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1 Introduction

The purposes of complexity theory are to ascertain the amount of computational resources required

to solve important computational problems, and to classify problems according to their difficulty.

The resource most often discussed is computational time, although memory (space) and circuitry (or

hardware) have also been studied. The main challenge of the theory is to prove lower bounds, i.e.,

that certain problems cannot be solved without expending large amounts of resources. Although

it is easy to prove that inherently difficult problems exist, it has turned out to be much more

difficult to prove that any interesting problems are hard to solve. There has been much more

success in providing strong evidence of intractability, based on plausible, widely-held conjectures.

In both cases, the mathematical arguments of intractability rely on the notions of reducibility and

completeness—which are the topics of the next chapter. Before one can understand reducibility

and completeness, however, one must grasp the notion of a complexity class—and that is the topic

of this chapter.

First, however, we want to demonstrate that complexity theory really can prove—to even the

most skeptical practitioner—that it is hopeless to try to build programs or circuits that solve

certain problems. As our example, we consider the manufacture and testing of logic circuits and

communication protocols. Many problems in these domains are solved by building a logical formula
1Supported by the National Science Foundation under Grant CCR-9509603. Portions of this work were performed

while a visiting scholar at the Institute of Mathematical Sciences, Madras, India.
2Supported by the National Science Foundation under Grant CCR-9315696.
3Supported by the National Science Foundation under Grant CCR-9409104.
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over a certain vocabulary, and then determining whether the formula is logically valid, or whether

counterexamples (that is, bugs) exist. The choice of vocabulary for the logic is important here, as

the next paragraph illustrates.

One particular logic that was studied in [Stockmeyer, 1974] is called WS1S. (We need not be

concerned with any details of this logic.) Stockmeyer showed that any circuit that takes as input

a formula with up to 616 symbols and produces as output a correct answer saying whether the

formula is valid, requires at least 10123 gates. According to [Stockmeyer, 1987],

Even if gates were the size of a proton and were connected by infinitely thin wires, the

network would densely fill the known universe.

Of course, Stockmeyer’s theorem holds for one particular sort of circuitry, but the awesome size of

the lower bound makes it evident that, no matter how innovative the architecture, no matter how

clever the software, no computational machinery will enable us to solve the validity problem in this

logic. For the practitioner testing validity of logical formulas, the lessons are (1) be careful with

the choice of the logic, (2) use small formulas, and often (3) be satisfied with something less than

full validity testing.

In contrast to this result of Stockmeyer, most lower bounds in complexity theory are stated

asymptotically. For example, one might show that a particular problem requires time Ω(t(n)) to

solve on a Turing machine, for some rapidly-growing function t. For the Turing machine model, no

other type of lower bound is possible, because Turing machines have the linear-speed-up property

(see Chapter 24, Theorem 3.1). This property makes Turing machines mathematically convenient

to work with, since constant factors become irrelevant, but it has the by-product—which some find

disturbing—that for any n there is a Turing machine that handles inputs of length n in just n steps

by looking up answers in a big table. Nonetheless, these asymptotic lower bounds essentially always

can be translated into concrete lower bounds on, say, the number of components of a particular

technology, or the number of clock cycles on a particular vendor’s machine, that are required to

compute a given function on a certain input size.4

4The skeptical practitioner can still argue that these lower bounds hold only for the worst-case behavior of an
algorithm, and that these bounds are irrelevant if the worst case arises very rarely in practice. There is a complexity
theory of problems that are hard on average (as a counterpoint to the average case analysis of algorithms considered
in Chapter 14), but to date only a small number of natural problems have been shown to be hard in this sense, and
this theory is beyond the scope of this volume. See Further Information at the end of this chapter.
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Sadly, to date, few general complexity-theoretic lower bounds are known that are interesting

enough to translate into concrete lower bounds in this sense. Even worse, for the vast majority of

important problems that are believed to be difficult, no nontrivial lower bound on complexity is

known today. Instead, complexity theory has contributed (1) a way of dividing the computational

world up into complexity classes, and (2) evidence suggesting that these complexity classes are

probably distinct. If this evidence can be replaced by mathematical proof, then we will have an

abundance of interesting lower bounds.

1.1 What is a Complexity Class?

Typically, a complexity class is defined by (1) a model of computation, (2) a resource (or collection

of resources), and (3) a function known as the complexity bound for each resource.

The models used to define complexity classes fall into two main categories: (a) machine-

based models, and (b) circuit-based models. Turing machines (TMs) and random-access machines

(RAMs) are the two principal families of machine models; they were described in Chapter 24. We

describe circuit-based models later, in Section 3. Other kinds of (Turing) machines were also intro-

duced in Chapter 24, including deterministic, nondeterministic, alternating, and oracle machines.

When we wish to model real computations, deterministic machines and circuits are our closest

links to reality. Then why consider the other kinds of machines? There are two main reasons.

The most potent reason comes from the computational problems whose complexity we are

trying to understand. The most notorious examples are the hundreds of natural NP-complete

problems (see [Garey and Johnson, 1988]). To the extent that we understand anything about the

complexity of these problems, it is because of the model of nondeterministic Turing machines.

Nondeterministic machines do not model physical computation devices, but they do model real

computational problems. There are many other examples where a particular model of computation

has been introduced in order to capture some well-known computational problem in a complexity

class. This phenomenon is discussed at greater length in Chapter 29.

The second reason is related to the first. Our desire to understand real computational prob-

lems has forced upon us a repertoire of models of computation and resource bounds. In order to

understand the relationships between these models and bounds, we combine and mix them and

attempt to discover their relative power. Consider, for example, nondeterminism. By considering
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the complements of languages accepted by nondeterministic machines, researchers were naturally

led to the notion of alternating machines. When alternating machines and deterministic machines

were compared, a surprising virtual identity of deterministic space and alternating time emerged.

Subsequently, alternation was found to be a useful way to model efficient parallel computation.

(See Sections 2.8 and 3.4 below.) This phenomenon, whereby models of computation are general-

ized and modified in order to clarify their relative complexity, has occurred often through the brief

history of complexity theory, and has generated some of the most important new insights.

Other underlying principles in complexity theory emerge from the major theorems showing re-

lationships between complexity classes. These theorems fall into two broad categories. Simulation

theorems show that computations in one class can be simulated by computations that meet the

defining resource bounds of another class. The containment of nondeterministic logarithmic space

(NL) in polynomial time (P), and the equality of the class P with alternating logarithmic space,

are simulation theorems. Separation theorems show that certain complexity classes are distinct.

Complexity theory currently has precious few of these. The main tool used in those separation

theorems we have is called diagonalization. We illustrate this tool by giving proofs of some sep-

aration theorems in this chapter. In the next chapter, however, we show some apparently severe

limitations of this tool. This ties in to the general feeling in computer science that lower bounds

are hard to prove. Our current inability to separate many complexity classes from each other is

perhaps the greatest challenge to our intellect posed by complexity theory.

