Reading:

The goal is to finish Chapter 11 by the end of spring break and then continue into quantum computation.

1. For any a, $0 < a < 1$, define PP_a to be the class of languages L such that for some polynomial $p(n)$ and predicate $R(x,y)$ decidable in time $p(|x|)$, and all x,

$$x \in L \iff \Pr_y [R(x,y)] > a.$$

Show that $PP_a = PP$. Does this hold if $a = a(n)$ is given by an inverse polynomial function $a(n) = 1/q(n)$? How about if $q(n) = 2^n$? How slow-growing can $a(n)$ be to make this work? (21 pts. total)

2. Now given $0 < a < b < 1$, define $BPP_{a,b}$ to be the class of languages L such that for some polynomial $p(n)$ and $R(x,y)$ as above, and all x:

$$x \in L \implies \Pr_y [R(x,y)] \geq b;$$

$$x \notin L \implies \Pr_y [R(x,y)] \leq a.$$

(Here I’ve left tacit that y ranges over $\{0,1\}^{p(|x|)}$.) Show that $BPP_{a,b} = BPP$. But now for the real question: Suppose a and b depend on n as in the final part of problem (1). Most in particular, suppose $q(n)$ and $q'(n)$ are polynomials such that $a(n) = 1/q(n)$ and $b(n) = a(n) + 1/q'(n)$. Then when you do $t(n)$-many trials to amplify the success probability, do you get a higher power of $q(n)$ versus $q'(n)$, or are they about the same? (21 pts. total)

3. Define U to be the class of languages L such that for some polynomial $p(n)$ and $R(x,y)$ as above, and all x,

$$x \in L \iff (\exists y) R(x,y).$$

The concept to come in section 11.1 is more stringent in requiring L to “promise” that the case where $R(x,y_1)$ and $R(x,y_2)$ hold with $y_1 \neq y_2$ never happens. Here in that case $x \notin L$.

Does U contain either NP or co-NP? Can you place U within the second or third level of the polynomial hierarchy? Is U closed under complements? After answering these warmup questions, show that if $U \subseteq BPP$, then $NP = RP$. (21 pts. total)

4. Oracle circuits have k-ary oracle gates g for arbitrary k (depending on the input length n) such that if $a = a_1 \cdots a_k$ are the binary inputs to g and $A \subseteq \{0,1\}^*$ is the oracle language, then $g(a)$ returns 1 iff $a \in A$. The standard definition of SATA uses oracle clauses (u_1, \ldots, u_k) with $u_i = \pm a_i$ for each i that are true iff the assignment makes the signed value string of the clause belongs to A. (This is in addition to standard components of Boolean formulas that don’t depend on A.) Oracle clauses may be negated. I prefer the somewhat more liberal definition that allows $\pm(u_1, \ldots, u_k)$ to be treated as a literal, just like $\pm w$ for the variable w denoting the output value of an ordinary (NAND) gate. Either way:

(a) Show that SATA is NPA-complete, for any oracle set A.

(b) Define MAJSATA and show that it is complete for PPA, for any A.

It is OK for answers to assume the reader already knows (the NAND-based circuit proof of) the Cook-Levin theorem and to sketch only the essential changes that are needed. (9 + 12 = 21 pts. total, for 84 pts. on the set)