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The matrix example makes the probability easy to figure, but it does not show a difference betweenThe matrix example makes the probability easy to figure, but it does not show a difference between  
"polynomial" and "exponential".  This is enshrined in the definitions of the complexity classes "polynomial" and "exponential".  This is enshrined in the definitions of the complexity classes , , ,,  BPPBPP RPRP

and and co-co- .  It is convenient to think of polynomial-time computable predicates .  It is convenient to think of polynomial-time computable predicates  where  where  ranges ranges  RPRP RR xx,, yy(( )) yy

over over  with equal length rather than say  with equal length rather than say  (with  (with  as usual).  Then  as usual).  Then  is a is a  00,, 11{{ }}pp nn(( )) ||yy||  ≤≤  p p nn(( )) n n ==   ||xx|| yy

sequence of sequence of  coin-flips. coin-flips.    pp nn(( ))
  
Definition 1Definition 1: A language : A language  belongs to  belongs to  if there is a polynomial  if there is a polynomial  and a polynomial-time decidable and a polynomial-time decidable  AA BPPBPP pp

predicate predicate  such that for all  such that for all  and  and  of length  of length ::RR xx,, yy(( )) nn xx nn
  

;;x x ∈∈  A  A ⟹⟹   RR xx,, yy   >>  3 3 // 44PrPr|y|=p|y|=p nn(( ))[[ (( ))]]

..x x ∉∉  A  A ⟹⟹   RR xx,, yy   <<  1 1 // 44PrPr|y|=p|y|=p nn(( ))[[ (( ))]]

  
If the second probability is always If the second probability is always  then  then  is in  is in ; if instead the first probability is always ; if instead the first probability is always  then  then  is is  00 AA RPRP 00 AA

in in co-co- ; together these cases are called having ; together these cases are called having one-sided errorone-sided error.  Note that the first probability being.  Note that the first probability being  RPRP

always always  is equivalent to saying it is always  is equivalent to saying it is always  for the complementary predicate  for the complementary predicate , which is where, which is where  11 00 xx,, yyRR(( ))

 and  and co-co-  start to get confusing.  The same ability to flip between  start to get confusing.  The same ability to flip between  and its negation tells right and its negation tells right  RPRP RPRP RR

away that away that  is closed under complements, which makes it less confusing.  For  is closed under complements, which makes it less confusing.  For , we can also, we can also  BPPBPP BPPBPP

combine the conditions into one, namelycombine the conditions into one, namely
  

..AA xx   ==  R R xx,, yy   >>  3 3 // 44PrPr|y|=p|y|=p nn(( ))[[ (( )) (( ))]]

  
But this is often less helpful than having the two separate probabilities.  Note that if the secondBut this is often less helpful than having the two separate probabilities.  Note that if the second  
probability is probability is  then  then  is impossible when  is impossible when .  It follows that having .  It follows that having  be true makes  be true makes   00 RR xx,, yy(( )) x x ∉∉  A A RR xx,, yy(( )) yy

a valid a valid witnesswitness for  for , so we have proved the following:, so we have proved the following:x x ∈∈  A A
  
Proposition 1Proposition 1: :  and  and co-co- . . RPRP  ⊆⊆   NPNP RPRP  ⊆⊆   coco --NPNP ☒☒
  

Of course Of course , so whether a problem belongs to , so whether a problem belongs to  or to  or to co-co-  depends on depends on  L L ∈∈   RPRP  ⟺⟺     ∈∈ coco --RPRPLL RPRP RPRP

which side one takes as the "yes" side.  If you regard which side one takes as the "yes" side.  If you regard  as the yes side and  as the yes side and  as the as the  AB AB ==  C C ABu ABu ==  Cu Cu

verifying predicate "verifying predicate " ", then the matrix example has one-sided error of the "", then the matrix example has one-sided error of the "co-co-  type", type",  RR ⟨⟨AA,, BB,, CC⟩⟩,,  u u(( )) RPRP

meaning that if the answer is yes then you can never be bluffed into thinking the answer is no; but in ameaning that if the answer is yes then you can never be bluffed into thinking the answer is no; but in a  
true-negative case there is a tiny chance of getting a false positive (i.e., thinking true-negative case there is a tiny chance of getting a false positive (i.e., thinking  because because  AB AB ==  C C

every every  that you tried gave  that you tried gave ).  You could say that the language).  You could say that the languageuu AA BuBu   ==  Cu Cu(( ))
  

 belongs to  belongs to co-co- ,,L L ==   ⟨⟨AA,, BB,, CC⟩⟩ ::  AB  AB ==  C C{{ }} RPTIMERPTIME nnOO 22

  
but this notation gets ugly and hides the dependence between the error probability and the timebut this notation gets ugly and hides the dependence between the error probability and the time  
allowed for multiple trials.  For polynomial bounds it is even more favorable than for "Oh-tilde" typeallowed for multiple trials.  For polynomial bounds it is even more favorable than for "Oh-tilde" type  
bounds:bounds:

  

  



  
Amplification Lemma 2Amplification Lemma 2: If : If  with associated  with associated  and  and , then for any polynomial , then for any polynomial   A A ∈∈   BPPBPP RR xx,, yy(( )) pp nn(( )) qq nn(( ))

we can build a polynomial-time decidable we can build a polynomial-time decidable  and associated polynomial  and associated polynomial  such that for all  such that for all ,,R'R' xx,, zz(( )) p'p' nn(( )) xx

;;x x ∈∈  A  A ⟹⟹   R'R' xx,, zz   >>  1  1 --  2 2PrPr|z|=p'|z|=p' nn(( ))[[ (( ))]] -q-q nn(( ))

..                x x ∉∉  A  A ⟹⟹   R'R' xx,, zz   <<  2 2PrPr|z|=p'|z|=p' nn(( ))[[ (( ))]] -q-q nn(( ))

  
Moreover, we can achieve this even if the original Moreover, we can achieve this even if the original  and  and  only give a "non-negligible" advantage, only give a "non-negligible" advantage,  RR pp

meaning that for some polynomial meaning that for some polynomial ,,rr nn   ≥≥  n n(( ))

;;x x ∈∈  A  A ⟹⟹   RR xx,, yy   >>     ++   PrPr|y|=p|y|=p nn(( ))[[ (( ))]]
11

22

11

rr nn(( ))

..x x ∉∉  A  A ⟹⟹   RR xx,, yy   <<     --   PrPr|y|=p|y|=p nn(( ))[[ (( ))]]
11

22

11

rr nn(( ))
  
Proof Sketch (for now)Proof Sketch (for now): Regard : Regard  where  where and define and define   z z ==   ⟨⟨yy ,, yy ,, …… ,, yy ⟩⟩11 22 q'q' nn(( )) q'q' nn   == OO qq nn   (( )) (( (( )))) R'R' xx,, zz(( ))

to be the majority vote of the polynomially-many trials to be the majority vote of the polynomially-many trials .  [The full proof in Arora-Barak comes.  [The full proof in Arora-Barak comes  RR xx,, yy(( jj))

later in Chapter 7.]  later in Chapter 7.]      ☒☒
  
There is a similar amplification lemma for one-sided error; in fact, the details of getting the exponentiallyThere is a similar amplification lemma for one-sided error; in fact, the details of getting the exponentially  
small error are simpler because you don't need majority vote.   A philosophical point is that the thesmall error are simpler because you don't need majority vote.   A philosophical point is that the the  
theoretical software error can be reduced below the chance of hardware error---but when you seetheoretical software error can be reduced below the chance of hardware error---but when you see  
something like https://www.wnycstudios.org/podcasts/radiolab/articles/bit-flip (which I heard on NPRsomething like https://www.wnycstudios.org/podcasts/radiolab/articles/bit-flip (which I heard on NPR  
last November), maybe that's not so reassuring...last November), maybe that's not so reassuring...    
  
There is also There is also co-co- .  By the two error-free conditions, this can be characterized as the.  By the two error-free conditions, this can be characterized as the  ZPPZPP  ==   RPRP  ∩∩   RPRP

class of languages (or functions) that have an algorithm class of languages (or functions) that have an algorithm  and a polynomial  and a polynomial  such that: such that:AA pp
  

• • With high probability over random With high probability over random , ,  halts within  halts within  steps. steps.zz AA xx,, zz(( )) pp ||xx||(( ))

• • If and when If and when  halts, it always gives correct output. halts, it always gives correct output.AA xx,, zz(( ))
  
Such an Such an  is often called a  is often called a Las Vegas algorithmLas Vegas algorithm to contrast with a  to contrast with a Monte Carlo algorithmMonte Carlo algorithm where where  AA
even after termination there is uncertainty on one or the other side.  Again, IMHO the best initialeven after termination there is uncertainty on one or the other side.  Again, IMHO the best initial  
examples are for quasi-linear versus quadratic complexity rather than polynomial versus exponential.examples are for quasi-linear versus quadratic complexity rather than polynomial versus exponential.    
In two words: In two words: Randomized QuicksortRandomized Quicksort!  Another such example should ring a bell:!  Another such example should ring a bell:
  

The (Randomized Greedy Algorithm for the) The (Randomized Greedy Algorithm for the) NN-Queens Problem-Queens Problem..
  
One related family of examples is hash-based storage---where, however, the element of randomnessOne related family of examples is hash-based storage---where, however, the element of randomness  
may come from the data rather than the algorithm.  may come from the data rather than the algorithm.  Cuckoo HashingCuckoo Hashing is a particularly nice case. is a particularly nice case.
  
