CSE696 Lecture 2, Wed. Feb. 3: The Arithmetical and Polynomial Hierarchies.
(Un-)Computability Relative to an Oracle

Let % be a collection of oracle Turing machines M. Then for any language A, define
#t = {L(M*): M e 7},
For example, taking the collection of all oracle Turing machines,

REA = {L (MA)} = the set of all languages that can be accepted with oracle A.

And RECA = {L(MA) : M is total with oracle A}. Now here is a fun puzzle. Saying that M is

total---i.e., halts for all inputs---with oracle A is a statement that depends on the particular oracle A. It

does not come from M belonging to a collections of machines by themselves. The natural collection to
use is that of OTMs that are total with all oracles---indeed, that have an associated time clock t(n) that
shuts them off after £(|x|) steps independent of any answers from the oracle. Call this collection .7

For any A, clearly 7' C REC“ since every machine in .7is of course total with oracle A. But are
they equal? That is to say, if you have M and A such that M halts for all inputs when A is the oracle,

can we replace M by M’ such that L(M’A) = L(MA) and M’ is total with all oracles---indeed, has a

computable running time bound apart from the oracle? To model this, identify all languages A with
branches of the infinite binary tree 8. Now see if you can frame the problem in a way that leverages
Konig's Lemma: every subtree of B that has no infinite branch is finite, and in particular, has finite
depth.

The possibly-larger definition of REC* suffices, in any event, for the following two theorems that were
proved without an oracle in CSE596.

Theorem 1: For all oracles A, RE” N co— RE”Y = REC”.
Theorem 2: For all oracles A, REA # REC4.

To prove Theorem 1, suppose L € RE” N co— RE” . Then there are OTMs M;, M, such that
L(M{‘) = L and L(Mf) = ~ L. Buildan OTM M to carry out the following routine---for any

oracle A, not just the given one:

https://en.wikipedia.org/wiki/K%C5%91nig%27s_lemma

And to prove Theorem 2, define

D, = {a:) ¢ (M)},

If D 4 were in RE/, then there would be
an OTM Q such that L(Q*) = D 4. But:

Reject x

Q" accepts (Q) &= (Q) € Dy
by definition of L(Q4) = D4,

< (Q) ¢ D, by definition of D 4.

more step s
of M4 (x) This contradiction shows D4 ¢ RE”,

yet its complement (call it K4) is
{y: My € L(M*) }, which does
belong to RE“ --- but not to REC“.

The point---which Turing realized in his original 1936 paper---is that these proofs are really the same as
the original ones without the oracle. The pink As are not really used in the proof. They just "ride
along." Another fact is that we can turn a universal Turing machine into a universal oracle Turing

machine U such that for any oracle A, U* on input (M, w) simulates M*(w). Furthermore:

Theorem 3: For all oracles A, L(UA) is complete for RE# under reductions that are computable in
linear time without using the oracle.

Proof: Given any language L € RE“, take an OTM M such that L(MA) = L. Toreduce L to
L(UA), map f(w) = (M, w). Note that the reduction is "just syntax"---no oracle involved.

So RE“ always has complete languages just like RE does without the oracle. Moreover, K 4 is
complete for RE/ via the same trick used to reduce the universal language A, to K without the
oracle. We get exactly the same picture as before with extra "pink As" added:

A

N TOT: .

N \ ALL?M must ® /
\ \ / /
\ \be somewhere / /
\ in this intersec- / /
» tion of cones. 4 4
\ \ /

\ /
neither c.e. in A\Qor co<c.e. in A 14
\ /
\\ ‘I{f{le}} //
/ \
A 1 A \\ // \\ //
Ifiey = {M- L(M") = {6}} N W

Efv = {M:L(M") = o}

NEfy = {M: L(M") # o}
=

B
A A> 45°

ALLA, = {M: L(M4) = } LAnaie

TOTA = {M: M% s total}

Define Z° = {L(MA): Me & A e D}. For example, RE"F = U REA, which by the
A€eRE
completeness of K for RE (the ordinary non-oracle versions) equals REX. But this notation conceals a

trap. In RERF and especially in RE4, the bottom RE is not a class of languages like the top RE is. It's
a "class" of machines, and maybe should really be written RERE,

Likewise, when we write P4 and NP4, the bottoms are not really the language classes P and NP.
They are the collections of deterministic and nondeterministic oracle TMs, respectively, with polynomial
time clocks bolted on. This is a major example of "abuse of notation" that is rampant in complexity
theory and occasionally deceives. Pardon my French: tout abus sera muni.

The real significance of the non-use of the pink As is that the associated methods cannot resolve
cases where they do matter. When A is the language TQBF of true quantified Boolean formulas, then
PA = NPA. Hence methods that are ignorant of internal details of the oracle set can never prove

P # NP without the oracle. There are languages B such that P2 # NP® so P = NP can never be
proved without really being concrete about the absence of an oracle. The ability to "relativize" to
oracles is thus the first barrier to resolving the P = ? NP question.

Defining the Hierarchies
Nevertheless, the notation is useful to define both reductions and hierarchies.

