
Tools and Sensitivity
Cutting right through a 30-year-old conjecture

Hao Huang is a mathematician and computer scientist at Emory University.
Last week he released a paper of only six pages that solves the Boolean
Sensitivity Conjecture, which goes back at least to a 1992 paper by Noam
Nisan and Mario Szegedy.

Today we discuss his brilliant proof and what it means for sensitivity of the
tools one employs.

Several of our blogging friends have covered this news in posts already, and
Ryan O’Donnell even summarized the proof in one tweet. Scott Aaronson’s
thread includes a comment by Huang on how he came by his proof.

We will try to draw implications for the related matter of how you might come
by proofs of other conjectures. We have previously discussed the possibility
of “overlooking short solutions to major problems.” Here we will discuss how
to find them.

A Graph Puzzle

To get a flavor of what Huang proved, consider the graph of an ordinary
cube:

The question is, can you color 5 vertices red so that no red node has 3 red
neighbors? Your first impulse might be to color 4 nodes red according to
parity so that none has a red neighbor, per below left:

1

http://www.mathcs.emory.edu/~hhuan30/papers/sensitivity_1.pdf
https://www.researchgate.net/publication/2508255_On_the_Degree_of_Boolean_Functions_as_Real_Polynomials
https://www.scottaaronson.com/blog/?p=4229
https://gilkalai.wordpress.com/2019/07/02/amazing-hao-huang-proved-the-sensitivity-conjecture/
https://blog.computationalcomplexity.org/2019/07/local-kid-makes-history.html
https://windowsontheory.org/2019/07/02/sensitivity-conjecture-proved/
https://twitter.com/BooleanAnalysis/status/1145837576487612416
https://www.scottaaronson.com/blog/?p=4229#comment-1813116
https://rjlipton.wordpress.com/2016/04/09/missing-mate-in-ten/
https://commons.wikimedia.org/wiki/File:Cube_graph.png

But then any 5th node will have 3 red neighbors. Another “greedy” idea is
to pack a subgraph of the allowed degree 2 into half the cube, as at right.
Any 5th node will again create a degree-3 vertex in the subgraph induced by
the red nodes.

The answer is that actually one can pack 6 nodes that induce a simple cycle:

Now let’s up the dimension by one—that is, take n = 4 and N = 2n = 16.
How many nodes can we color red and keep the induced degree 2?

Again the parity trick gives us degree 0 with 8 nodes, but then we can’t add
a 9th. We can greedily try to pack the outer cube with our 6-node solution,
but then—perhaps surprisingly—we can add only 2 more red nodes from the
inner cube. So we can only do 5 from the outer cube. We can get 9 overall
by:

2

The fact that one red node is isolated seems to give room to improve, but
there is no way to make 10.

The Theorem

The calculations have left an interesting jump from degree 0 with eight red
nodes and degree 2 with nine. How about degree 1? Can we do that with 9
nodes? We can pack four disjoint edges but then there is nowhere to stick
an isolated node.

So for 9 nodes, which is N
2 + 1, the best we can do is degree 2, which is

√
n.

This is what Huang proved:

Theorem 0.1. Every subgraph induced by N
2 +1 nodes of the n-dimensional

hypercube graph has a node of degree at least
√
n.

This is completely tight. When n is a perfect square there is a way to achieve√
n as the maximum degree (shown here). Otherwise the least integer above√
n is best. Thus every subgraph of the 5-cube induced by 17 nodes has a

node with three neighbors, but you can go as high as 257 nodes in the 9-cube
while keeping the maximum degree to 3.

Now we need to discuss, why is this notable?, and why was it hard to see?

Boolean Functions and Sensitivity

The parity function f⊕ is extremely sensitive: if you change one bit of any
argument x you change the value of f⊕(x). Define xi to mean x with bit i
flipped. The OR function f∨ is intuitively less sensitive, but it too has an
argument x such that f∨(xi) 6= f∨(x) for all i, namely x = 0n. For any
Boolean function f : {0, 1}n → {0, 1} define its sensitivity (at n) by

s(f) = sn(f) = max
x∈{0,1}n

||{i : f(xi) 6= f(x)}||.

The OR-of-AND function f2 is less sensitive. Say it is an OR of m blocks,
each of k variables, and the blocks use disjoint variables so n = km. If
f2(x) = 1, then some block is all 1, so flipping any other bit makes no
difference, and the most sensitive we can get is k. If f2(x) = 0 then the most
sensitive case is when all blocks have exactly one 0. So s(f2) = max{k,m}.
When k = m =

√
n, sn(f) =

√
n.

