary notation ..PP == xx,, uu :: u uhh {{(()) hh xx(()) }}

Using the graph Using the graph may seem most natural. But can we compute may seem most natural. But can we compute in polynomial time using in polynomial time using as as GGhh hh xx(()) GGhh

oracle? Using oracle? Using leads to a complexity class called leads to a complexity class called , which is not well understood even now, which is not well understood even now GGhh CC PP==

(IMHO).(IMHO).

The other two languages do work as oracles for computing The other two languages do work as oracles for computing numerically in polynomial time numerically in polynomial time hh xx(())
(quadratic time as far as the oracle usage is concerned, per the footnote toward the end of the Week 3(quadratic time as far as the oracle usage is concerned, per the footnote toward the end of the Week 3
notes). With notes). With one uses binary search, which is the more numerically natural process. Now we can one uses binary search, which is the more numerically natural process. Now we can LLhh

give a simpler equivalent definition to the standard one:give a simpler equivalent definition to the standard one:

Definition 2Definition 2: A language : A language belongs to belongs to if and only if if and only if for some function for some function in in , via a, via a LL PPPP L L ≤≤ L Lpp

mm hh hh #P#P

polynomial-time computable function polynomial-time computable function in which in which depends only on depends only on ..ff xx == x'x',, rr(()) (()) ||x'x'|| ||xx||

The clause with "via" is technical but makes it easier to prove a lemma en-route to the standardThe clause with "via" is technical but makes it easier to prove a lemma en-route to the standard
definition and its interpretation.definition and its interpretation.

Lemma 2Lemma 2: For any : For any we can find a polynomial-time predicate we can find a polynomial-time predicate and a polynomial and a polynomial such such L L ∈∈ PPPP RR xx,, yy(()) pp
that for all that for all , , if and only if a majority of strings if and only if a majority of strings of length up to of length up to give give ..xx x x ∈∈ L L yy pp nn(()) RR xx,, yy(())

ProofProof: By : By in in , we can take , we can take and and defining defining in in such that such that via a polynomial- via a polynomial-hh #P#P RR xx,, yy00(()) ppoo hh #P#P L L ≤≤ L Lpp

mm hh

time computable function time computable function . Let us use the notation . Let us use the notation and and depending only on depending only on ff x'x',, rr == f f xx(()) (()) n' n' == ||x'x'||

. Take . Take . A useful point to note is that the number of binary strings . A useful point to note is that the number of binary strings of of n n == ||xx|| pp nn == p p n'n' ++ 11(()) 00(()) yy
length up to length up to is odd, and that those of length exactly is odd, and that those of length exactly make up a bare majority. So we need make up a bare majority. So we need pp nn(()) pp nn(())

only arrange that if there are at least only arrange that if there are at least witnesses of the original predicate witnesses of the original predicate with with rr RR x'x',, yy00(())

, then those together with , then those together with witnesses of length witnesses of length make up a make up a ||yy|| ≤≤ p p n'n' == p p nn -- 1100(()) (()) 22 -- rrpp nn(()) pp nn(())
majority. Accordingly, definemajority. Accordingly, define

RR xx,, yy == if if ||yy|| << p p xx then R then R x'x',, yy else y else y ≥≥ w w ,,(()) ((|| ||)) 00(()) rr

where where means the string in means the string in with binary expansion with binary expansion . To see why this works, let . To see why this works, let be the be the wwrr 00,, 11{{ }}pp nn(()) rr ss
actual value of actual value of , that is, the number of , that is, the number of giving giving . If . If , which is the greatest , which is the greatest for for hh x'x'(()) yy RR x'x',, yy00(()) r r == s s rr
which which , then we get , then we get witnesses witnesses of length of length from from and exactly and exactly x'x',, rr ∈∈ L L(()) hh ss yy << p p nn(()) RR x'x',, yy00(())

witnesses witnesses of length of length , adding up to exactly , adding up to exactly . This is a bare majority, as. This is a bare majority, as 22 -- r r == 22 -- s s pp nn(()) pp nn(()) yy pp nn(()) 22pp nn(())

required to say required to say . If . If , then , then is still in is still in , so we want to accept , so we want to accept , which happens, which happens x x ∈∈ L L r r << s s x'x',, rr(()) LLhh xx
because we get even more witnesses of length because we get even more witnesses of length from the lower value of from the lower value of . But if . But if then the then the pp nn(()) rr r r >> s s
number of witnesses comes short of a majority. number of witnesses comes short of a majority. ☒☒

exclude exclude strings stringsrr

 witnesses total witnesses totalss Green is majorityGreen is majority
provided provided r r ≤≤ s s..