Definition 2: For any languages A and B,
« A Turing-reduces to B, writen A < 1 B,if A € RECE,

+ A polynomial-time Turing-reduces to B, written A < ’% B,ifA € P5.

NS L L u 0 _ 0 _ N0 e
Def|n|t|0n3.20 = Ho —REC,z]1 = RE,I—I1 = co-RE, and fork > Z.Ek = RE

andHI(: = 00-22. Also AH = Ukzl(:.

Definition4:2§ = Hz :P,ZT = NP’HT = co-NP, and for k > 222 — szi—l

andH: = co-Z:. Also PH = UkZ:'

The term "arithmetical hierarchy" can refer either to the suite of these classes as a concept or to their
union, which is the class AH. Likewise for "polynomial hierarchy" and PH. The superscript p stands
for "polynomial”. The superscript O (which is often omitted) stands for "first-order arithmetic" and/or the
old-style notation 0 for REC as a "degree of unsolvability." Why are we talking about "arithmetic"?
That's where much of the beauty and intellectual heft of the arithmetical hierarchy comes from. We will
build on the next theorem proved in CSE596:

Theorem 4: A language L belongs to RE if and only if there is a decidable predicate R(x, i) such that
forallx,x € L & (dy)R(x,y).

Note also:

Theorem 4': A language L belongs to NP if and only if there are a polynomial-time decidable predicate
R(x,y) and a polynomial p such thatforallx,x € L < (Jy:|y| < p(|x]))R(x,y).

The only predicate that we need to consider in both cases is the Kleene T-predicate T(M, x, E)) = E)
is an accepting computation of the (possibly nondeterministic) Turing machine M on input x." This is
decidable in polynomial time---in fact, decidable in linear time by a machine that acts like a deterministic
finite automaton with two heads. In the direction going forward from L, the machine M is fixed so we
really get a predicate T);(x, y) where i encodes the computation c. Furthermore, we could compact
the statement in the NP case by stipulating that R(x, i) be decidable in time polynomial in |x| alone, so
that a polynomial p forcing || < p(|x|) would come from that. We could call the R(x,) predicate
polynomial p-decidable in that case. But IMHO it is important to keep in mind that the major difference
between the NP and RE cases is not the time to decide R(x, y) but rather the length bound on yy. For
shorthand we can abbreviate (Jy: |y| < p(|x])) to (pr) when the context for |y| < p(|x]) is clear.

Then we can also say:

+ Alanguage L belongs to co-RE if and only if there is a linear-time decidable predicate R(x, i)
suchthatforallx,x € L < (Yy)R(x,y).
+ Alanguage L belongs to co-NP if and only if there is a linear-time decidable predicate R(x, y)

and a polynomial p such thatforallx,x € L < (V?’y)R(x,y).

Arithmetic comes into play because the T-predicate can be encoded entirely numerically with M, x

treated as numbers and E)as the "tupling" of a list of numbers into one number. If the computation is
the sequence of configurations Iy, I;, ..., I; and these are already encoded as numbers, then we can

consider ¢ = 2030 ... pft using the first t odd primes. (As we sometimes say on the blog, 2 is a very
odd prime.) There are more-compact ways to do pairing and tupling via polynomials g(u, v) without
exponentiating, but what's significant is that this does require multiplication. The legwork for this was
already done before Turing's 1936 paper by Kurt Goédel in 1930-31 in the context of encoding proofs
rather than computations, but the essence is much the same. It was Stephen Kleene who

systematized the abstract formalization of computation. He wrote separately U(E)) = v to specify the

value output by the computation, but we can use any convenient variant notation such as T(M, x, c_:), V)
or T(M, x, t) just to say the computation halts within ¢ steps. For the polynomial hierarchy we will still
use predicates, but there we will find a backbone that uses no arithmetic at all, just propositional logic
with A, V ,—= (or alternatively just NAND or NOR), growing from SAT to the language TQBF.

Definition 3. Call a predicate of the form S(x) = (dy)R(x, y) with R (linear-time-) decidable a 21 -
predicate, and S’(x) = (Yy)R(x,y) a], -predicate. And naturally enough, (HPy) R(x,y)is a El]’
predicate and (pr) R(x,y)isa H}; -predicate.

Inductively, for k > 2, a) -predicate is one of the form S(x) = (Jy)R(x,y) where Ris a Hk_l -
predicate, and a [-predicate has the form S’(x) = (Yy)R'(x,y) where R is a 3}, . -predicate. ZZ -

predicates and Hi -predicates are defined analogously.

Every Ek-predicate is the negation of a Hk-predicate and vice-versa. Any predicate S(x) with the one

free string/numeric variable x defines a language Lg via Ls = {x: S(x) is true}. Note that when a
particular string is substituted for x, the unary predicate becomes a logical sentence. Unrolling the
definition, we see:

A Zz-predicate has the form S(x) = (Jy)(Vz)R(x, y, z) with R decidable (in linear time).

* A]I,-predicate has the form S'(x) = (Yy)(3z)R’(x, y, z) with R’ decidable.

< A 23-predicate has the form S(x) = (dy)(Vz)(Jw)R(x, y,z, w) with R decidable.

