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Show that the class of languages that belong to DTIME[Show that the class of languages that belong to DTIME[ ] for some ] for some  > 0 is > 0 is  OO nn2-𝜖2-𝜖

𝜖𝜖

recursively presentable.recursively presentable.
  
We may assume that for all rational We may assume that for all rational , the function , the function  is fully time constructible, so is fully time constructible, so  𝜖 𝜖 >>  0 0 nn2-𝜖2-𝜖

that in that in  steps a TM  steps a TM  on any input of length  on any input of length  can write down the value  can write down the value   OO nn2-𝜖2-𝜖 TT nn m m ==   ⌊⌊nn ⌋⌋2-𝜖2-𝜖

on a tape, so that it can count down in real time from it.on a tape, so that it can count down in real time from it.    
  
Let us begin with a recursive presentation Let us begin with a recursive presentation  of all poly-time bounded machines.  (We may of all poly-time bounded machines.  (We may  PP[[ ii]]

presume that every presume that every  occurs infinitely often in this enumeration as  occurs infinitely often in this enumeration as  for infintiely many for infintiely many  PPii PPi'i'

.).)i' i' >>  i i
  
Nomenclature: For fixed Nomenclature: For fixed , our machines are , our machines are  with the  with the  clock attached."  What clock attached."  What  𝜖𝜖 QQ   ==  "P "Pi𝜖i𝜖 ii nn2-𝜖2-𝜖

if I want to allow if I want to allow  time for any fixed constant  time for any fixed constant ?  What is the nomenclature now?  ?  What is the nomenclature now?    knkn2-𝜖2-𝜖 kk QQi,𝜖,ki,𝜖,k

= "= "  with  with  clock attached."  Note that each  clock attached."  Note that each  runs in  runs in  time.  For any time.  For any  PPii knkn2-𝜖2-𝜖 QQi,𝜖,ki,𝜖,k OO nn2-𝜖2-𝜖

language language  that is accepted in  that is accepted in  time, some  time, some  accepts  accepts  in that time, and for some  in that time, and for some   LL OO nn2-𝜖2-𝜖 PPii LL kk

large enough to be the constant in the large enough to be the constant in the  when we attach the  when we attach the  clock, it does not disturb clock, it does not disturb  OO,, knkn2-𝜖2-𝜖

the output of the output of  on any input, so that  on any input, so that .  Hence .  Hence  is a is a  PPii LL QQ   ==  L L PP   ==  L L(( i,𝜖,ki,𝜖,k)) (( ii)) QQ[[ i,k,𝜖i,k,𝜖]]
∞∞

i,k = 1i,k = 1

recursive presentation of DTIME[recursive presentation of DTIME[ ] for that ] for that ..OO nn2-𝜖2-𝜖
𝜖𝜖

  
Now we want to define a recursive presentation of the class of languages that belong toNow we want to define a recursive presentation of the class of languages that belong to  
DTIME[DTIME[ ] for some ] for some  > 0.  It is:  > 0.  It is: .  All we need is some (any) effectively.  All we need is some (any) effectively  OO nn2-𝜖2-𝜖

𝜖𝜖 QQ[[ i,k,1/ji,k,1/j]]
∞∞

i,j,k=1i,j,k=1

definable sequence definable sequence  that goes to  that goes to , so , so  is good enough.  One this is understood, is good enough.  One this is understood,  𝜖𝜖jj 00 𝜖𝜖   ==  1 1 // jjjj

fine to just write fine to just write  without the outer subscripts. without the outer subscripts.    QQ[[ i,k,𝜖i,k,𝜖]]

  
Great question: what about time Great question: what about time for "some" for "some" ?  Time ?  Time  is probably is probably  OO nn2+𝜖2+𝜖

𝜖 𝜖 >>  0 0 OO nn2+o2+o 11(( ))

what you really meant.  What it means is that there is a function what you really meant.  What it means is that there is a function that that  as as  ff nn   == 𝜖𝜖   (( )) nn 00→→

 such that the language is in DTIME[ such that the language is in DTIME[ .  Note: DQL is contained in DTIME[.  Note: DQL is contained in DTIME[nn ∞∞→→ nn2+f2+f nn(( ))]]

 (?). (?).    nn1+1/n1+1/n]]

  
  
  

  

  

mm



Show that Show that  is closed under the operations  is closed under the operations  and  and  with additive overhead with additive overhead#P#P f f ++  g g f f ∗∗  g g
in a related sense. This also serves as a work-in for the next problem.in a related sense. This also serves as a work-in for the next problem.
  