The definition of the quantum complexity class The definition of the quantum complexity class  is similar, except that in place of getting  is similar, except that in place of getting  such such  BQPBQP yy

that that  by rolling classical dice, we have a  by rolling classical dice, we have a quantum circuitquantum circuit   in place of  in place of  and get the effect of  and get the effect of   RR xx,, yy(( )) CC RR yy
by measurements.  Amplification and many other properties hold similarly; the main external differenceby measurements.  Amplification and many other properties hold similarly; the main external difference  
is that the factoring problem and some others belong to is that the factoring problem and some others belong to  but (hopefully!) not to  but (hopefully!) not to .  The.  The  BQPBQP BPPBPP

  

  



"landscape" of current knowledge is:"landscape" of current knowledge is:
  

  
  
The Pivotal Problem [A-B section 7.2.2]The Pivotal Problem [A-B section 7.2.2]
  
Before 2002, the usual first example of a language in Before 2002, the usual first example of a language in  was the language of prime numbers, which was the language of prime numbers, which  BPPBPP

was long known to belong to was long known to belong to .  That is, before it was .  That is, before it was derandomizedderandomized by being shown to belong to by being shown to belong to  ZPPZPP

.  The deterministic algorithm runs with a higher polynomial exponent than the randomized ones,.  The deterministic algorithm runs with a higher polynomial exponent than the randomized ones,  PP

however, so many software primality tests are still randomized.  Except for the following bellwetherhowever, so many software primality tests are still randomized.  Except for the following bellwether  
problem, it is hard to find other examples, let alone with two-sided error.problem, it is hard to find other examples, let alone with two-sided error.
  
Polynomial Identity TestingPolynomial Identity Testing ( ( ).).    PITPIT
InstanceInstance: A polynomial formula : A polynomial formula  over  over , , , or a field , or a field  (see notes on degree below). (see notes on degree below).ff xx ,, …… ,, xx(( 11 nn)) ZZ ZZmm FF

QuestionQuestion: Does : Does  when "multiplied out" cancel to the all-zero polynomial? when "multiplied out" cancel to the all-zero polynomial?ff
  
Multiplying out is not so simple---it can take exponential time.  Consider how in reducing from Multiplying out is not so simple---it can take exponential time.  Consider how in reducing from ExactlyExactly  
One 3SATOne 3SAT to  to Binary Linear EquationsBinary Linear Equations (presentation topic 4 of HW6) we get equations (presentation topic 4 of HW6) we get equations  

 from the  from the  clauses.  Each equation has 3 variables plus maybe a clauses.  Each equation has 3 variables plus maybe a  EE   ==  1 1,,  E E   ==  1 1,, …… ,,  E E   ==  1 111 22 mm mm

constant term.  We can multiply them together to get a single equation of degree (only!) constant term.  We can multiply them together to get a single equation of degree (only!) ::mm
  

..EE EE ⋯⋯ EE   --  1  1 ==  0 0(( 11))(( 22)) (( mm))

  
Multiplying this out, however, gives somewhere between Multiplying this out, however, gives somewhere between  and  and  terms.  Even so, we're hung up on terms.  Even so, we're hung up on  33mm 44mm

the "NP-side" of looking for one solution, rather than the "co-NP side" of seeing whether allthe "NP-side" of looking for one solution, rather than the "co-NP side" of seeing whether all  
assignments are solutions.  This can be done, but you still have to mix in the non-linear equationsassignments are solutions.  This can be done, but you still have to mix in the non-linear equations  

 to force each variable to be  to force each variable to be  or  or , and even then, the resulting polynomial might not, and even then, the resulting polynomial might not  xx   --  x x   ==  0 022
ii ii 00 11

cancel entirely symbolically, as we show with a simple one-variable example next.cancel entirely symbolically, as we show with a simple one-variable example next.
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Note differences fromNote differences from
the unbounded the unbounded 
computability case: computability case: 
NP intersect co-NP isNP intersect co-NP is
not known (or believed) not known (or believed) 
to equal P, and the to equal P, and the 
quantifiers are quantifiers are length-length-
boundedbounded by a polynomial. by a polynomial.
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BQPBQP BQPBQP

BQPBQP is thought to hug the walls even  is thought to hug the walls even 
outside PH but never have NP-hard sets.  outside PH but never have NP-hard sets.  

BPP BPP stays within the second level of thestays within the second level of the
"polynomial hierarchy" ("polynomial hierarchy" (PHPH).).