2 Time and Space Complexity Classes

We begin by emphasizing the fundamental resources of time and space for deterministic and non-

deterministic Turing machines. We concentrate on resource bounds between logarithmic and expo-

nential, because those bounds have proved to be the most useful for understanding problems that

arise in practice.

Time complexity and space complexity were defined in Chapter 24, Definition 3.1. We

repeat Definition 3.2 of that chapter to define the following fundamental time classes and

fundamental space classes, given functions t(n) and s(n):

• DTIME[t(n)] is the class of languages decided by deterministic Turing machines of time com-
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plexity t(n).

• NTIME[t(n)] is the class of languages decided by nondeterministic Turing machines of time

complexity t(n).

• DSPACE[s(n)] is the class of languages decided by deterministic Turing machines of space

complexity s(n).

• NSPACE[s(n)] is the class of languages decided by nondeterministic Turing machines of space

complexity s(n).

We sometimes abbreviate DTIME[t(n)] to DTIME[t] (and so on) when t is understood to be a

function, and when no reference is made to the input length n.

2.1 Canonical Complexity Classes

The following are the canonical complexity classes:

• L = DSPACE[log n] (deterministic log space)

• NL = NSPACE[log n] (nondeterministic log space)

• P = DTIME[nO(1)] =
⋃
k≥1 DTIME[nk] (polynomial time)

• NP = NTIME[nO(1)] =
⋃
k≥1 NTIME[nk] (nondeterministic polynomial time)

• PSPACE = DSPACE[nO(1)] =
⋃
k≥1 DSPACE[nk] (polynomial space)

• E = DTIME[2O(n)] =
⋃
k≥1 DTIME[kn]

• NE = NTIME[2O(n)] =
⋃
k≥1 NTIME[kn]

• EXP = DTIME[2n
O(1)

] =
⋃
k≥1 DTIME[2n

k
] (deterministic exponential time)

• NEXP = NTIME[2n
O(1)

] =
⋃
k≥1 NTIME[2n

k
] (nondeterministic exponential time)

• EXPSPACE = DSPACE[2n
O(1)

] =
⋃
k≥1 DSPACE[2n

k
] (exponential space)

The space classes PSPACE and EXPSPACE are defined in terms of the DSPACE complexity measure.

By Savitch’s Theorem (see Theorem 2.3 in Section 2.4), the NSPACE measure with polynomial

bounds also yields PSPACE, and with 2n
O(1)

bounds yields EXPSPACE.
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2.2 Why Focus on These Classes?

The class P contains many familiar problems that can be solved efficiently, such as finding shortest

paths in networks, parsing context-free grammars, sorting, matrix multiplication, and linear pro-

gramming. By definition, in fact, P contains all problems that can be solved by (deterministic)

programs of reasonable worst-case time complexity.

But P also contains problems whose best algorithms have time complexity n10500
. It seems

ridiculous to say that such problems are computationally feasible. Nevertheless, there are four

important reasons to include these problems:

1. For the main goal of proving lower bounds, it is sensible to have an overly generous notion of

the class of feasible problems. That is, if we show that a problem is not in P, then we have

shown in a very strong way that solution via deterministic algorithms is impractical.

2. The theory of complexity-bounded reducibility (Chapter 28) is predicated on the simple

notion that if functions f and g are both easy to compute, then the composition of f and g

should also be easy to compute. If we want to allow algorithms of time complexity n2 to be

considered feasible (and certainly many algorithms of this complexity are used daily), then

we are immediately led to regard running times n4, n8, . . . as also being feasible. Put another

way, the choice is either to lay down an arbitrary and artificial limit on feasibility (and to

forgo the desired property that the composition of easy functions be easy), or to go with the

natural and overly-generous notion given by P.

3. Polynomial time has served well as the intellectual boundary between feasible and infeasible

problems. Empirically, problems of time complexity n10500
do not arise in practice, while

problems of time complexity O(n4), and those proved or believed to be Ω(2n), occur often.

Moreover, once a polynomial-time algorithm for a problem is found, the foot is in the door,

and an armada of mathematical and algorithmic techniques can be used to improve the

algorithm. Linear programming may be the best known example. The breakthrough O(n8)

time algorithm of [Khachiyan, 1979], for n × n instances, was impractical in itself, but it

prompted an innovation by [Karmarkar, 1984] that produced an algorithm whose running

time of about O(n3) on all cases competes well commercially with the simplex method, which

6



runs in O(n3) time in most cases but takes 2n time in some. Of course, if it should turn out

that the Hamiltonian circuit problem (or some other NP-complete problem) has complexity

n10500
, then the theory would need to be overhauled. For the time being, this seems unlikely.

4. We would like our fundamental notions to be independent of arbitrary choices we have made

in formalizing our definitions. There is much that is arbitrary and historically accidental in

the prevalent choice of the Turing machine as the standard model of computation. This choice

does not affect the class P itself, however, because the natural notions of polynomial time for

essentially all models of sequential computation that have been devised yield the same class.

The random-access and pointer machine models described in Section 4 of Chapter 24 can

be simulated by Turing machines with at most a cubic increase in time. Many feel that our

“true” experience of running time on real sequential computers falls midway between Turing

machines and these more-powerful models, but this only bolsters our conviction that the class

P gives the “true” notion of polynomial time.

By analogy to the famous Church-Turing thesis (see Chapter 26, Section 4), which states that

the definition of a (partial) recursive function captures the intuitive notion of a computable process,

several authorities have proposed the following

“Polynomial-Time Church-Turing Thesis.” The class P captures the true notion of those

problems that are computable in polynomial time by sequential machines, and is the same for any

physically relevant model and minimally reasonable time measure of sequential computation that

will ever be devised.

This thesis extends also to parallel models if “time” is replaced by the technologically important

notion of parallel work (see Chapter 45, on parallel computation).

Another way in which the concept of P is robust is that P is characterized by many concepts

from logic and mathematics that do not mention machines or time. Some of these characterizations

are surveyed in Chapter 29.

The class NP can also be defined by means other than nondeterministic Turing machines. NP

equals the class of problems whose solutions can be verified quickly, by deterministic machines in

polynomial time. Equivalently, NP comprises those languages whose membership proofs can be
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checked quickly.

For example, one language in NP is the set of composite numbers, written in binary. A proof

that a number z is composite can consist of two factors z1 ≥ 2 and z2 ≥ 2 whose product z1z2 equals

z. This proof is quick to check if z1 and z2 are given, or guessed. Correspondingly, one can design

a nondeterministic Turing machine N that on input z branches to write down “guesses” for z1 and

z2, and then deterministically multiplies them to test whether z1z2 = z. Then L(N), the language

accepted by N , equals the set of composite numbers, since there exists an accepting computation

path if and only if z really is composite. Note that N does not really solve the problem—it just

checks the candidate solution proposed by each branch of the computation.