 strings in top layer strings in top layer22nn

 strings below strings below22 -- 11nn

[Self-study exercise: Work this out without the convenience of [Self-study exercise: Work this out without the convenience of depending only on depending only on .].]n'n' nn

[[Saturday's lecture will pick up by reviewing the lemma just above with my new picture, thenSaturday's lecture will pick up by reviewing the lemma just above with my new picture, then
continue as below---maybe getting to the matrix example but short of definingcontinue as below---maybe getting to the matrix example but short of defining .].]BPPBPP

The same idea applied with The same idea applied with and the "majority" formulation yield the following. and the "majority" formulation yield the following.r r == 1 1

Proposition 3Proposition 3: : . . NPNP ⊆⊆ PPPP ☒☒

Proposition 4Proposition 4: : is closed under complements, so also is closed under complements, so also co-NPco-NP is contained in is contained in . . PPPP PPPP ☒☒

For a long time, it was unknown whether For a long time, it was unknown whether is closed under intersection. This was originally shown via is closed under intersection. This was originally shown via PPPP

algebra. Then Scott Aaronson used the algebra to give a more conceptual explanation by showing thatalgebra. Then Scott Aaronson used the algebra to give a more conceptual explanation by showing that
 equals "BQP with postselection"---a class which is just as obviously closed under all Boolean equals "BQP with postselection"---a class which is just as obviously closed under all Boolean PPPP

operations as operations as is. [We'll appreciate this and how the " is. [We'll appreciate this and how the " " bare-majority advantage of " bare-majority advantage of PP
PPPP 11 // 2 2 ++ o o 11(()) PPPP

gets related to "gets related to " " advantage of the more-powerful quantum post-selection operation after we" advantage of the more-powerful quantum post-selection operation after we 1 1 -- o o 11(())

cover cover . The unfair power of post-selection comes from being able to condition . The unfair power of post-selection comes from being able to condition BPPBPP yy == 11||ww == 11PrPr[[]]

on events on events whose probability of being whose probability of being is positive but exponentially small.] In consequence, the is positive but exponentially small.] In consequence, the ww 11

Boolean closure of Boolean closure of is contained within is contained within . Yet we still do not know whether . Yet we still do not know whether , let alone, let alone NPNP PPPP PP ⊆⊆ PPPPNPNP

higher parts of the polynomial hierarchy, in contrast to the theorem that higher parts of the polynomial hierarchy, in contrast to the theorem that , which we will cover, which we will cover PHPH ⊆⊆ PPPPPP

upon jumping back to chapter 9 in section 9.3.upon jumping back to chapter 9 in section 9.3.

Note also: Note also: because we can execute the binary search procedure via extra oracle calls. because we can execute the binary search procedure via extra oracle calls. PP == PP#P#P PPPP

But they may not equal But they may not equal by itself. The relationship between by itself. The relationship between and and is like that between many- is like that between many-PPPP PPPP PPPPPP

one reductions and Turing reductions quite in general, as will come out next. We do haveone reductions and Turing reductions quite in general, as will come out next. We do have
..#P#P == FPFP ⟺⟺ #sat #sat ∈∈ FPFP ⟺⟺ PP == PP ⟺⟺ PPPP == PPPPPP

Counting and PredicatesCounting and Predicates

Here is a state of affairs that has caused considerable confusion: A language Here is a state of affairs that has caused considerable confusion: A language can come with can come with L L ∈∈ NPNP

many different witness predicates many different witness predicates , which we tacitly suppose to be bundled with length-bounding, which we tacitly suppose to be bundled with length-bounding RR xx,, yy(())

polynomials polynomials . Do we consider . Do we consider alone or alone or to be "the thing"? Well, to be "the thing"? Well, should be should be thethe thing thing pp LL LL,, RR(()) RR

because it uniquely induces because it uniquely induces as as . Once . Once is specified, we get the counting is specified, we get the counting LL LL == xx :: ∃∃ yy RR xx,, yyRR
pp (()) RR

function function , but note that it pertains to , but note that it pertains to , not alone to , not alone to ..hh xx == # # yy.. RR xx,, yyRR(()) pp (()) RR LL