PSPACEPSPACE

PPPP
PPPPPP

I don't see how to reflect that these classesI don't see how to reflect that these classes

are closed under are closed under  and  and PPPP contains  contains BQPBQP≤≤
pp
mm

but is not known to contain but is not known to contain PHPH like  like  does. does.PPPPPP



  
A "yes" answer certainly implies that A "yes" answer certainly implies that  for all arguments  for all arguments .  Hence if.  Hence if  ff   ==  0 0((aa))   ==   aa ,, …… ,, aa   ∈∈   FFaa (( 11 nn)) nn

we find an argument we find an argument  such that  such that , then we know the answer is "no"., then we know the answer is "no".  ==   aa ,, …… ,, aaaa (( 11 nn)) ff aa ,, …… ,, aa   ≠≠  0 0(( 11 nn))
  

1. 1. There are polynomials that are zero on all There are polynomials that are zero on all  without multiplying out to zero; a simple one- without multiplying out to zero; a simple one-  ∈∈   FFaa nn

variable example (variable example ( ) with ) with  is  is  over  over ..    n n ==  1 1 p p ==  2 2 gg xx   ==  x x   --  x x(( 11)) 22
11 11 FF22

2. 2. However, if we enlarge the field to However, if we enlarge the field to  or  or  (etc.) while keeping the mod-2  (etc.) while keeping the mod-2 characteristiccharacteristicF' F' ==  F F44 FF88

 the same (note those are not the same as the integers mod 4 or mod 8), then  the same (note those are not the same as the integers mod 4 or mod 8), then  is no longer is no longer  gg xx(( 11))

everywhere-zero over everywhere-zero over ..    FF''

3. 3. Whereas, if Whereas, if  multiplies out to zero over  multiplies out to zero over , then it multiplies out to zero over any, then it multiplies out to zero over any  ff xx ,, …… ,, xx(( 11 nn)) FF

 of the same characteristic (called an  of the same characteristic (called an extension fieldextension field), and vice-versa.), and vice-versa.    FF' ' ⊇⊇   FF
  
Points 1 and 2 are why the fact of Points 1 and 2 are why the fact of PITPIT being in  being in ---indeed, with one-sided error like in the ---indeed, with one-sided error like in the   BPPBPP AB AB ==  C C

matrix example---does not put matrix example---does not put SATSAT into  into .  (While composing these notes, I thought of a possible.  (While composing these notes, I thought of a possible  BPPBPP

allusion to how working with binary truth values involves the "law of excluded middle" while going toallusion to how working with binary truth values involves the "law of excluded middle" while going to  
 or  or  (etc.) means doing without it---but I am not sure how meaningful it is.) (etc.) means doing without it---but I am not sure how meaningful it is.)    F' F' ==  F F44 FF88

  
An important further point is that we can exponentiate the field size with only polynomial work: For anyAn important further point is that we can exponentiate the field size with only polynomial work: For any  

, ,  equals the binary vector space  equals the binary vector space  augmented with an extra multiplication operation  augmented with an extra multiplication operation  on on  k k >>  1 1 FF22kk FF
kk
22 u*vu*v

binary binary -tuples.  Computing -tuples.  Computing  only involves multiplying and dividing by certain single-variable only involves multiplying and dividing by certain single-variable  kk u*vu*v

polynomials of degree polynomials of degree  modulo 2.  With  modulo 2.  With  variables you wind up with  variables you wind up with -tuples but the arithmetic-tuples but the arithmetic  kk nn nknk(( ))

involves only involves only  work per operation. work per operation.    nknkOO(( ))
  
The upshot of this is that in stating PIT, we may suppose that the total degree The upshot of this is that in stating PIT, we may suppose that the total degree  of the polynomial of the polynomial  dd

formula formula  obeys  obeys .  If it doesn't, then we can scale up .  If it doesn't, then we can scale up  to  to  to make it so--- to make it so---ff xx ,, …… ,, xx(( 11 nn)) d d <<   ||FF|| FF FF''

unless the degrees unless the degrees  of the formulas  of the formulas  for each  for each  are horribly exponential.  This allows us to apply are horribly exponential.  This allows us to apply  ddnn ffnn nn

the following "strong form" of the the following "strong form" of the Schwartz-Zippel-(de Millo-Lipton) LemmaSchwartz-Zippel-(de Millo-Lipton) Lemma..
  
Lemma 3Lemma 3: Take any finite subset : Take any finite subset  of the field  of the field  (if  (if  is already finite we can just take  is already finite we can just take ).  Let).  Let  SS FF FF S S ==   FF

 have total degree at most  have total degree at most .  Suppose .  Suppose  does not multiply out to  does not multiply out to .  Then.  Thenff xx ,, …… ,, xx(( 11 nn)) dd ff 00

