CSE696 Examples Prefacing HW2

Show that the class of languages that belong to DTIME[O (nz_e)] forsome € >0 is
recursively presentable.

27¢ js fully time constructible, so

We may assume that for all rational € > 0, the function n
that in O(nz‘e) steps a TM T on any input of length n can write down the value m = [n27¢€]

on a tape, so that it can count down in real time from it.

Let us begin with a recursive presentation [P;] of all poly-time bounded machines. (We may
presume that every P; occurs infinitely often in this enumeration as P; for infintiely many

27

i > 1)

Nomenclature: For fixed €, our machines are Q;. = "P; with the n>~¢ clock attached.” What
if | want to allow kn2~€ time for any fixed constant k? What is the nomenclature now? Qiek

= "P; with kn~¢ clock attached." Note that each Qiek runsin O(nz‘e) time. For any
language L that is accepted in O(n2‘€) time, some P; accepts L in that time, and for some k
large enough to be the constant in the O, when we attach the kn2~¢ clock, it does not disturb
the output of P; on any input, so that L(Q;x) = L(P;) = L. Hence [Q;iclix-1isa

recursive presentation of DTIME[O (nZ‘e)] for that €.

Now we want to define a recursive presentation of the class of languages that belong to
DTIME[O (nz‘e)] for some € > 0. ltis: [Qz‘,k,l/j]fj,k:y All we need is some (any) effectively
definable sequence €; that goes to 0, so € = 1/ is good enough. One this is understood,
fine to just write [Q; x -] without the outer subscripts.

Great question: what about time O (12+€)for "some" e > 0? Time O(n2*() is probably

what you really meant. What it means is that there is a function f(n) =€, that — 0 as
1 — oo such that the language is in DTIME[n2*/("]. Note: DQL is contained in DTIME]




Show that #P is closed under the operations f + ¢ and f * g with additive overhead
in a related sense. This also serves as a work-in for the next problem.

Set-Up:

By f,g € #P, we can take predicates R(x, i), S(x, z) with bounding polynomials p(n), g(n)
respectively such that for all x, f(x) = #°y. R(x,y) and g(x) = #7z.5(x,z). We need to
show that fi(x) = f(x)+ g(x) belongs to #P, which means we need to find a poly-time
decidable predicate T(x, w) and a bounding polynomial r(1) such that i(x) = # w. T(x, w).

Moreover, we need T to have small overhead, in the sense that given circuits C,, for R(x, )
and D,, for S(x, z), we get a circuit E,, for T(x, w) with overhead [...].

Execution: Build E,, as: E,, adds an bottom OR gate connected from the outputs of C,, and
D, giving the idea that E(x, w) = "R(x,y) OR S(x,z)". But how does w relate to y and z?

Cu(x,y) Dy (x, )
E,(x, W= .. ) = (w =0y forsomeyand R(x,y) ) or (w = 1z for some z and S(x,z) )

Let Y be the set of good 's and Z the set of good z's. What set adds both together? Not
Y X Z which is what we did below---that multiplies them. Not Y U Z though that is closer,
because there might be overlaps. UsethejoinY @ Z = {Oy: y € Y} U {1z: z € Z}.

Remaining technical niggle: what if (1) # p(n), so whatis 7(n)? Assuming g(n) > p(n)
without loss of generality, we can make the first case read w = 0(070)~()y for some v,
so that w always has length exactly r(n) = g(n) + 1.

Try: E(x,w) = w = yzand R(x,y) and S(x,z) . What function is # w. E,,(x, w)? It is
h(x) = f(x)*g(x) - so we have actually solved the second problem first! For
multiplication, we got E,,(x, yz) = C,(x,y) && D,(x,z), sos(E,) =s(C,)+s(D,)+1
counting wires. When g = f this is linear: 2s + 1. What happens to the size for addition?
Still has s(C,,) +s(D,,) in general because E,, needs to include both R and S. But when
R =S, can we save...?

Verification: (can be folded in with the above)