1. 1. Every Every gives a parsimonious reduction from gives a parsimonious reduction from to to ..LL,, RR(()) hhRR #sat#sat
2. 2. If If is is -complete via an invertible reduction -complete via an invertible reduction from SAT, then from SAT, then has a witness predicate has a witness predicate LL NPNP gg LL R'R'

such that the induced reduction from such that the induced reduction from to to is parsimonious. Namely: is parsimonious. Namely:#sat#sat ffR'R'

..R'R' xx,, yy == sat sat gg xx ,, yy if x if x ∈∈ ranran gg else R else R xx,, yy(()) -1-1(()) (()) (())

3. 3. There are invertible There are invertible -complete languages -complete languages whose "natural" witness predicate whose "natural" witness predicate definitely definitely NPNP LL RR
does not allow a parsimonious reduction from does not allow a parsimonious reduction from to to . For example, whether a graph is 4-. For example, whether a graph is 4-#sat#sat hhRR

edge colorable is edge colorable is -complete, but the only graph having a unique 4-edge coloring (not-complete, but the only graph having a unique 4-edge coloring (not NPNP

counting permutations of the colors) is the star with 5 nodes and four points.counting permutations of the colors) is the star with 5 nodes and four points.
4. 4. Whether there are Whether there are -complete languages without invertible reductions from SAT is a-complete languages without invertible reductions from SAT is a NPNP

subversive question. The subversive question. The Berman-Hartmanis ConjectureBerman-Hartmanis Conjecture asserts that all asserts that all -complete-complete NPNP

languages are languages are p-isomorphicp-isomorphic, meaning equivalent under polynomial-time computable and, meaning equivalent under polynomial-time computable and
invertible permutations of invertible permutations of .. 𝛴𝛴**

5. 5. If If many-one reduces to many-one reduces to , meaning there is a function , meaning there is a function such that for all Boolean such that for all Boolean #sat#sat hhRR f f ∈∈ FP FP
formulas formulas , , , then we have:, then we have:𝜙𝜙 #sat#sat 𝜙𝜙 == h h ff 𝜙𝜙(()) RR(((())))

 ,,𝜙𝜙 ∈∈ SATSAT ⟺⟺ #sat #sat 𝜙𝜙 ≥≥ 11 ⟺⟺ hh ff 𝜙𝜙 ≥≥ 1 1 ⟺⟺ # # yy.. RR ff 𝜙𝜙 ,, yy ≥≥ 1 1 ⟺⟺ ff 𝜙𝜙 ∈∈ LL(()) RR(((()))) pp (((()))) (()) RR

 so so is is -complete.-complete.LLRR NPNP

6. 6. However, there are polynomial-time predicates However, there are polynomial-time predicates such that such that is is -complete under poly-time-complete under poly-time RR ffRR #P#P

TuringTuring reductions and yet reductions and yet belongs to belongs to . The most amazing one IMHO is counting the. The most amazing one IMHO is counting the LLRR PP

number of satisfying assignments to a 2CNF formula number of satisfying assignments to a 2CNF formula with no negated variableswith no negated variables. Such a . Such a is is 𝜓𝜓 𝜓𝜓

trivially satisfiable, let alone that 2SAT belongs to trivially satisfiable, let alone that 2SAT belongs to . The most historically important such. The most historically important such PP

problem is the following one.problem is the following one.

The "The " -Rooks Problem"-Rooks Problem": Given an : Given an chessboard in which every square is marked either chessboard in which every square is marked either or or NN N N ×× N N 00

 can we place can we place rooks on the squares marked rooks on the squares marked so that no two rooks attack each other? so that no two rooks attack each other?11,, NN 11

This is both easier and harder than the famous This is both easier and harder than the famous -Queens Problem: the latter allows you to use every-Queens Problem: the latter allows you to use every NN
square of the chessboard but queens can attack each other diagonally too. Well, chess is a red herringsquare of the chessboard but queens can attack each other diagonally too. Well, chess is a red herring
here---the problem has two more familiar interpretations.here---the problem has two more familiar interpretations.