..ff aa ,, …… ,, aa   ==  0 0   ≤≤   PrPraa ,…,a,…,a  ∈ S ∈ S11 nn
[[ (( 11 nn)) ]]

dd

||SS||
  
There is an alternative weaker form in which There is an alternative weaker form in which  is the maximum degree in any one of the  is the maximum degree in any one of the  variables variables  d'd' nn

and the probability conclusion you get is and the probability conclusion you get is .  The weaker form also holds over .  The weaker form also holds over  and  and  and and  ≤≤   
d'nd'n

|S||S|
ZZ ZZmm

other other ringsrings that are not  that are not fieldsfields.  Note that the average degree of a variable is .  Note that the average degree of a variable is  so the numerator  so the numerator  is is  dd

nn
d'nd'n

similar to just similar to just , but because this defines , but because this defines  to be the max, not the average, the result you get is to be the max, not the average, the result you get is  dd d'd'
technically weaker (but just as useful in most cases---this is how Debray gives it).  Note that I partnertechnically weaker (but just as useful in most cases---this is how Debray gives it).  Note that I partner  
with Lipton; I helped him explain atwith Lipton; I helped him explain at
  

https://rjlipton.wordpress.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/https://rjlipton.wordpress.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/

  

  



  
the story of how he and Rich de Millo originally had the weaker form in 1977, a year ahead of Jackthe story of how he and Rich de Millo originally had the weaker form in 1977, a year ahead of Jack  
Schwartz's stronger form with Richard Zippel in-between.  Moreover, I shared an office with Zippel atSchwartz's stronger form with Richard Zippel in-between.  Moreover, I shared an office with Zippel at  
Cornell for some months in 1986 (if I recall correctly).Cornell for some months in 1986 (if I recall correctly).    
  
Corollary 4Corollary 4: : PITPIT (over any of  (over any of , , , or fields , or fields , even infinite fields) belongs to , even infinite fields) belongs to co-co- ..ZZ ZZmm FF RPRP

  
The basic fact underlying the proof is that a The basic fact underlying the proof is that a single-single-variable polynomial of degree variable polynomial of degree  has at most  has at most  roots. roots.    dd dd

The fact of having The fact of having  variables expands in the denominator and the numerator in a similar manner; variables expands in the denominator and the numerator in a similar manner;  nn

formally, this is shown by induction on formally, this is shown by induction on .  For those interested in the details,.  For those interested in the details,  nn
  
https://nickhar.wordpress.com/2012/02/01/lecture-9-polynomial-identity-testing-by-the-schwartz-zippel-lemma/https://nickhar.wordpress.com/2012/02/01/lecture-9-polynomial-identity-testing-by-the-schwartz-zippel-lemma/
  
also has a nice comparison of also has a nice comparison of PITPIT with the evaluates-to-zero problem.  Whether  with the evaluates-to-zero problem.  Whether PITPIT belongs to  belongs to ,,  ZPPZPP

let alone to let alone to , is a challenging question., is a challenging question.PP

  
  
  
  
Perfect Matchings and "Magic" Matrices  [compare A-B ch. 7, subsection 7.2.3]Perfect Matchings and "Magic" Matrices  [compare A-B ch. 7, subsection 7.2.3]
  
Note that if Note that if  is an  is an  matrix with nonnegative entries, then  matrix with nonnegative entries, then ,,  BB n n ××  n n permperm BB == 0 0 ⟹⟹   BB == 00(( )) detdet(( ))
because no diagonal products are negative, so the only way the permanent can vanish is when theybecause no diagonal products are negative, so the only way the permanent can vanish is when they  
are all zero, which vanishes the determinant as well.  This implication does not necessarily go the otherare all zero, which vanishes the determinant as well.  This implication does not necessarily go the other  

way, the matrix way, the matrix  being a simple example.  We are interested in cases where this does become being a simple example.  We are interested in cases where this does become  11 11
11 11

an equivalence, so that we can harness the "easy" determinant to do some work of the "hard"an equivalence, so that we can harness the "easy" determinant to do some work of the "hard"  
permanent function.  Now write permanent function.  Now write  if  if  is obtained from  is obtained from  by zeroing out some entries. by zeroing out some entries.A A ⩿⩿  B B AA BB
  
Definition 2Definition 2: Call an : Call an  matrix  matrix  with positive rational entries " with positive rational entries "magicmagic" if for all matrices " if for all matrices  such that such that  n n ××  n n BB AA

 we have  we have ..    A A ⩿⩿  B B AA   ==  0  0 ⟺⟺  perm perm AA   ==  0 0detdet(( )) (( ))
  
We can make the above matrix magic simply by changing one of the entries to We can make the above matrix magic simply by changing one of the entries to  or to  or to , say.  You, say.  You  22 0.50.5

would expect me as a responsible teacher to give you an example of a magic would expect me as a responsible teacher to give you an example of a magic  matrix for every matrix for every  n n ××  n n

value of value of , but that is the one thing in this case that humanity does not know how to do.  The best we, but that is the one thing in this case that humanity does not know how to do.  The best we  nn
know is the following results.know is the following results.
  