Another important language in NP is the set of satisfiable Boolean formulas, called SAT. A

Boolean formula φ is satisfiable if there exists a way of assigning true or false to each variable

such that under this truth assignment, the value of φ is true. For example, the formula x ∧ (x ∨ y)

is satisfiable, but x ∧ y ∧ (x ∨ y) is not satisfiable. A nondeterministic Turing machine N , after

checking the syntax of φ and counting the number n of variables, can nondeterministically write

down an n-bit 0-1 string a on its tape, and then deterministically (and easily) evaluate φ for the

truth assignment denoted by a. The computation path corresponding to each individual a accepts if

and only if φ(a) = true, and so N itself accepts φ if and only if φ is satisfiable; i.e., L(N) = SAT.

Again, this checking of given assignments differs significantly from trying to find an accepting

assignment.

The above characterization of NP as the set of problems with easily verified solutions is for-

malized as follows: A ∈ NP if and only if there exist a language A′ ∈ P and a polynomial p such

that for every x, x ∈ A if and only if there exists a y such that |y| ≤ p(|x|) and (x, y) ∈ A′. Here,

whenever x belongs to A, y is interpreted as a positive solution to the problem represented by x,

or equivalently, as a proof that x belongs to A. The difference between P and NP is that between

solving and checking, or between finding a proof of a mathematical theorem and testing whether a

candidate proof is correct. In essence, NP represents all sets of theorems with proofs that are short

(i.e., of polynomial length), while P represents those statements that can proved or refuted quickly

from scratch.

The theory of NP-completeness, together with the many known NP-complete problems, is per-

haps the best justification for interest in the classes P and NP. All of the other canonical complexity
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classes listed above have natural and important problems that are complete for them (under var-

ious reducibility relations, the subject of the next chapter). Further motivation for studying L,

NL, and PSPACE, comes from their relationships to P and NP. Namely, L and NL are the largest

space-bounded classes known to be contained in P, and PSPACE is the smallest space-bounded class

known to contain NP. (It is worth mentioning here that NP does not stand for “non-polynomial

time”; the class P is a subclass of NP.)

Similarly, EXP is of interest primarily because it is the smallest deterministic time class known

to contain NP. The closely-related class E is not known to contain NP; we will see in Section 2.7

the main reason for interest in E.

2.3 Constructibility

Before we go further, we need to introduce the notion of constructibility. Without it, no meaningful

theory of complexity is possible.

The most basic theorem that one should expect from complexity theory would say, “If you have

more resources, you can do more.” Unfortunately, if we aren’t careful with our definitions, then

this claim is false:

Theorem 2.1 (Gap Theorem) There is a computable time bound t(n) such that DTIME[t(n)] =

DTIME[22t(n)
].

That is, there is an empty gap between time t(n) and time doubly-exponentially greater than t(n),

in the sense that anything that can be computed in the larger time bound can already be computed

in the smaller time bound. That is, even with much more time, you can’t compute more. This gap

can be made much larger than doubly-exponential; for any computable r, there is a computable

time bound t such that DTIME[t(n)] = DTIME[r(t(n))]. Exactly analogous statements hold for the

NTIME, DSPACE, and NSPACE measures.

Fortunately, the gap phenomenon cannot happen for time bounds t that anyone would ever be

interested in. Indeed, the proof of the Gap Theorem proceeds by showing that one can define a time

bound t such that no machine has a running time that is between t(n) and 22t(n)
. This theorem

indicates the need for formulating only those time bounds that actually describe the complexity of

some machine.
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A function t(n) is time-constructible if there exists a deterministic Turing machine that halts

after exactly t(n) steps for every input of length n. A function s(n) is space-constructible if there

exists a deterministic Turing machine that uses exactly s(n) worktape cells for every input of length

n. (Most authors consider only functions t(n) ≥ n + 1 to be time-constructible, and many limit

attention to s(n) ≥ log n for space bounds. There do exist sub-logarithmic space-constructible

functions, but we prefer to avoid the tricky theory of o(log n) space bounds.)

For example, t(n) = n + 1 is time-constructible. Furthermore, if t1(n) and t2(n) are time-

constructible, then so are the functions t1+t2, t1t2, tt21 , and ct1 for every integer c > 1. Consequently,

if p(n) is a polynomial, then p(n) = Θ(t(n)) for some time-constructible polynomial function t(n).

Similarly, s(n) = logn is space-constructible, and if s1(n) and s2(n) are space-constructible, then

so are the functions s1 + s2, s1s2, ss21 , and cs1 for every integer c > 1. Many common functions are

space-constructible: e.g., n log n, n3, 2n, n!.

Constructibility helps eliminate an arbitrary choice in the definition of the basic time and space

classes. For general time functions t, the classes DTIME[t] and NTIME[t] may vary depending on

whether machines are required to halt within t steps on all computation paths, or just on those

paths that accept. If t is time-constructible and s is space-constructible, however, then DTIME[t],

NTIME[t], DSPACE[s], and NSPACE[s] can be defined without loss of generality in terms of Turing

machines that always halt.

As a general rule, any function t(n) ≥ n+1 and any function s(n) ≥ log n that one is interested

in as a time or space bound, is time- or space-constructible, respectively. As we have seen, little

of interest can be proved without restricting attention to constructible functions. This restriction

still leaves a rich class of resource bounds.

The Gap Theorem is not the only case where intuitions about complexity are false. Most people

also expect that a goal of algorithm design should be to arrive at an optimal algorithm for a given

problem. In some cases, however, no algorithm is remotely close to optimal.

Theorem 2.2 (Speed-Up Theorem) There is a decidable language A such that for every ma-

chine M that decides A, with running time u(n), there is another machine M ′ that decides A much

faster: its running time t(n) satisfies 22t(n) ≤ u(n) for all but finitely many n.

This statement, too, holds with any computable function r(t) in place of 22t . Put intuitively, the
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program M ′ running on an old IBM PC is better than the program M running on the fastest

hardware to date. Hence A has no best algorithm, and no well-defined time-complexity function.

Unlike the case of the Gap Theorem, the speed-up phenomenon may hold for languages and time

bounds of interest. For instance, a problem of time complexity bounded by t(n) = nlogn, which is

just above polynomial time, may have arbitrary polynomial speed-up—i.e., may have algorithms

of time complexity t(n)1/k for all k > 0.

One implication of the Speed-Up Theorem is that the complexities of some problems need to be

sandwiched between upper and lower bounds. Actually, there is a sense in which every problem has

a well defined lower bound on time. For every language A there is a computable function t0 such

that for every time-constructible function t, there is some machine that accepts A within time t if

and only if t = Ω(t0) [Levin, 1996]. A catch, however, is that t0 itself may not be time-constructible.