Bipartite Perfect MatchingBipartite Perfect Matching: Given an : Given an bipartite graph bipartite graph , can we find , can we find edges that edges that N N ×× N N VV ,, VV ,, EE((11 22)) NN
connect every vertex in connect every vertex in to a distinct node in to a distinct node in ??VV11 VV22

Binary PermanentBinary Permanent: Given an : Given an binary matrix binary matrix , can we find a nonzero , can we find a nonzero diagonal productdiagonal product, so that, so that N N ×× N N AA

??permperm AA >> 0 0(())

The permanent function is what you get from the formula for the determinant if you "simplify" it byThe permanent function is what you get from the formula for the determinant if you "simplify" it by
removing the minus signs. That is, letting removing the minus signs. That is, letting denote the set of permutations of denote the set of permutations of elements: elements:SSNN NN

AA == --11 AA ii,, 𝜎𝜎 iidetdet(()) ∑∑

𝜎∈S𝜎∈SNN

∏∏
NN

i=1i=1

(())signsign 𝜎𝜎(()) [[(())]]

permperm AA == AA ii,, 𝜎𝜎 ii (()) ∑∑

𝜎∈S𝜎∈SNN

∏∏
NN

i=1i=1

[[(())]]

Now despite the fact that the determinant is computable in polynomial time (indeed, the same order ofNow despite the fact that the determinant is computable in polynomial time (indeed, the same order of
time it takes to multiply two time it takes to multiply two matrices), the "simpler" function matrices), the "simpler" function is is -hard. Unlike "-hard. Unlike " --N N ×× N N permperm AA(()) NPNP NPNP

complete", the term "complete", the term " -hard" usually refers to polynomial-time Turing reductions. The term "-hard" usually refers to polynomial-time Turing reductions. The term " --NPNP #P#P
complete" always requires specifying the reductions because the Turing case has so much influence---complete" always requires specifying the reductions because the Turing case has so much influence---
indeed, Arora-Barak define it that way in section 9.2. This arguably stems from the famous theoremindeed, Arora-Barak define it that way in section 9.2. This arguably stems from the famous theorem
that explained why trying to find an easy procedure for computing that explained why trying to find an easy procedure for computing had met with a century of had met with a century of permperm AA(())
failure.failure.

Theorem 5Theorem 5 [Leslie Valiant, late 1970s]: The permanent function (of 0-1 matrices or more generally) is [Leslie Valiant, late 1970s]: The permanent function (of 0-1 matrices or more generally) is
complete for complete for under polynomial-time Turing reductions. under polynomial-time Turing reductions.#P#P

I will skip the proof given later in chapter 9 by Arora and Barak---we will do I will skip the proof given later in chapter 9 by Arora and Barak---we will do -completeness under-completeness under #P#P

 by extending by extending into algebraic functions (related to quantum circuits) instead. But it contrasts into algebraic functions (related to quantum circuits) instead. But it contrasts ≤≤
pp
mm #sat#sat

with the famous theorem that did much to coalesce the feeling about with the famous theorem that did much to coalesce the feeling about as being the benchmark class as being the benchmark class PP

for "feasibility" to begin with:for "feasibility" to begin with:

Theorem 6Theorem 6 [Edmonds, 1965; before?*]: [Edmonds, 1965; before?*]: [Bipartite][Bipartite] Perfect MatchingPerfect Matching is in is in ..PP

[*What Edmonds actually did was prove that for every non-maximal matching in a bipartite graph there[*What Edmonds actually did was prove that for every non-maximal matching in a bipartite graph there
is a path that begins and ends with unmatched nodes and alternates edges in and not in the matching.is a path that begins and ends with unmatched nodes and alternates edges in and not in the matching.
Flipping the in/not-in status of the edges in that path then yields a bigger matching. Finding such aFlipping the in/not-in status of the edges in that path then yields a bigger matching. Finding such a
path in polynomial-time, as Edmonds showed how to do, then yields a poly-time algorithm for the wholepath in polynomial-time, as Edmonds showed how to do, then yields a poly-time algorithm for the whole
problem. Then earlier algorithms were later proved to operate in polynomial time as well.] It remains aproblem. Then earlier algorithms were later proved to operate in polynomial time as well.] It remains a
philosophical mystery why finding a perfect matching (or telling that one doesn't exist) is easy butphilosophical mystery why finding a perfect matching (or telling that one doesn't exist) is easy but
counting them is hard. We, however, move on to this:counting them is hard. We, however, move on to this:

Equation SolvingEquation Solving: Given polynomial equations : Given polynomial equations over a over a pp xx ,, …… ,, xx == 0 0,, …… ,, p p xx ,, …… ,, xx == 0 011((11 nn)) ss((11 nn))

field field , is there a common solution (and if so, how many)?, is there a common solution (and if so, how many)? FF