Theorem 5Theorem 5 [origin unclear]: With vastly high probability, an  [origin unclear]: With vastly high probability, an  matrix with random positive entries matrix with random positive entries  n n ××  n n

of precision of precision  bits or greater is magic.   bits or greater is magic.  2n2n nnloglog ☒☒
  
There are similar theorems about "generic position" for separating hyperplanes in data science; theThere are similar theorems about "generic position" for separating hyperplanes in data science; the  

 comes from Stirling's approximation to  comes from Stirling's approximation to  or just as  or just as , with the extra factor of , with the extra factor of  providing providing  nn nnloglog n!n! nnloglog nn 22
slack to amplify the probability.slack to amplify the probability.    

  

  



  
Corollary 6Corollary 6::  Deciding whether an Deciding whether an  bipartite graph  bipartite graph  has a perfect matching randomly reduces to has a perfect matching randomly reduces to  n n ××  n n GG
computing determinants.computing determinants.
  
ProofProof: Generate an : Generate an  magic matrix  magic matrix  and take  and take  to be the entrywise product of  to be the entrywise product of  and the and the  n n ××  n n BB AA BB

adjacency matrix between the partitions of adjacency matrix between the partitions of , so that , so that .  Then .  Then  has a perfect matching if and has a perfect matching if and  GG A A ⩿⩿  B B GG

only if only if , which by "magic" is if and only if , which by "magic" is if and only if .  .  permperm AA   ==  0 0(( )) AA   ==  0 0detdet(( )) ☒☒
  
The Arora-Barak text gives a more direct argument by László Lovász that applies the S-Z lemma to theThe Arora-Barak text gives a more direct argument by László Lovász that applies the S-Z lemma to the  
determinant polynomial and needs random entries only from the set determinant polynomial and needs random entries only from the set  to work the "magic" in to work the "magic" in  11,, …… 2n2n{{ }}
similar fashion.  The general form is more compelling, and also IMHO presents the bottom-storysimilar fashion.  The general form is more compelling, and also IMHO presents the bottom-story  
instance of instance of derandomizationderandomization: Can we construct a family of : Can we construct a family of  magic matrices for all  magic matrices for all ?  One?  One  n n ××  n n nn
might expect Vandermonde and related matrices to fill the bill, but they do not...might expect Vandermonde and related matrices to fill the bill, but they do not...
  
  
Relativizations and Presentations of BPP and RPRelativizations and Presentations of BPP and RP
  
We can define a general We can define a general  operator on any complexity class, and do likewise with  operator on any complexity class, and do likewise with  and and  BPBP ⋅⋅[[ ]] RPRP ⋅⋅[[ ]]

 operators.  As with  operators.  As with  we keep the polynomial length bound but allow any class inside. we keep the polynomial length bound but allow any class inside.ZPPZPP ⋅⋅[[ ]] NPNP ⋅⋅[[ ]]
  
Definition 3Definition 3: For any class : For any class , a language , a language  belongs to  belongs to  if there is a polynomial  if there is a polynomial  and a and a  CC AA BPBP CC[[ ]] pp

predicate predicate  in  in  such that for all  such that for all  and  and  of length  of length ::RR xx,, yy(( )) CC nn xx nn
  

;;x x ∈∈  A  A ⟹⟹   RR xx,, yy   >>  3 3 // 44PrPr|y|=p|y|=p nn(( ))[[ (( ))]]

..x x ∉∉  A  A ⟹⟹   RR xx,, yy   <<  1 1 // 44PrPr|y|=p|y|=p nn(( ))[[ (( ))]]

  
Note, by the way, that if a polynomial-time machine Note, by the way, that if a polynomial-time machine  decides  decides  then we don't have  then we don't have ..    PPjj RR xx,, yy(( )) A A ==  L L PP(( jj))

We can associate a nondeterministic machine We can associate a nondeterministic machine  that on input  that on input  guesses a  guesses a  and accepts  and accepts  if  if   NNjj xx yy xx PPjj

accepts accepts , but we don't have , but we don't have  either.  Indeed,  either.  Indeed,  might equal  might equal  since NTMs since NTMs  ⟨⟨xx,, yy⟩⟩ A A ==  L L NN(( jj)) LL NN(( jj)) 𝛴𝛴**

accept if accept if somesome   is good, regardless of how few  is good, regardless of how few  there are.  Instead, we postulate a  there are.  Instead, we postulate a probabilisticprobabilistic  yy yy

Turing machineTuring machine   that accepts  that accepts  when the " when the " " case holds and rejects " case holds and rejects  when the " when the "   QQjj xx >>  3 3 // 44 xx <<  1 1 // 4"4"

case holds.  In order to call case holds.  In order to call  a  a BPP-machineBPP-machine, we need the , we need the promisepromise that one or the other case holds that one or the other case holds  QQjj

for all for all .  Then, and only then, can we write .  Then, and only then, can we write  where the definition of  where the definition of ""  accepts  accepts "" is that is that  xx A A ==  L L QQ(( jj)) QQjj xx

the "the " " case holds." case holds.>>  3 3 // 44
  
The most important case is The most important case is , which we will soon equate with , which we will soon equate with Arthur-MerlinArthur-Merlin protocols when we protocols when we  BPBP NPNP[[ ]]
hit Chapter 8.  Now we can make a dangerously misleading definition:hit Chapter 8.  Now we can make a dangerously misleading definition:
  