2.4 Basic Relationships

Clearly, for all time functions t(n) and space functions s(n), DTIME[t(n)] ⊆ NTIME[t(n)] and

DSPACE[s(n)] ⊆ NSPACE[s(n)], because a deterministic machine is a special case of a nondeter-

ministic machine. Furthermore, DTIME[t(n)] ⊆ DSPACE[t(n)] and NTIME[t(n)] ⊆ NSPACE[t(n)],

because at each step, a k-tape Turing machine can write on at most k = O(1) previously unwritten

cells. The next theorem presents additional important relationships between classes.

Theorem 2.3 Let t(n) be a time-constructible function, and let s(n) be a space-constructible func-

tion, s(n) ≥ log n.

(a) NTIME[t(n)] ⊆ DTIME[2O(t(n))].

(b) NSPACE[s(n)] ⊆ DTIME[2O(s(n))].

(c) NTIME[t(n)] ⊆ DSPACE[t(n)].

(d) (Savitch’s Theorem) NSPACE[s(n)] ⊆ DSPACE[s(n)2].

As a consequence of the first part of this theorem, NP ⊆ EXP. No better general upper bound on

deterministic time is known for languages in NP, however. See Figure 2 for other known inclusion

relationships between canonical complexity classes—the classes AC0, TC0, and NC1 are defined in

Section 3.4.
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Although we do not know whether allowing nondeterminism strictly increases the class of lan-

guages decided in polynomial time, Savitch’s Theorem says that for space classes, nondeterminism

does not help by more than a polynomial amount.

2.5 Complementation

For a language A over an alphabet Σ, define A to be the complement of A in the set of words over

Σ: A = Σ∗ − A. For a class of languages C, define co-C = {A : A ∈ C }. If C = co-C, then C is

closed under complementation.

In particular, co-NP is the class of languages that are complements of languages in NP. For

the language SAT of satisfiable Boolean formulas, SAT is the set of unsatisfiable formulas, whose

value is false for every truth assignment, together with the syntactically incorrect formulas. A

closely related language in co-NP is the set of Boolean tautologies, namely, those formulas whose

value is true for every truth assignment. The question of whether NP equals co-NP comes down

to whether every tautology has a short (i.e., polynomial-sized) proof. The only obvious general

way to prove a tautology φ in m variables is to verify all 2m rows of the truth table for φ, taking

exponential time. Most complexity theorists believe that there is no general way to reduce this

time to polynomial, hence that NP 6= co-NP.

Questions about complementation bear directly on the P vs. NP question. It is easy to show

that P is closed under complementation (see the next theorem). Consequently, if NP 6= co-NP, then

P 6= NP.

Theorem 2.4 (Complementation Theorems) Let t be a time-constructible function, and let s

be a space-constructible function, with s(n) ≥ log n for all n. Then

(a) DTIME[t] is closed under complementation.

(b) DSPACE[s] is closed under complementation.

(c) (Immerman-Szelepcsényi Theorem) NSPACE[s] is closed under complementation.

The Complementation Theorems are used to prove the Hierarchy Theorems in the next section.
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2.6 Hierarchy Theorems and Diagonalization

Diagonalization is the most useful technique for proving the existence of computationally difficult

problems. In this section, we will see examples of two rather different types of arguments, both

of which can be called “diagonalization,” and we will see how these are used to prove hierarchy

theorems in complexity theory.

A hierarchy theorem is a theorem that says “If you have more resources, you can compute more.”

As we saw in Section 2.3, this theorem is possible only if we restrict attention to constructible time

and space bounds. Next, we state hierarchy theorems for deterministic and nondeterministic time

and space classes. In the following, ⊂ denotes strict inclusion between complexity classes.

Theorem 2.5 (Hierarchy Theorems) Let t1 and t2 be time-constructible functions, and let s1

and s2 be space-constructible functions, with s1(n), s2(n) ≥ log n for all n.

(a) If t1(n) log t1(n) = o(t2(n)), then DTIME[t1] ⊂ DTIME[t2].

(b) If t1(n+ 1) = o(t2(n)), then NTIME[t1] ⊂ NTIME[t2].

(c) If s1(n) = o(s2(n)), then DSPACE[s1] ⊂ DSPACE[s2].

(d) If s1(n) = o(s2(n)), then NSPACE[s1] ⊂ NSPACE[s2].

As a corollary of the Hierarchy Theorem for DTIME,

P ⊆ DTIME[nlogn] ⊂ DTIME[2n] ⊆ E;

hence we have the strict inclusion P ⊂ E. Although we do not know whether P ⊂ NP, there exists

a problem in E that cannot be solved in polynomial time. Other consequences of the Hierarchy

Theorems are NE ⊂ NEXP and NL ⊂ PSPACE.

In the Hierarchy Theorem for DTIME, the hypothesis on t1 and t2 is t1(n) log t1(n) = o(t2(n)),

instead of t1(n) = o(t2(n)), for technical reasons related to the simulation of machines with mul-

tiple worktapes by a single universal Turing machine with a fixed number of worktapes. Other

computational models, such as random access machines, enjoy tighter time hierarchy theorems.

All proofs of the Hierarchy Theorems use the technique of diagonalization. For example, the

proof for DTIME constructs a Turing machine M of time complexity t2 that considers all machines
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M1,M2, . . . whose time complexity is t1; for each i, the proof finds a word xi that is accepted by

M if and only if xi /∈ L(Mi), the language decided by Mi. Consequently, L(M), the language

decided by M , differs from each L(Mi), hence L(M) /∈ DTIME[t1]. The diagonalization technique

resembles the classic method used to prove that the real numbers are uncountable, by constructing

a number whose jth digit differs from the jth digit of the jth number on the list. To illustrate

the diagonalization technique, we outline proofs of the Hierarchy Theorems for DSPACE and for

NTIME. In this subsection, 〈i, x〉 stands for the string 0i1x, and zeroes(y) stands for the number

of 0’s that a given string y starts with. Note that zeroes(〈i, x〉) = i.

Proof. (of the DSPACE Hierarchy Theorem)

We construct a deterministic Turing machine M that decides a language A such that A ∈

DSPACE[s2]− DSPACE[s1].

Let U be a deterministic universal Turing machine, as described in Chapter 26, Section 2.2. On

input x of length n, machine M performs the following:

1. Lay out s2(n) cells on a worktape.

2. Let i = zeroes(x).

3. Simulate the universal machine U on input 〈i, x〉. Accept x if U tries to use more than s2

worktape cells. (We omit some technical details, such as interleaving multiple worktapes onto

the fixed number of worktapes of M , and the way in which the constructibility of s2 is used

to ensure that this process halts.)

4. If U accepts 〈i, x〉, then reject; if U rejects 〈i, x〉, then accept.

Clearly, M always halts and uses space O(s2(n)). Let A = L(M).