The challenge is not so much to prove this The challenge is not so much to prove this -complete (usually under -complete (usually under) as to find cases that are) as to find cases that are #P#P ≤≤

pp
mm

notnot -complete. If the equations include -complete. If the equations include through through , then we are down to, then we are down to #P#P xx -- x x == 0 022
11 11 xx -- x x == 0 022

nn nn

asking about solutions in which each asking about solutions in which each is restricted to be is restricted to be or or . Call this the ". Call this the "binary restrictionbinary restriction". Then". Then xxii 00 11
just replace each 3CNF clause in an instance of 3SAT by a corresponding degree-3 equation---forjust replace each 3CNF clause in an instance of 3SAT by a corresponding degree-3 equation---for
instance, instance, becomes becomes .. xx ∨∨ ∨∨ x x((ii xx⏨⏨jj kk)) 11 -- xx xx 11 -- xx == 0 0((ii)) jj((kk))

Under the binary restriction, one can even reduce from Under the binary restriction, one can even reduce from to equations that are to equations that are linearlinear. This does not. This does not #sat#sat
contradict the polyniomial-time solvability of general linear equations because the equations definingcontradict the polyniomial-time solvability of general linear equations because the equations defining
the restriction are quadratic. When the 0-1 property applies also to the possible the restriction are quadratic. When the 0-1 property applies also to the possible valuesvalues, one can also, one can also
multiply all the equations together in the formmultiply all the equations together in the form

,,1 1 -- p p ⋯⋯ 11 -- pp -- 1 1 == 0 0((11)) ((ss))

thus getting a single multi-variable polynomial equation---albeit a polynomial of degree on the order of thus getting a single multi-variable polynomial equation---albeit a polynomial of degree on the order of ss

that would have exponentially many terms if you multiplied it out. There are relaxations of the 0-1that would have exponentially many terms if you multiplied it out. There are relaxations of the 0-1
property on values and/or arguments that also make this work. They all have parsimonious reductionsproperty on values and/or arguments that also make this work. They all have parsimonious reductions
from from .. #sat#sat

One more note before moving on: There are numerous other restrictions one can place on equation-One more note before moving on: There are numerous other restrictions one can place on equation-
solving problems. A famous case where the counting problem does belong to solving problems. A famous case where the counting problem does belong to is counting solutions is counting solutions
toto

PP

a single quadratic polynomial over the binary field a single quadratic polynomial over the binary field . Make it a quadratic polynomial with values. Make it a quadratic polynomial with values FF22

modulo modulo , however, and the solution-counting problem "sproings back" to being , however, and the solution-counting problem "sproings back" to being -complete (under-complete (under 44 #P#P
many-one reductions). Following on from newer work by Valiant, Jin-Yi Cai has made a large-scalemany-one reductions). Following on from newer work by Valiant, Jin-Yi Cai has made a large-scale
project of studying this easy-or-complete "Dichotomy" phenomenon. It is IMHO even more compellingproject of studying this easy-or-complete "Dichotomy" phenomenon. It is IMHO even more compelling
than the paucity of "natural" problems that are believed to be neither in than the paucity of "natural" problems that are believed to be neither in nor nor -complete, of which-complete, of which PP NPNP

Factoring, Graph Isomorphism, and the Minimum Circuit Size Problem (given a binary string Factoring, Graph Isomorphism, and the Minimum Circuit Size Problem (given a binary string of length of length zz

, and a number , and a number , in there a , in there a -input circuit -input circuit of size at most of size at most such that for all such that for all , , equals equals n n == 2 2kk rr kk CC rr i i ≤≤ n n zzii

the value of the value of on the on the -th element of -th element of ?) are the only ones with staying power, IMHO. But we will?) are the only ones with staying power, IMHO. But we will CC ii 00,, 11{{ }}kk

be in a position to ask whether quantum circuits may furnish a broad intermediate class of algebraicbe in a position to ask whether quantum circuits may furnish a broad intermediate class of algebraic
problems between problems between and and -complete.-complete.PP #P#P

Bounded-Error Probabilistic ComputationBounded-Error Probabilistic Computation

Let's first motivate this with an example I used also in CSE596---it also connects to the note just above:Let's first motivate this with an example I used also in CSE596---it also connects to the note just above:

For any natural number For any natural number , , stands for the integers modulo stands for the integers modulo . If . If is a prime number is a prime number , then , then is is mm ZZmm mm mm pp ZZpp

a a fieldfield (so that one can divide as well as multiply) and we write it as (so that one can divide as well as multiply) and we write it as . The simplest such case is. The simplest such case is FFpp

 which is which is with the usual addition modulo with the usual addition modulo and multiplication. The field structure helps usand multiplication. The field structure helps us p p == 2 2 00,, 11{{ }} 2 2
prove the following result more easily.prove the following result more easily.