If we make each block of f2 return true if exactly one bit is 1, then we
again get sensitivity n on the all-0 assignment. Now, however, consider the
related function f ′2 (with k even, k = 2`) that is still an OR over blocks,
but each block is true when some consecutive pair x2`−1, x2` are both 1 with
all other pairs being both 0. Then we can’t do the same trick with the all-0

3

https://pdfs.semanticscholar.org/3917/3e0cb4e028c94328f1355bf02febea132127.pdf

assignment changing just one bit. So when n = 4`2 and m = k = 2` we again
get sensitivity (no more than)

√
n.

We can, however, consider f ′2 to be more sensitive if we can flip more than
one bit at a time. Partition [n] into blocks B of two consecutive bit-places
each, and given any x, define xB to be the result of flipping the bits in B.
We get n/2 blocks, and the all-0 assignment becomes a true case of f ′2 if
any block is flipped. Generally define the block sensitivity by considering any
partitions B = {Bj} of [n] into disjoint subsets and writing

bs(f) = max
x,B
||{j : f(xBj) 6= f(x)}||.

Note that not every member of the partition has to flip the function—we can
discard the ones that don’t flip and count only the disjoint subsets that do
flip the value. So back to our example, we have

bs(f ′2) =
n

2
=

1

2
s(f ′2)2.

Andris Ambainis and Xiaoming Sun improved the constant from 1
2 asymp-

totically to 2
3 , but their relation is still quadratic.

The Connections

This example of quadratic discrepancy is still the best known lower bound
on bs(f) in terms of s(f). But no one had proved anything better than an
exponential upper bound until Huang’s result, from which it follows that:

Theorem 0.2. For all Boolean functions f , bs(f) ≤ 2s(f)4.

This bound is concrete, not just asymptotic. It still leaves a gap between
quadratic and quartic. It is, however, the combination of two quadratic
upper bounds. One was shown by Nisan and Szegedy in their paper:

bs(f) ≤ 2 deg(f)2,

where deg(f) means the degree of the unique multi-linear real polynomial
that agrees with f on the cube {−1, 1}n with −1 for true. The other is the
conjecture

deg(f) ≤ s(f)2

in a 1992 paper by Craig Gotsman and Nati Linial, which is exactly what
Huang proves.

How do we get to this from Theorem 0.1? The connection to graphs was also
shown by Gotsman and Linial. With reference to our node colorings above,
let G be the graph induced by the red nodes and let g(x) = 1 if node x is
red, g(x) = 0 otherwise. Now if the maximum degree d(G) of a node in G is

4

https://arxiv.org/abs/1108.3494
https://link.springer.com/article/10.1007/BF01200762
https://www.researchgate.net/publication/2508255_On_the_Degree_of_Boolean_Functions_as_Real_Polynomials
https://www.sciencedirect.com/science/article/pii/0097316592900608

small then every red node has many white neighbors, so g is very sensitive.
However, going to each neighbor in the hypercube flips the parity. Hence the
function

g′(x) = g(x)⊕ f⊕(x)

is not very sensitive. Moreover, it has the same sensitivity as the function
h′(x) = h(x)⊕f⊕(x) where h(x) is true on the white nodes. This nice duality
between G and the graph H induced by the white nodes enables us to fix
“G” to mean whichever of the two has more nodes in the following theorem
statement:

Theorem 0.3. Provided m > 2n−1, every graph G induced by m nodes
of the n-cube has d(G) ≥

√
n if and only if every Boolean function f has

deg(f) ≤ s(f)2.

The proof uses some Fourier analysis with f = g′ as above. It, too, takes only
one page of a really short paper, and we could go into how Fourier analysis
is a highly sensitive tool in its own right. But we’ll move on to Huang and
matrix tricks.

The Proof

From my undergrad days I’ve kept an interest in spectral graph theory. One
of the basic facts is that the degree d(G) of a graph G is always at least as
great as the largest eigenvalue λ of its adjacency matrix AG. For a d-regular
graph they are equal. Huang’s first trick is to note that the classic proof of
this also allows −1 values on edges:

Lemma 0.4. Let A be a symmetric matrix obtained from AG by multiplying
some entries by −1. Then d(G) ≥ λ.