Suppose A ∈ DSPACE[s1(n)]. Then there is some Turing machine Mj accepting A using space

at most s1(n). The universal Turing machine U can easily be given the property that its space

needed to simulate a given Turing machine Mj is at most a constant factor higher than the space

used by Mj itself. More precisely, there is a constant k depending only on j (in fact, we can take

k = |j|), such that U , on inputs z of the form z = 〈j, x〉, uses at most ks1(|x|) space.

Since s1(n) = o(s2(n)), there is an n0 such that ks1(n) ≤ s2(n) for all n ≥ n0. Let x be a string

of length greater than n0 such that the first j + 1 symbols of x are 0j1. Note that the universal
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Turing machine U , on input 〈j, x〉, simulates Mj on input x and uses space at most ks1(n) ≤ s2(n).

Thus, when we consider the machine M defining A, we see that on input x the simulation does

not stop in step 3, but continues on to step 4, and thus x ∈ A if and only if U rejects 〈j, x〉.

Consequently, Mj does not accept A, contrary to our assumption. Thus A /∈ DSPACE[s1(n)]. 2

A more sophisticated argument is required to prove the Hierarchy Theorem for NTIME. To

see why, note that it is necessary to diagonalize against nondeterministic machines, and thus it is

necessary to use a nondeterministic universal Turing machine as well. In the deterministic case,

when we simulated an accepting computation of the universal machine, we would reject, and if we

simulated a rejecting computation of the universal machine, we would accept. That is, we would do

exactly the opposite of what the universal machine does, in order to “fool” each simulated machine

Mi. If the machines under consideration are nondeterministic, then Mi can have both an accepting

path and a rejecting path on input x, in which case the universal nondeterministic machine would

accept input 〈i, x〉. If we simulate the universal machine on an input and accept upon reaching a

rejecting leaf and reject if upon reaching an accepting leaf, then this simulation would still accept

(because the simulation that follows the rejecting path now accepts). Thus, we would fail to do the

opposite of what Mi does.

The following careful argument guarantees that each machine Mi is fooled on some input. It

draws on a result of [Book et al., 1970] that every language in NTIME[t(n)] is accepted by a two-tape

nondeterministic Turing machine that runs in time t(n).

Proof. (of the NTIME Hierarchy Theorem)

Let M1,M2, . . . be an enumeration of two-tape nondeterministic Turing machines running in

time t1(n). Let f be a rapidly-growing function such that time f(i, n, s) is enough time for a

deterministic machine to compute the function

(i, n, s) 7→
{

1 if Mi accepts 1n in ≤ s steps
0 otherwise

Letting f(i, n, s) be greater than 22i+n+s
is sufficient.

Now divide Σ∗ into regions, so that in region j = 〈i, y〉, we try to “fool” machine Mi. Note that

each Mi is considered infinitely often. The regions are defined by functions start(j) and end(j),

defined as follows: start(1) = 1, start(j + 1) = end(j) + 1, where taking i = zeroes(j), we have
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end(j) = f(i, start(j), t2(start(j))). The important point is that, on input 1end(j), a deterministic

machine can, in time t2(end(j)), determine whether Mi accepts 1start(j) in at most t2(start(j))

steps.

By picking f appropriately easy to invert, we can guarantee that, on input 1n, we can in time

t2(n) determine which region j contains n.

Now it is easy to verify that the following routine can be performed in time t2(n) by a nonde-

terministic machine. (In the pseudo-code below, U is a “universal” nondeterministic machine with

4 tapes, which is therefore able to simulate one step of machine Mi in O(i3) steps.)

1. On input 1n, determine which region j contains n. Let j = 〈i, y〉.

2. If n = end(j), then accept if and only if Mi does not accept 1start(j) within t2(start(j)) steps.

3. Otherwise, accept if and only if U accepts 〈i, 1n+1〉 within t2(n) steps. (Here, it is important

that we are talking about t2(n) steps of U , which may be only about t2(n)/i3 steps of Mi.)

Let us call the language accepted by this procedure A. Clearly A ∈ NTIME[t2(n)]. We now

claim that A /∈ NTIME[t1(n)].

Assume otherwise, and let Mi be the nondeterministic machine accepting A in time t1(n).

Recall that Mi has only two tapes. Let c be a constant such that i3t1(n + 1) < t2(n) for all

n ≥ c. Let y be a string such that |y| ≥ c, and consider stage j = 〈i, y〉. Then for all n such that

start(j) ≤ n < end(j), we have 1n ∈ A if and only if 1n+1 ∈ A. However this contradicts the fact

that 1start(j) ∈ A if and only if 1end(j) /∈ A. 2

Although the diagonalization technique successfully separates some pairs of complexity classes,

diagonalization does not seem strong enough to separate P from NP. (See Theorem 7.1 in Chap-

ter 28.)

2.7 Padding Arguments

A useful technique for establishing relationships between complexity classes is the padding argu-

ment. Let A be a language over alphabet Σ, and let # be a symbol not in Σ. Let f be a numeric

function. The f-padded version of A is the language

A′ = {x#f(n) : x ∈ A and n = |x|}
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That is, each word of A′ is a word in A concatenated with f(n) consecutive # symbols. The

padded version A′ has the same information content as A, but because each word is longer, the

computational complexity of A′ is smaller!

The proof of the next theorem illustrates the use of a padding argument.

Theorem 2.6 If P = NP, then E = NE.

Proof. Since E ⊆ NE, we prove that NE ⊆ E.

Let A ∈ NE be decided by a nondeterministic Turing machine M in at most t(n) = kn time

for some constant integer k. Let A′ be the t(n)-padded version of A. From M , we construct a

nondeterministic Turing machine M ′ that decides A′ in linear time: M ′ checks that its input has

the correct format, using the time-constructibility of t; then M ′ runs M on the prefix of the input

preceding the first # symbol. Thus, A′ ∈ NP.

If P = NP, then there is a deterministic Turing machine D′ that decides A′ in at most p′(n) time

for some polynomial p′. From D′, we construct a deterministic Turing machine D that decides A,

as follows. On input x of length n, since t(n) is time-constructible, machine D constructs x#t(n),

whose length is n+t(n), in O(t(n)) time. Then D runs D′ on this input word. The time complexity

of D is at most O(t(n)) + p′(n+ t(n)) = 2O(n). Therefore, NE ⊆ E. 2

A similar argument shows that the E = NE question is equivalent to the question of whether

NP− P contains a subset of 1∗, that is, a language over a single-letter alphabet.

Padding arguments sometimes can be used to give tighter hierarchies than can obtained by

straightforward diagonalization. For instance, Theorem 2.5 leaves open the question of whether,

say, DTIME[n3 log1/2 n] = DTIME[n3]. We can show that these classes are not equal, by using a

padding argument. We will need the following lemma, whose proof is similar to that of Theorem

2.6.