Set-Up:Set-Up:
By By , we can take predicates , we can take predicates  with bounding polynomials  with bounding polynomials   ff,, g g ∈∈  #P #P RR xx,, yy ,, SS xx,, zz(( )) (( )) pp nn ,, qq nn(( )) (( ))

respectively such that for all respectively such that for all , ,  and  and .  We need to.  We need to  xx ff xx == ## yy.. RR xx,, yy(( )) pp (( )) gg xx   ==  # # zz.. SS xx,, zz(( )) qq (( ))

show that show that  belongs to  belongs to , which means we need to find a poly-time, which means we need to find a poly-time  hh xx   ==  f f xx ++ gg xx(( )) (( )) (( )) #P#P

decidable predicate decidable predicate  and a bounding polynomial  and a bounding polynomial  such that  such that ..  TT xx,, ww(( )) rr nn(( )) hh xx   ==  # # ww.. TT xx,, ww(( )) rr (( ))

  
  
Moreover, we need Moreover, we need  to have small overhead, in the sense that given circuits  to have small overhead, in the sense that given circuits  for  for   TT CCnn RR xx,, yy(( ))

and and  for  for , we get a circuit , we get a circuit  for  for  with overhead [...]. with overhead [...].    DDnn SS xx,, zz(( )) EEnn TT xx,, ww(( ))

  
Execution: Execution: Build Build  as:  as:  adds an bottom OR gate connected from the outputs of  adds an bottom OR gate connected from the outputs of  and and  EEnn EEnn CCnn

, giving the idea that , giving the idea that .  But how does .  But how does  relate to  relate to  and  and ??  DDnn EE xx,, ww   ==  "R "R xx,, yy  OR S OR S xx,, zz ""(( )) (( )) (( )) ww yy zz
  
  
CC xx,, yy                                 D                                D xx,, zznn(( )) nn(( ))

  
EE xx,,    w   w == ............................     ≡≡   ww == 0y for some y and R0y for some y and R xx,, yy    or  or w w ==  1z for some z and S 1z for some z and S xx,, zz   nn(( )) (( (( )) )) (( (( )) ))

  
Let Let  be the set of good  be the set of good 's and 's and  the set of good  the set of good 's.  What set adds both together?  Not's.  What set adds both together?  Not  YY yy ZZ zz

 which is what we did below---that multiplies them.  Not  which is what we did below---that multiplies them.  Not  though that is closer, though that is closer,  Y Y ××  Z Z Y Y ∪∪  Z Z

because there might be overlaps.  Use the join because there might be overlaps.  Use the join ..Y Y ⊕⊕  Z  Z ==   0y0y ::  y  y ∈∈  Y Y   ∪∪   1z1z ::  z  z ∈∈  Z Z{{ }} {{ }}

  
Remaining technical niggle: what if Remaining technical niggle: what if , so what is , so what is   Assuming   Assuming   qq nn   ≠≠  p p nn(( )) (( )) rr nn ??(( )) qq nn   >>  p p nn(( )) (( ))

without loss of generality, we can make the first case read without loss of generality, we can make the first case read  for some  for some ,,  w w ==  0 0 00 yyqq nn -p-p nn(( )) (( )) yy

so that so that  always has length exactly  always has length exactly ..    ww rr nn   ==  q q nn ++ 11(( )) (( ))

  
Try: Try: .  What function is .  What function is ?  It  is?  It  is  EE xx,, ww   ≡≡  w  w ==  yz and R yz and R xx,, yy  and S and S xx,, zz   (( )) (( )) (( )) ## ww.. EE xx,, wwrr

nn(( ))

 --- so we have actually solved the second problem first!    For --- so we have actually solved the second problem first!    For  hh xx   ==  f f xx *g*g xx(( )) (( )) (( ))

multiplication, we got multiplication, we got , so , so   EE xx,, yzyz   ==  C C xx,, yy  && D && D xx,, zznn(( )) nn(( )) nn(( )) ss EE   == ss CC ++ ss DD ++ 1 1 (( nn)) (( nn)) (( nn))

counting wires.  When counting wires.  When  this is linear:  this is linear: .  What happens to the size for addition?.  What happens to the size for addition?    gg == ff 2s2s ++ 11

Still has Still has  in general because  in general because  needs to include both  needs to include both  and  and . But when. But when  ss CC ++ ss DD(( nn)) (( nn)) EEnn RR SS

, can we save...?, can we save...?RR == SS
  
  
Verification: Verification: (can be folded in with the above)(can be folded in with the above)
  

  

  


