
CSE696 Examples Prefacing HW2CSE696 Examples Prefacing HW2

Show that the class of languages that belong to DTIME[Show that the class of languages that belong to DTIME[] for some] for some > 0 is > 0 is OO nn2-𝜖2-𝜖

𝜖𝜖

recursively presentable.recursively presentable.

We may assume that for all rational We may assume that for all rational , the function , the function is fully time constructible, so is fully time constructible, so 𝜖 𝜖 >> 0 0 nn2-𝜖2-𝜖

that in that in steps a TM steps a TM on any input of length on any input of length can write down the value can write down the value OO nn2-𝜖2-𝜖 TT nn m m == ⌊⌊nn ⌋⌋2-𝜖2-𝜖

on a tape, so that it can count down in real time from it.on a tape, so that it can count down in real time from it.

Let us begin with a recursive presentation Let us begin with a recursive presentation of all poly-time bounded machines. (We may of all poly-time bounded machines. (We may PP[[ii]]

presume that every presume that every occurs infinitely often in this enumeration as occurs infinitely often in this enumeration as for infintiely many for infintiely many PPii PPi'i'

.).)i' i' >> i i

Nomenclature: For fixed Nomenclature: For fixed , our machines are , our machines are with the with the clock attached." What clock attached." What 𝜖𝜖 QQ == "P "Pi𝜖i𝜖 ii nn2-𝜖2-𝜖

if I want to allow if I want to allow time for any fixed constant time for any fixed constant ? What is the nomenclature now? ? What is the nomenclature now? knkn2-𝜖2-𝜖 kk QQi,𝜖,ki,𝜖,k

= "= " with with clock attached." Note that each clock attached." Note that each runs in runs in time. For any time. For any PPii knkn2-𝜖2-𝜖 QQi,𝜖,ki,𝜖,k OO nn2-𝜖2-𝜖

language language that is accepted in that is accepted in time, some time, some accepts accepts in that time, and for some in that time, and for some LL OO nn2-𝜖2-𝜖 PPii LL kk

large enough to be the constant in the large enough to be the constant in the when we attach the when we attach the clock, it does not disturb clock, it does not disturb OO,, knkn2-𝜖2-𝜖

the output of the output of on any input, so that on any input, so that . Hence . Hence is a is a PPii LL QQ == L L PP == L L((i,𝜖,ki,𝜖,k)) ((ii)) QQ[[i,k,𝜖i,k,𝜖]]
∞∞

i,k = 1i,k = 1

recursive presentation of DTIME[recursive presentation of DTIME[] for that] for that ..OO nn2-𝜖2-𝜖
𝜖𝜖

Now we want to define a recursive presentation of the class of languages that belong toNow we want to define a recursive presentation of the class of languages that belong to
DTIME[DTIME[] for some] for some > 0. It is: > 0. It is: . All we need is some (any) effectively. All we need is some (any) effectively OO nn2-𝜖2-𝜖

𝜖𝜖 QQ[[i,k,1/ji,k,1/j]]
∞∞

i,j,k=1i,j,k=1

definable sequence definable sequence that goes to that goes to , so , so is good enough. One this is understood, is good enough. One this is understood, 𝜖𝜖jj 00 𝜖𝜖 == 1 1 // jjjj

fine to just write fine to just write without the outer subscripts. without the outer subscripts. QQ[[i,k,𝜖i,k,𝜖]]

Great question: what about time Great question: what about time for "some" for "some" ? Time ? Time is probably is probably OO nn2+𝜖2+𝜖

𝜖 𝜖 >> 0 0 OO nn2+o2+o 11(())

what you really meant. What it means is that there is a function what you really meant. What it means is that there is a function that that as as ff nn == 𝜖𝜖 (()) nn 00→→

 such that the language is in DTIME[such that the language is in DTIME[. Note: DQL is contained in DTIME[. Note: DQL is contained in DTIME[nn ∞∞→→ nn2+f2+f nn(())]]

 (?). (?). nn1+1/n1+1/n]]

mm

Show that Show that is closed under the operations is closed under the operations and and with additive overhead with additive overhead#P#P f f ++ g g f f ∗∗ g g
in a related sense. This also serves as a work-in for the next problem.in a related sense. This also serves as a work-in for the next problem.