Lemma 2.7 (Translational Lemma) Let t1, t2, and f be time-constructible functions. If

DTIME[t1(n)] = DTIME[t2(n)], then DTIME[t1(f(n))] = DTIME[t2(f(n))].

Theorem 2.8 For any real number a > 0 and natural number k ≥ 1, DTIME[nk] ⊂

DTIME[nk loga n].
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Proof. Suppose for contradiction that DTIME[nk] = DTIME[nk loga n]. For now let us also

suppose that a > 1/2. Taking f(n) = 2n/k, and using the linear speed-up property, we obtain

from the Translational Lemma the identity DTIME[2nna] = DTIME[2n]. This does not yet give

the desired contradiction to the DTIME Hierarchy Theorem—but it is close. We’ll need to use the

Translational Lemma twice more.

Assume that DTIME[2nna] = DTIME[2n]. Using the Translational Lemma with f(n) =

2n yields DTIME[22n2an] = DTIME[22n ]. Applying the Lemma once again on the classes

DTIME[2nna] = DTIME[2n], this time using f(n) = 2n + an, we obtain DTIME[22n2anf(n)a] =

DTIME[22n2an]. Combining these two equalities yields DTIME[22n2anf(n)a] = DTIME[22n ]. Since

f(n)a > 2an, we have that 2anf(n)a > 22an = 2n2bn for some b > 0 (since a > 1/2). Thus

DTIME[22n2n2bn] = DTIME[22n ], and this result contradicts the DTIME Hierarchy Theorem, since

22n log 22n = o(22n2n2bn).

Finally, for any fixed a > 0, not just a > 1/2, we need to apply the Translational Lemma several

more times. 2

One consequence of this theorem is that within P, there can be no “complexity gaps” of size

(log n)Ω(1).

2.8 Alternating Complexity Classes

In this section, we define time and space complexity classes for alternating Turing machines, and we

show how these classes are related to the classes introduced already. Alternating Turing machines

and their configurations are defined in Chapter 24, Section 2.4.

The possible computations of an alternating Turing machine M on an input word x can be

represented by a tree Tx in which the root is the initial configuration, and the children of a nonter-

minal node C are the configurations reachable from C by one step of M . For a word x in L(M),

define an accepting subtree S of Tx as follows:

• S is finite.

• The root of S is the initial configuration with input word x.

• If S has an existential configuration C, then S has exactly one child of C in Tx; if S has a

universal configuration C, then S has all children of C in Tx.
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• Every leaf is a configuration whose state is the accepting state qA.

Observe that each node in S is an accepting configuration.

We consider only alternating Turing machines that always halt. For x ∈ L(M), define the time

taken by M to be the height of the shortest accepting tree for x, and the space to be the maximum

number of non-blank worktape cells among configurations in the accepting tree that minimizes this

number. For x 6∈ L(M), define the time to be the height of Tx, and the space to be the maximum

number of non-blank worktape cells among configurations in Tx.

Let t(n) be a time-constructible function, and let s(n) be a space-constructible function. Define

the following complexity classes:

• ATIME[t(n)] is the class of languages decided by alternating Turing machines of time com-

plexity O(t(n)).

• ASPACE[s(n)] is the class of languages decided by alternating Turing machines of space com-

plexity O(s(n)).

Because a nondeterministic Turing machine is a special case of an alternating Turing machine,

for every t(n) and s(n), NTIME(t) ⊆ ATIME(t) and NSPACE(s) ⊆ ASPACE(s). The next theorem

states further relationships between computational resources used by alternating Turing machines,

and resources used by deterministic and nondeterministic Turing machines.

Theorem 2.9 (Alternation Theorems) Let t(n) be a time-constructible function, and let s(n)

be a space-constructible function, s(n) ≥ log n.

(a) NSPACE[s(n)] ⊆ ATIME[s(n)2]

(b) ATIME[t(n)] ⊆ DSPACE[t(n)]

(c) ASPACE[s(n)] ⊆ DTIME[2O(s(n))]

(d) DTIME[t(n)] ⊆ ASPACE[log t(n)]

In other words, space on deterministic and nondeterministic Turing machines is polynomially

related to time on alternating Turing machines. Space on alternating Turing machines is exponen-

tially related to time on deterministic Turing machines. The following corollary is immediate.
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Theorem 2.10

(a) ASPACE[O(log n)] = P.

(b) ATIME[nO(1)] = PSPACE.

(c) ASPACE[nO(1)] = EXP.

Note that Theorem 2.9(a) says, for instance, that NL is contained in ATIME(log2(n)). For this

to make sense, it is necessary to modify the definition of alternating Turing machines to allow them

to read individual bits of the input in constant time, rather than requiring n time units to traverse

the entire input tape. This has become the standard definition of alternating Turing machines,

because it is useful in establishing relationships between Turing machine complexity and circuit

complexity, as explained in the upcoming section.

3 Circuit Complexity

Up to now, this chapter has been concerned only with complexity classes that were defined in

order to understand the nature of sequential computation. Although we called them “machines,”

the models discussed here and in Chapter 24 are closer in spirit to software, namely to sequential

algorithms or to single-processor machine-language programs. Circuits were originally studied to

model hardware. The hardware of electronic digital computers is based on digital gates, connected

into combinational and sequential networks. Whereas a software program can branch and even

modify itself while running, hardware components on today’s typical machines are fixed and can-

not reconfigure themselves. Also, circuits capture well the notion of non-branching, straight-line

computation.

Furthermore, circuits provide a good model of parallel computation. Many machine models,

complexity measures, and classes for parallel computation have been devised, but the circuit com-

plexity classes defined here coincide with most of them. Chapter 45 in this volume surveys parallel

models and their relation to circuits in more detail.

3.1 Kinds of Circuits

A circuit can be formalized as a directed graph with some number n of sources, called input nodes

and labeled x1, . . . , xn, and one sink, called the output node. The edges of the graph are called wires.
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Every non-input node v is called a gate, and has an associated gate function gv that takes as many

arguments as there are wires coming into v. In this survey we limit attention to Boolean circuits,

meaning that each argument is 0 or 1, although arithmetical circuits with numeric arguments and

+, ∗ (etc.) gates have also been studied in complexity theory. Formally gv is a function from { 0, 1 }r

to { 0, 1 }, where r is the fan-in of v. The value of the gate is transmitted along each wire that goes

out of v. The size of a circuit is the number of nodes in it.

We restrict attention to circuits C in which the graph is acyclic, so that there is no “feedback.”

Then every Boolean assignment x ∈ { 0, 1 }n of values to the input nodes determines a unique value

for every gate and wire, and the value of the output gate is the output C(x) of the circuit. The

circuit accepts x if C(x) = 1.