Definition 4Definition 4: For any oracle language : For any oracle language  and class  and class , the relativization of , the relativization of  to the language  to the language  is is  BB CC BPBP CC[[ ]] BB

defined to be defined to be .  In particular, .  In particular, , which just means that the , which just means that the  predicate predicate  BPBP CCBB BPPBPP   == BPBP PPBB BB RR xx,, yy(( ))

belongs to belongs to ..    PPBB

  

  

  



Why dangerous?  The definition really needs Why dangerous?  The definition really needs  to be a  to be a class of oracle machinesclass of oracle machines, which I started writing, which I started writing  CC

.  So .  So  really leans on the natural presentation of relativized polynomial time by polynomially really leans on the natural presentation of relativized polynomial time by polynomially  CC BPPBPPBB

clocked OTMs clocked OTMs .  The nontriviality of this shift from "class of languages" to "collection of.  The nontriviality of this shift from "class of languages" to "collection of  PP  ==   PP[[ jj]]
machines" shows up right away when we ask:machines" shows up right away when we ask:
  
Open ProblemOpen Problem: Does there exist a collection : Does there exist a collection  of OTMs such that for all oracle of OTMs such that for all oracle  BPPBPP  ==   QQ[[ jj]]

languages languages , , ??BB BPPBPP   ==   LL QQBB BB
jj

  
My use of My use of  for "quixotic" hints that the answer is  for "quixotic" hints that the answer is yoyo: yes-and-no.  The hitch is that the property in: yes-and-no.  The hitch is that the property in  QQ

Definition 3 is a Definition 3 is a promise propertypromise property: If : If  decides  decides , it has the special property that for all , it has the special property that for all , either, either  QQjj RR xx,, yy(( )) xx

the density of "good" strings the density of "good" strings  is  is  or it is  or it is .  If this property holds (also) for some.  If this property holds (also) for some  yy >>  3 3 // 44 <<  1 1 // 44

nontrivial oracle set nontrivial oracle set , then either:, then either:BB
  

• • the same predicate the same predicate  for all  for all .  In this case, .  In this case,  is called a  is called a robust OTMrobust OTM and the and the  LL QQ   ==   BB
jj RR xx,, yy(( )) BB QQjj

oracle oracle  is only "helping" the running time, or is only "helping" the running time, orBB

• •  can be a different predicate  can be a different predicate  for different oracle sets  for different oracle sets , but some , but some  may lack the may lack the  LL QQBB
jj RRBB BB RRB'B'

 versus  versus  separation property---whereupon  separation property---whereupon  may not define a language in  may not define a language in afterafter  33 // 44 11 // 44 QQB'B'
jj BPPBPPB'B'

all.all.
  
The basic issue even shows up when we merely try to create a recursive presentation of The basic issue even shows up when we merely try to create a recursive presentation of  by non- by non-BPPBPP

oracle machines.  We can do so, but the only way we know how is to use "looking back" to check thatoracle machines.  We can do so, but the only way we know how is to use "looking back" to check that  
the promise has held for shorter inputs the promise has held for shorter inputs  and abort the machine to accept a finite and abort the machine to accept a finite  x' x' ==  𝜖 𝜖,, 00,, 11,, 0000,, ……

set if and when a violation is revealed.  Namely, take our bedrock presentation of set if and when a violation is revealed.  Namely, take our bedrock presentation of  by machines  by machines ,,  PP PPjj

which we run on inputs which we run on inputs .  The machine .  The machine  on input  on input  first spends  first spends  steps running the steps running the  ⟨⟨xx,, yy⟩⟩ QQjj xx n n ==   ||xx||
"looking-back" process.  It does not matter that verifying the promise takes exponential time in terms of"looking-back" process.  It does not matter that verifying the promise takes exponential time in terms of  
the earlier strings the earlier strings  --- looking-back can take any finite time desired in the "long view" while occupying --- looking-back can take any finite time desired in the "long view" while occupying  x'x'

only only  steps on any particular input.  If the  steps on any particular input.  If the  steps turn up no violation, then  steps turn up no violation, then  behaves syntactically behaves syntactically  nn nn QQjj

like the associated NTM like the associated NTM  which guesses a  which guesses a  and accepts if  and accepts if  accepts  accepts .  If a violation is found,.  If a violation is found,  NNjj yy PPjj ⟨⟨xx,, yy⟩⟩

