CSE696 Examples Prefacing HW2

Show that the class of languages that belong to DTIME[$O(n^{2-\epsilon})$] for some $\epsilon > 0$ is recursively presentable.

We may assume that for all rational $\epsilon > 0$, the function $n^{2-\epsilon}$ is fully time constructible, so that in $O(n^{2-\epsilon})$ steps a TM *T* on any input of length *n* can write down the value $m = \lfloor n^{2-\epsilon} \rfloor$ on a tape, so that it can count down in real time from it.

Let us begin with a recursive presentation $[P_i]$ of all poly-time bounded machines. (We may presume that every P_i occurs infinitely often in this enumeration as $P_{i'}$ for infinitely many i' > i.)

Nomenclature: For fixed ϵ , our machines are $Q_{i\epsilon} = "P_i$ with the $n^{2-\epsilon}$ clock attached." What if I want to allow $kn^{2-\epsilon}$ time for any fixed constant k? What is the nomenclature now? $Q_{i,\epsilon,k} = "P_i$ with $kn^{2-\epsilon}$ clock attached." Note that each $Q_{i,\epsilon,k}$ runs in $O(n^{2-\epsilon})$ time. For any language L that is accepted in $O(n^{2-\epsilon})$ time, some P_i accepts L in that time, and for some k large enough to be the constant in the O, when we attach the $kn^{2-\epsilon}$ clock, it does not disturb the output of P_i on any input, so that $L(Q_{i,\epsilon,k}) = L(P_i) = L$. Hence $[Q_{i,k,\epsilon}]_{i,k=1}^{\infty}$ is a recursive presentation of DTIME[$O(n^{2-\epsilon})$] for that ϵ .

Now we want to define a recursive presentation of the class of languages that belong to DTIME[$O(n^{2-\epsilon})$] for some $\epsilon > 0$. It is: $[Q_{i,k,1/j}]_{i,j,k=1}^{\infty}$. All we need is some (any) effectively definable sequence ϵ_j that goes to 0, so $\epsilon_j = 1/j$ is good enough. One this is understood, fine to just write $[Q_{i,k,\epsilon}]$ without the outer subscripts.

Great question: what about time $O(n^{2+\epsilon})$ for "some" $\epsilon > 0$? Time $O(n^{2+o(1)})$ is probably what you really meant. What it means is that there is a function $f(n) = \epsilon_n$ that $\rightarrow 0$ as $n \rightarrow \infty$ such that the language is in DTIME[$n^{2+f(n)}$]. Note: DQL is contained in DTIME[$n^{1+1/n}$] (?).

m		

Show that #P is closed under the operations f + g and f * g with additive overhead in a related sense. This also serves as a work-in for the next problem.

Set-Up:

By $f,g \in \#P$, we can take predicates R(x, y), S(x, z) with bounding polynomials p(n), q(n) respectively such that for all x, $f(x) = \#^p y$. R(x, y) and $g(x) = \#^q z$. S(x, z). We need to show that h(x) = f(x) + g(x) belongs to #P, which means we need to find a poly-time decidable predicate T(x, w) and a bounding polynomial r(n) such that $h(x) = \#^r w$. T(x, w).

Moreover, we need *T* to have small overhead, in the sense that given circuits C_n for R(x, y) and D_n for S(x, z), we get a circuit E_n for T(x, w) with overhead [...].

Execution: Build E_n as: E_n adds an bottom OR gate connected from the outputs of C_n and D_n , giving the idea that E(x, w) = "R(x, y) OR S(x, z)". But how does w relate to y and z?

$$C_n(x,y)$$
 $D_n(x,z)$

 $E_n(x, w = \dots) \equiv (w = 0y \text{ for some } y \text{ and } R(x, y)) \text{ or } (w = 1z \text{ for some } z \text{ and } S(x, z))$

Let *Y* be the set of good *y*'s and *Z* the set of good *z*'s. What set adds both together? Not $Y \times Z$ which is what we did below---that multiplies them. Not $Y \cup Z$ though that is closer, because there might be overlaps. Use the join $Y \oplus Z = \{0y : y \in Y\} \cup \{1z : z \in Z\}$.

Remaining technical niggle: what if $q(n) \neq p(n)$, so what is r(n)? Assuming q(n) > p(n) without loss of generality, we can make the first case read $w = 0(0^{q(n)-p(n)})y$ for some y, so that w always has length exactly r(n) = q(n) + 1.

Try: $E(x, w) \equiv w = yz$ and R(x, y) and S(x, z). What function is $\#^r w$. $E_n(x, w)$? It is h(x) = f(x)*g(x) --- so we have actually solved the second problem first! For multiplication, we got $E_n(x, yz) = C_n(x, y)$ && $D_n(x, z)$, so $s(E_n) = s(C_n) + s(D_n) + 1$ counting wires. When g = f this is linear: 2s + 1. What happens to the size for addition? Still has $s(C_n) + s(D_n)$ in general because E_n needs to include both R and S. But when R = S, can we save...?

Verification: (can be folded in with the above)