< A Hg-predicate has the form S’(x) = (pr) (3792) (Vf’w) (Hpv) (\/Pu)R with p a polynomial

and R(x, Y,z,w,9, u) being polynomial-time (wlog. linear-time) decidable.

The number k reflects not the raw count of quantifiers but the number of times they alternate between
dand V. Using pairing and tupling, we can always "condense" quantifiers of the same kind, e.g.
AH)(Au)(do)R(---) becomes (Aw)[w =: {t,u,v) A R(---)].

Examples:

« M never halts = (Vx)(Vt)-~T(M, x, t), so the language of (non-oracle) TMs that do not halt on
any input [i.e., are such that for all inputs, the machine does not halt on that input] is co-c.e.

* M always halts = (Vx)(3t)T(M, x, t), so the ALL7ys language belongs to Hg.
+ L(M) belongs to P: We can define a recursive enumeration Py, P, P3, ... of polynomial-time

bounded [oracle] Turing machines. Then L(M) € P = (Jk)[L(M) = L(Py)]. Thisisa Xi,-

predicate because the equality of the languages of two Turing machines (even when both them

are not necessarily halting) is definable by a Hz-predicate.
Now we can state:

Theorem (Kleene's Arithmetical Hierarchy Theorem): For allk > 1:

0

 Alanguage L belongs to E L if and only if it equals Lg for some Zk-predicate S.
0

« Similarly, L belongs to H L iff it is defined by a]|, -predicate S’.

0
* The language V. of true Zk-sentences of arithmetic is complete for Z ‘ under < ,, (indeed,

under many-one reductions that are linear-time computable).

One immediate corollary of this and the separation RE# # REC“ in Theorem 2 involves a time
inversion:

Corollary: The language V of all sentences of arithmetic that are true (in the standard model IN, that

0
is) is hard for E . for all k, and hence does not belong to AH at all.

This was proved by the logician Alfred Tarski in 1933---after Godel but before Turing. Compare:
» Using simple arithmetic, we can define real numbers that we cannot compute (Turing, 1936).
* The set of theorems of (Giuseppe Peano's formalization of) arithmetic is undecidable (Gddel,

1931). The set of theorems is, however, definable by a 21 -predicate.

» The set of true statements of (Peano's) arithmetic is not definable in arithmetic at all (Tarski).
In the polynomial world, we have an analogous statement:

Theorem ("Weak" Polynomial Hierarchy Theorem): Forallk > 1:

p
« Alanguage L belongs to Z t if and only if it equals Lg for some Ei-predicate S.

p
« Similarly, L belongs to H . iff it is defined by a Hz-predicate S’

p
« The language Bj; of true Ek-sentences of propositional logic is complete for Z ‘ under < Z,l

(where the polynomial depends on the language being reduced to By).

Note that a Boolean formula ¢(x1, ..., x,) is satisfiable if and only if the corresponding propositional
sentence (dx1)(dxy) --- (Ax,)P(x1, ..., x,) is true, i.e., belongs to B;. Thus the PSPACE-complete
language TQBF, which essentially equals U ; By, is analogous to V. This analogy promotes powerful
belief that the polynomial hierarchy theorem is infinite and (hence) different from PSPACE, but we don't
have such a "Strong Hierarchy Theorem" yet for PH.

Our notational setup enables us to do the k = 2 case while losing no generality.

Proof: The (&) direction, from a Ez-predicate S(x) = (Ay)R(x,y) to an OTM M with the co-c.e.

language Ly as oracle, is easy: we code M oninputxtoloopy = 0,1,2, ... and accept if and when
the oracle says yes to the query (x, v).

To do the (=) direction, let M be an OTM with a co-c.e. oracle R, which we can (by induction)

identify with a Hl -predicate R(y). What makes the induction a little non-trivial is that we also use the

2., -representation of the negation R of R. Thatis, we have R(y) = (Yw)Q(y, w) for some decidable
predicate Q, so R'(y) = (dw)Q’(y, w). Now we can define for any x:

X € L(MR) = (32)@(2), where the string 3 unpacks not only into an accepting computation C that
postulates answers to each oracle query, but also gives:
1. The queries 1, ..., Vi that are listed as being answered "yes" in 3 with the body of @
including R(y1) A -+ AR(yx). This is where the second (¥ ---) quantifier comes in.
2. The queries zq, ...,z listed in C as being answered "no", together with the witnesses
w1, ..., We such that Q'(z1, wq) A -+ A Q'(z¢, wy).

To complete putting this into strict 22 form, we can use the identity

(V01)Q1,01) A (Y02)Q2,02) A -+ A(Vo)Q(yk, o) = (YO)IQW1,) A -+ AQ(yk,)]

Even if the middle connector were V not A , we would still get a single universal block as

Vo1, ... v0)[QW1,v1) V -+ VQ(Yk, vk)] . To do the induction for k > 2, we iterate similar aspects
of the general algortihm for conversion to prenex normal form. That process also finishes the formal
conversion into Ek-sentences for the third part. To finish this "handwave", the B case piggybacks
onto the proof of the Cook-Levin Theorem fork = 1.