then then  rejects---which for  rejects---which for  can certainly be regarded as an instance of the " can certainly be regarded as an instance of the "  of  of 's" case,'s" case,  QQjj xx <<  1 1 // 44 yy

indeed with zero indeed with zero 's.'s.    yy
  
Still in the non-oracle case, we get that either Still in the non-oracle case, we get that either  is finite---and hence belongs to  is finite---and hence belongs to ---or that the---or that the  LL QQ(( jj)) BPPBPP

promise holds for all promise holds for all and hence did hold for each and every and hence did hold for each and every  after all, whereupon after all, whereupon  x' x' ==  𝜖 𝜖,, 00,, 11,, 0000,, …… xx

 is a genuine  is a genuine  machine.  For every  machine.  For every  there is a  there is a  whose  whose  keeps the promise, keeps the promise,  QQjj BPPBPP A A ∈∈   BPPBPP PPjj RR xx,, yy(( ))

so that so that  accepts  accepts  under the " under the "  stipulation.  So  stipulation.  So  is a recursive presentation of  is a recursive presentation of  by by  QQjj AA >>  3 3 // 4"4" QQ[[ jj]] BPPBPP

machines, so we can apply the uniform diagonalization theorem and etc. to it.machines, so we can apply the uniform diagonalization theorem and etc. to it.    
  
The fly in the ointment is that when the promise is violated for some The fly in the ointment is that when the promise is violated for some , this is only discovered on some, this is only discovered on some  x'x'

much larger string much larger string  (indeed, on  (indeed, on  for some  for some ).  For strings of that length and longer, ).  For strings of that length and longer,  obeys obeys  xx x x ==  0 0nn nn QQjj

the the  promise condition through the " promise condition through the "  of  of 's" case.  But for strings 's" case.  But for strings  between  between  and  and , the, the  BPPBPP <<  1 1 // 44 yy x''x'' x'x' xx

acceptance criterion for acceptance criterion for  is not well-defined.  There may well be lots of other undetected is not well-defined.  There may well be lots of other undetected  QQ x''x''jj(( ))

  

  



violations on those violations on those .  Therefore, .  Therefore,  itself is not a "legal  itself is not a "legal -machine", even though we can argue-machine", even though we can argue  x''x'' QQjj BPPBPP

that however we arbitrarily define membership of these strings that however we arbitrarily define membership of these strings , the overall language will be finite, the overall language will be finite  x''x''

and hence belong to and hence belong to ..    BPPBPP

  
When we have oracles, the situation is compounded by the possibility that every non-robust When we have oracles, the situation is compounded by the possibility that every non-robust  may be may be  QQjj

legal for some oracles and illegal for others.  That is, the only legal legal for some oracles and illegal for others.  That is, the only legal  may be ones for which may be ones for which  QQjj

acceptance is independent of the oracle.  The looking-back idea may work after all for any oracle, butacceptance is independent of the oracle.  The looking-back idea may work after all for any oracle, but  
even then it will not give a presentation by "nice" machines.even then it will not give a presentation by "nice" machines.
  
Where things Where things reallyreally bite---in the non-oracle and oracle worlds alike---is that even if you add polynomial bite---in the non-oracle and oracle worlds alike---is that even if you add polynomial  
amounts of padding, the illegality frustrates the idea of building a "universal amounts of padding, the illegality frustrates the idea of building a "universal  machine."  In machine."  In  BPPBPP

particular:particular:
  

 is not known, and not believed, to have complete sets under polynomial-time Turing is not known, and not believed, to have complete sets under polynomial-time Turing  BPPBPP

reductions---let alone many-one reductions---except for the eventuality that reductions---let alone many-one reductions---except for the eventuality that .  There are.  There are  BPP BPP ==  P P

oracles oracles  such that  such that  does not have complete sets even when the reductions may consult  does not have complete sets even when the reductions may consult ..CC BPPBPPCC CC
  
This lack in turn impedes diagonalizating against This lack in turn impedes diagonalizating against .  There is a more-general notion of.  There is a more-general notion of  BPPBPP

 for general time functions  for general time functions , but whether it has a nontrivial , but whether it has a nontrivial time hierarchy theoremtime hierarchy theorem  BPTIMEBPTIME tt nn[[ (( ))]] tt nn(( ))
has been a hugely thorny question.has been a hugely thorny question.
  
  
  
Amplification [A-B section 7.4]Amplification [A-B section 7.4]
  
BPP Has Small Circuits [A-B section 7.6, skipping 7.5]BPP Has Small Circuits [A-B section 7.6, skipping 7.5]
  
BPP is in PH [A-B section 7.7]BPP is in PH [A-B section 7.7]
  
PH is in BP[PH is in BP[ P] and thence in P] and thence in   (Toda's Theorem) [A-B section 9.3](Toda's Theorem) [A-B section 9.3]⊕⊕ PPPPPP

  

  

  