The sequential view of a circuit is obtained by numbering the gates in a manner that respects

the edge relation, meaning that for all edges (u, v), gu has a lower number than gv. Then the

gate functions in that order become a sequence of basic instructions in a straight-line program that

computes C(x). The size of the circuit becomes the number of steps in the program. However,

this view presumes a single processing unit that evaluates the instructions in sequence, and ignores

information that the graphical layout provides. A more powerful view regards the gates as simple

processing units that can act in parallel. Every gate whose incoming wires all come from input

nodes can act and compute its value at step 1, and every other gate can act and transmit its value

at the first step after all gates on its incoming wires have computed their values. The number of

steps for this process is the depth of the circuit. Depth is a notion of parallel time complexity . A

circuit with small depth is a fast circuit. The circuit size in this view is the amount of hardware

needed. Chapter 45 gives much more information on the the correspondence between circuits and

parallel machines, and gives formal definitions of size and depth.

A circuit family C consists of a sequence of circuits {C1, C2, . . .}, where each Cn has n input

nodes. The language accepted by the family is L(C) = {x : C|x| accepts x }. (Circuit families

computing functions f : { 0, 1 }∗ → { 0, 1 }∗ are defined in Chapter 45.)

The size complexity of the family is the function z(n) giving the number of nodes in Cn. The

depth complexity is the function d(n) giving the depth of Cn.

Another aspect of circuits that must be specified in order to define complexity classes is the

underlying technology. By technology we mean the types of gates that are used as components in
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the circuits. Three types of technology are considered in this chapter:

(1) Bounded fan-in gates, usually taken to be the “standard basis” of binary ∧ (AND), binary

∨ (OR), and unary ¬ (NOT) gates. A notable alternative is to use NAND gates.

(2) Unbounded fan-in ∧ and ∨ gates (together with unary ¬ gates).

(3) Threshold gates. For our purposes, it suffices to consider the simplest kind of threshold gate,

called the MAJORITY gate, which also uses the Boolean domain. A MAJORITY gate outputs

1 if and only if at least r/2 of its r incoming wires have value 1. These gates can simulate

unbounded fan-in ∧ and ∨ with the help of “dummy wires.” Threshold circuits also have

unary ¬ gates.

The difference between (1) and (2) corresponds to general technological issues about high-

bandwidth connections, whether they are feasible and how powerful they are. Circuits of type

(1) can be converted to equivalent circuits that also have bounded fan-out , with only a constant-

factor penalty in size and depth. Thus the difference also raises issues about one-to-many broadcast

and all-to-one reception.

Threshold gates model the technology of neural networks, which were formalized in the 1940s.

The kind of threshold gate studied most often in neural networks uses Boolean arguments and

values, with ‘1’ for “firing” and ‘0’ for “off.” It has numerical weights w1, . . . , wr for each of the

r incoming wires and a threshold t. Letting a1, . . . , ar stand for the incoming 0-1 values, the

gate outputs 1 if
∑r
i=1 aiwi ≥ t, 0 otherwise. Thus the MAJORITY gate is the special case with

w1 = . . . = wr = 1 and t = r/2. A depth-2 (sub-)circuit of MAJORITY gates can simulate this

general threshold gate.

3.2 Uniformity and Circuit Classes

One tricky aspect of circuit complexity is the fact that many functions that are not computable

have trivial circuit complexity! For instance, let K be a non-computable set of numbers, such as

the indices of halting Turing machines, and let A be the language {x : |x| ∈ K}. For each n, if

n ∈ K, then define Cn by attaching a ¬ gate to input x1 and an OR gate whose two wires come

from the ¬ gate and x1 itself. If n /∈ K, then define Cn similarly but with an AND gate in place of

the OR. The circuit family [Cn] so defined accepts A and has size and depth 2. The rub, however,

22



is that there is no algorithm to tell which choice for Cn to define for each n. A related anomaly

is that there are uncountably many circuit families. Indeed, every language is accepted by some

circuit family [Cn] with size complexity 2O(n) and depth complexity 3 (unbounded fan-in) or O(n)

(bounded fan-in). Consequently, for general circuits, size complexity is at most exponential, and

depth complexity is at most linear.

The notion of uniform circuit complexity avoids both anomalies. A circuit family [Cn] is

uniform if there is an easy algorithm Q that, given n, outputs an encoding of Cn. Either the

adjacency-matrix or the edge-list representation of the graphs of the circuits Cn, together with the

gate type of each node, may serve for our purposes as the standard encoding scheme for circuit

families. If Q runs in polynomial time, then the circuit family is P-uniform, and so on.

P-uniformity is natural because it defines those families of circuits that are feasible to construct.

However, we most often use circuits to model computation in subclasses of P. Allowing powerful

computation to be incorporated into the step of building C|x| may overshadow the computation

done by the circuit C|x| itself. The following much more stringent condition has proved to be most

useful for characterizing these subclasses, and also works well for circuit classes at the level of

polynomial time.

Definition 3.1. A circuit family [Cn] is DLOGTIME-uniform if there is a Turing machine M that

can answer questions of the forms “Is there a path of edges from node u to node v in Cn?” and

“What gate type does node u have?” in O(log n) time.

This uniformity condition is sufficient to build an encoding of Cn in sequential time roughly propor-

tional to the size of Cn, and even much faster in parallel time. We will not try to define DLOGTIME

as a complexity class, but note that since the inputs u, v to M can be presented by strings of length

O(log n), the computation by M takes linear time in the (scaled down) input length. This defini-

tion presupposes that the size complexity z(n) of the family is polynomial, which will be our chief

interest here. The definition can be modified for z(n) more than polynomial by changing the time

limit on M to O(log z(n)). Many central results originally proved using L-uniformity extend with-

out change to DLOGTIME-uniformity, as explained later in this section. Unless otherwise stated,

“uniform” means DLOGTIME-uniform throughout this and the next two chapters. We define the

following circuit complexity classes:
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Definition 3.2. Given complexity functions z(n) and d(n),

• SIZE[z(n)] is the class of all languages accepted by DLOGTIME-uniform bounded fan-in circuit

families whose size complexity is at most z(n);

• DEPTH[d(n)] is the class of all languages accepted by DLOGTIME-uniform bounded fan-in

circuit families whose depth complexity is at most d(n);

• SIZE,DEPTH[z(n), d(n)] is the class of all languages accepted by DLOGTIME-uniform bounded

fan-in circuit families whose size complexity is at most z(n) and whose depth complexity is

at most d(n).

Non-uniform circuit classes can be approached by an alternative view introduced by [Karp and

Lipton, 1982], by counting the number of bits of information needed to set up the preprocessing. For

integer-valued functions t, a, define DTIME[t(n)]/ADV[a(n)] to be the class of languages accepted

by Turing machines M as follows: for all n there is a word yn of length at most a(n) such that for all

x of length n, on input (x, yn), M accepts if and only if x ∈ L, and M halts within t(n) steps. Here

yn is regarded as “advice” on how to accept strings of length n. The class DTIME[nO(1)]/ADV[nO(1)]

is called P/poly. Karp and Lipton observed that P/poly is equal to the class of languages accepted

by polynomial-sized circuits. Indeed, P/poly is now the standard name for this class.