Lemma 7Lemma 7: Suppose : Suppose are are matrices over matrices over such that such that . Then. ThenAA,, BB,, CC n n ×× n n FFpp AB AB ≠≠ C C

 .. ABu ABu ≠≠ Cu Cu ≥≥ PrPru∈u∈FFnn
pp
[[]]

pp -- 11

pp

ProofProof: Write : Write . Note that we are not going to . Note that we are not going to calculatecalculate , because that would take the, because that would take the D D == AB AB -- C C DD
(standardly cubic) time for multiplying (standardly cubic) time for multiplying and and that we are trying to avoid, but we are allowed to that we are trying to avoid, but we are allowed to argueargue AA BB
based on its existencebased on its existence. By linearity, . By linearity, . So . So has at least one row has at least one row with a with a ABu ABu ≠≠ Cu Cu ⟺⟺ Du Du ≠≠ 0 0 DD ii
nonzero entry, and its use may give a nonzero entry in the nonzero entry, and its use may give a nonzero entry in the -th place of the column vector -th place of the column vector .. ii v v == Du Du
Note thatNote that

..vv == DD ii,, jj uuii ∑∑
nn

j=1j=1

[[]] jj

Let Let be a column in which row be a column in which row has entry has entry . For any vector . For any vector , we can write, we can writejj00 ii c c == D D ii,, jj ≠≠ 0 0[[00]] uu

..vv == cu cu ++ a where a a where a == DD ii,, jj uuii jj00
∑∑

j≠jj≠j00
[[]] jj

The key observation is that because The key observation is that because is a field, for any is a field, for any , the values , the values run through all run through all FFpp c c ≠≠ 0 0 cucujj00 pp
possible values as possible values as runs through all runs through all possibilities. Regardless of the value of possibilities. Regardless of the value of determined by the determined by the uujj00 pp aa
rest of row rest of row and the rest of the vector and the rest of the vector , the values , the values run through all run through all possibilities with equal possibilities with equal ii uu cucu ++ a ajj00 pp

probability. Hence the probability that probability. Hence the probability that is exactly is exactly . The probability of getting . The probability of getting (which (which vv ≠≠ 0 0ii
p-1p-1

pp v v ≠≠ 0 0

could come from other nonzero entries too) is at least as great. could come from other nonzero entries too) is at least as great. ☒☒

The upshot is:The upshot is:

• • If If then you will never be deceived: you will always get equal values from then you will never be deceived: you will always get equal values from and and AB AB == C C AA BuBu(())

 and will correctly answer "yes, equal." and will correctly answer "yes, equal."CuCu
• • If If and you try and you try vectors vectors at random, if you ever get at random, if you ever get then you will know then you will know AB AB ≠≠ C C kk uu AA BuBu ≠≠ Cu Cu(())

to answer "no, unequal" with 100% confidence.to answer "no, unequal" with 100% confidence.

• • If you get equality each time, you will answer "yes, equal" but there is a If you get equality each time, you will answer "yes, equal" but there is a chance of being chance of being 11

ppkk

wrong.wrong.

If you consider, say, a 1-in-If you consider, say, a 1-in- chance of being wrong as minuscule, then you only need to pick chance of being wrong as minuscule, then you only need to pick so that so that nn33 kk

, so , so will suffice. Presuming will suffice. Presuming is fixed, this means is fixed, this means trials will suffice. trials will suffice. pp >> n nkk 33 k k == nn
33

pploglog
loglog pp OO n n((loglog))

The resulting The resulting running time handily beats the time for multiplying running time handily beats the time for multiplying out. Thus out. Thus OO nn nn == nn22 loglog OO 22 ABAB

we trade off we trade off surenesssureness for for timetime..

For arithmetic modulo For arithmetic modulo not prime, or without any modulus, the analysis is messier---but not only is the not prime, or without any modulus, the analysis is messier---but not only is the mm
essence the same, but the asymptotic order of essence the same, but the asymptotic order of in terms of in terms of and the confidence target and the confidence target is much is much kk nn 𝜖𝜖 nn(())

the same---it didn't really depend on the same---it didn't really depend on to begin with. to begin with. pp