Proof. Choose an eigenvector v such that Av = λv and take an index i that
maximizes |vi|. Then

|λvi| = |(Av)i| = |
∑
j

Ai,jvj | ≤ |
∑
j

Ai,j |·|vi| ≤
∑

(i,j)∈E(G)

|Ai,j |·|vi| ≤ d(G)|vi|.

Dividing out |vi| gives the lemma.

So now what we want to do is find conditions that force λ =
√
n when G is a

m-vertex subgraph of the n-cube with m ≥ N
2 + 1, where N = 2n. The trick

that Huang realized is that he could do this by making A sit inside a matrix
AN with at least N

2 eigenvalues of
√
n.

To see how, form AN−1 by knocking out the last row and column of AN .
Since AN and AN−1 are both real and symmetric, their eigenvalues are real,

5

so we can order them λ1, . . . , λN and µ1, . . . , µN−1 in nonincreasing order.
The basic fact is that they always interlace:

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3 ≥ · · · ≥ µN−1 ≥ λN .

See this for a one-page proof. The neat point is that you can repeat this: if
you get A′′ by knocking out another row and corresponding column, and [νi]
are its eigenvalues in order, then

µ1 ≥ ν1 ≥ µ2 ≥ ν2 ≥ µ3 · · · .

It follows that λ1 ≥ ν1 ≥ λ3. If you do this again, you get a matrix whose
leading eigenvalue is still at least as big as λ4. Do it N

2 − 1 times inside AN ,
and you’re still above λN/2(AN), which we just said we will arrange to be

+
√
n. Thus if we knock out the N

2 − 1 white nodes, we will get the graph on
the red nodes with adjacency matrix Am and conclude:

λ1(AN) ≥ λ1(Am) ≥ λN/2(AN).

Plugging into the lemma gives:

d(G) ≥ λi(Am) ≥ λN/2(AN) =
√
n.

(In fact, as also noted on Scott’s blog, this case of interlacing can be inferred
from simpler reasoning—but our point is that the interlacing theorem was in
Huang’s bag of tricks.)

Building the Matrix

Finally, how do we lay hands on AN? We want a matrix of trace zero such
that A2

N = nI. Then all its eigenvalues are +
√
n and −

√
n—and in equal

numbers because they sum to the trace which is zero. So we will have N/2
eigenvalues of

√
n, as needed. And we would want AN to be the matrix of the

n-cube but that doesn’t work: each i, j entry of its square counts all paths
of length 2 from node i to node j and that number can be nonzero.

This is where the trick of putting −1 on edges comes in, and we can explain it
in a way familiar from quantum. We arrange that every 4-cycle of the n-cube
has exactly one edge with −1. Then the pairs of paths from one corner to
the opposite corner will always cancel, leaving A2

i,j = 0 whenever i 6= j. And

A2
i,j = n because there are n ways to go out and come back along the same

edge, always contributing 1 · 1 or (−1) · (−1) = 1 either way. Huang defines
the needed labeling explicitly by the recursion:

A1 =

[
0 1
1 0

]
, and for n > 1, An =

[
An−1 I
I −An−1

]
.

6

https://arxiv.org/pdf/math/0502408.pdf
https://www.scottaaronson.com/blog/?p=4229#comment-1813084

This puts a − sign on exactly one-fourth of the entries in the needed way.
That’s it—that’s the proof.

Why was it hard to spot? Dick and I believe it was the −1 trick. In the
1980s, I thought about ways to convert undirected graphs into directed ones
by putting arrows on the edges, but not −1 signs. The chance of thinking
of it maybe rises with knowing quantum. Now we can see, OK, A1 is the
quantum NOT gate and the recursion treats signs in similar fashion to the
recursion defining Hadamard matrices. This all goes to our main point about
having tools at one’s command, the more tools the better.

Open Problems

The main open problem is whether the gap between quartic and quadratic
can be closed. Huang notes that his spectral methods need not be confined
to sub-matrices of the n-cube, and our thoughts of involving quantum are
similar. Can quantum tools improve the results even further?

There is a much wider suite of Boolean complexity measures besides s(f),
bs(f), and deg(f) discussed here. For example, consider how many bits of
x you need to fix in order to preserve the value f(x). That is, define C(f)
to be the maximum over x of the minimum size of a set I ⊆ [n] such that
whenever x′ agrees with x on I, f(x′) = f(x). Clearly I needs to include
at least one bit from each Bj . This proves C(f) ≥ bs(f). There are many
other relations that might be improved—or at least better understood—by
new methods.

7