Set-Up:Set-Up:
By By , we can take predicates , we can take predicates with bounding polynomials with bounding polynomials ff,, g g ∈∈ #P #P RR xx,, yy ,, SS xx,, zz(()) (()) pp nn ,, qq nn(()) (())

respectively such that for all respectively such that for all , , and and . We need to. We need to xx ff xx == ## yy.. RR xx,, yy(()) pp (()) gg xx == # # zz.. SS xx,, zz(()) qq (())

show that show that belongs to belongs to , which means we need to find a poly-time, which means we need to find a poly-time hh xx == f f xx ++ gg xx(()) (()) (()) #P#P

decidable predicate decidable predicate and a bounding polynomial and a bounding polynomial such that such that .. TT xx,, ww(()) rr nn(()) hh xx == # # ww.. TT xx,, ww(()) rr (())

Moreover, we need Moreover, we need to have small overhead, in the sense that given circuits to have small overhead, in the sense that given circuits for for TT CCnn RR xx,, yy(())

and and for for , we get a circuit , we get a circuit for for with overhead [...]. with overhead [...]. DDnn SS xx,, zz(()) EEnn TT xx,, ww(())

Execution: Execution: Build Build as: as: adds an bottom OR gate connected from the outputs of adds an bottom OR gate connected from the outputs of and and EEnn EEnn CCnn

, giving the idea that , giving the idea that . But how does . But how does relate to relate to and and ?? DDnn EE xx,, ww == "R "R xx,, yy OR S OR S xx,, zz ""(()) (()) (()) ww yy zz

CC xx,, yy D D xx,, zznn(()) nn(())

EE xx,, w w == ≡≡ ww == 0y for some y and R0y for some y and R xx,, yy or or w w == 1z for some z and S 1z for some z and S xx,, zz nn(()) (((()))) (((())))

Let Let be the set of good be the set of good 's and 's and the set of good the set of good 's. What set adds both together? Not's. What set adds both together? Not YY yy ZZ zz

 which is what we did below---that multiplies them. Not which is what we did below---that multiplies them. Not though that is closer, though that is closer, Y Y ×× Z Z Y Y ∪∪ Z Z

because there might be overlaps. Use the join because there might be overlaps. Use the join ..Y Y ⊕⊕ Z Z == 0y0y :: y y ∈∈ Y Y ∪∪ 1z1z :: z z ∈∈ Z Z{{ }} {{ }}

Remaining technical niggle: what if Remaining technical niggle: what if , so what is , so what is Assuming Assuming qq nn ≠≠ p p nn(()) (()) rr nn ??(()) qq nn >> p p nn(()) (())

without loss of generality, we can make the first case read without loss of generality, we can make the first case read for some for some ,, w w == 0 0 00 yyqq nn -p-p nn(()) (()) yy

so that so that always has length exactly always has length exactly .. ww rr nn == q q nn ++ 11(()) (())

Try: Try: . What function is . What function is ? It is? It is EE xx,, ww ≡≡ w w == yz and R yz and R xx,, yy and S and S xx,, zz (()) (()) (()) ## ww.. EE xx,, wwrr

nn(())

 --- so we have actually solved the second problem first! For --- so we have actually solved the second problem first! For hh xx == f f xx *g*g xx(()) (()) (())

multiplication, we got multiplication, we got , so , so EE xx,, yzyz == C C xx,, yy && D && D xx,, zznn(()) nn(()) nn(()) ss EE == ss CC ++ ss DD ++ 1 1 ((nn)) ((nn)) ((nn))

counting wires. When counting wires. When this is linear: this is linear: . What happens to the size for addition?. What happens to the size for addition? gg == ff 2s2s ++ 11

Still has Still has in general because in general because needs to include both needs to include both and and . But when. But when ss CC ++ ss DD((nn)) ((nn)) EEnn RR SS

, can we save...?, can we save...?RR == SS

Verification: Verification: (can be folded in with the above)(can be folded in with the above)