3.3 Circuits and Sequential Classes

The importance of P/poly and uniformity is shown by the following basic theorem. We give the

proof since it is used often in the next chapter.

Theorem 3.1 Every language in P is accepted by a family of polynomial-sized circuits that is

DLOGTIME-uniform. Conversely, every language with P-uniform polynomial-sized circuits belongs

to P.

Proof. Let A ∈ P. By Theorem 2.4 of Chapter 24, A is accepted by a Turing machine M with

just one tape and tape head that runs in polynomial time p(n). Let δ be the transition function of

M , whereby for all states q of M and characters c in the worktape alphabet Γ of M , δ(q, c) specifies

the character written to the current cell, the movement of the head, and the next state of M . We
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build a circuit of “δ-gates” that simulates M on inputs x of a given length n as follows, and then

show how to simulate δ-gates by Boolean gates.

Lay out a p(n) × p(n) array of cells. Each cell (i, j) (0 ≤ i, j ≤ p(n)) is intended to hold the

character on tape cell j after step i of the computation of M , and if the tape head of M is in that

cell, also the state of M after step i. Cells (0, 0) through (0, n−1) are the input nodes of Cn, while

cells (0, n) through (0, p(n)) can be treated as “dummy wires” whose value is the blank B in the

alphabet Γ. The key idea is that the value in cell (i, j) for i ≥ 1 depends only on the values in cells

(i−1, j−1), (i−1, j), and (i−1, j+1). Cell (i−1, j−1) is relevant in case its value includes the component

for the tape head being there, and the head moves right at step i; cell (i−1, j+1) similarly for a left

move.

When the boundary cases j = 0 or j = p(n) are handled properly, each cell value is computed

by the same finite function of the three cells above, and this function defines a “δ-gate” for each cell.

(See Figure 1.) Finally, we may suppose that M is coded to signal acceptance by moving its tape

head to the left end and staying in a special state qa. Thus node (i, 0) becomes the output gate of

the circuit, and the accepting output values are those with qa in the state component. Since in p(n)

steps M can visit at most p(n) tape cells, the array is large enough to hold all the computations of

M on inputs of length n.

Since each argument and value of a δ-gate comes from a finite domain, we may take an (arbi-

trary) binary encoding of the domain, and replace all δ-gates by identical fixed-size sub-circuits of

Boolean gates that compute δ under the encoding. If the alphabet Σ over which A is defined is

{ 0, 1 } then no re-coding need be done at the inputs; otherwise, we similarly adopt a binary en-

coding of Σ. The Boolean circuits Cn thus obtained accept A. They also are DLOGTIME-uniform,

intuitively by the very regular structure of the identical δ-gates.

Conversely, given a P-uniform family C, a Turing machine can accept L(C) in polynomial time

given any input x by first constructing C|x| in polynomial time, and then evaluating C|x|(x). 2

A caching strategy that works for Turing machines with any fixed number of tapes yields the

following improvement:

Theorem 3.2 If t(n) is a time-constructible function, then DTIME(t) ⊆ SIZE(t log t).

Connections between space complexity and circuit depth are shown by the next result.
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Figure 1: Conversion from Turing machine to Boolean circuits
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Theorem 3.3 (a) If d(n) ≥ log n, then DEPTH[d(n)] ⊆ DSPACE[d(n)].

(b) If s(n) is a space-constructible function and s(n) ≥ log n, then NSPACE[s(n)] ⊆

DEPTH[s(n)2].

3.4 Circuits and Parallel Classes

Since the 1970s, research on circuit complexity has focused on problems that can be solved quickly

in parallel, with feasible amounts of hardware—circuit families of polynomial size and depth as

small as possible. Note, however, that the meaning of the phrase “as small as possible” depends on

the technology used. With unbounded fan-in gates, depth O(1) is sufficient to carry out interesting

computation, whereas with fan-in two gates, depth less than log n is impossible if the value at the

output gate depends on all of the input bits. In any technology, however, a circuit with depth nearly

logarithmic is considered to be very fast. This observation motivates the following definitions. Let

logk n stand for (log n)k.

Definition 3.3. For all k ≥ 0,

(a) NCk denotes the class of languages accepted by DLOGTIME-uniform bounded fan-in

circuit families of polynomial size and O(logk n) depth. In other words, NCk =

SIZE,DEPTH[nO(1), O(logk n)]. NC denotes ∪k≥0NCk.

(b) ACk denotes the class of languages accepted by DLOGTIME-uniform families of circuits of

unbounded fan-in ∧ , ∨ , and ¬ gates, again with polynomial size and O(logk n) depth.

(c) TCk denotes the class of languages accepted by DLOGTIME-uniform families of circuits of

MAJORITY and ¬ gates, again with polynomial size and O(logk n) depth.

The case k = 0 in these definitions gives constant-depth circuit families. A function f is said to

belong to one of these classes if the language Af = { 〈x, i, b〉 : 1 ≤ i ≤ |f(x)| and bit i of f(x) is b }

belongs to the class. NC0 is not studied as a language class in general, since the output gate can

depend on only a constant number of input bits, but NC0 is interesting as a function class.

Some notes on the nomenclature are in order. Nicholas Pippenger was one of the first to study

polynomial-size, polylog-depth circuits in the late 1970s, and NC was dubbed “Nick’s Class.” There

is no connotation of nondeterminism in NC. The “A” in ACk connotes both alternating circuits and
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alternating Turing machines for reasons described below. The “T” in TCk stands for the presence

of threshold gates.

The following theorem expresses the relationships at each level of the hierarchies defined by

these classes.

Theorem 3.4 For each k ≥ 0,

NCk ⊆ ACk ⊆ TCk ⊆ NCk+1.

Proof. The first inclusion is immediate (for each k), and the second conclusion follows from

the observation noted above that MAJORITY gates can simulate unbounded fan-in AND and

OR gates. The interesting case is TCk ⊆ NCk+1. For this, it suffices to show how to sim-

ulate a single MAJORITY gate with a fan-in two circuit of logarithmic depth. To simulate

MAJORITY(w1, . . . , wr), we add up the one-bit numbers w1, . . . , wr and test whether the sum

is at least r/2. We may suppose for simplicity that the fan-in r is a power of 2, r = 2m. The circuit

has m distinguished nodes that represent the sum written as an m-bit binary number. Then the

sum is at least r/2 = 2m−1 if and only if the node representing the most significant bit of the sum

has value 1.

To compute the sum efficiently, we use a standard “carry-save” technique: There is a simple

O(1) depth fan-in two circuit that takes as input three b-bit binary numbers a1, a2, a3 and produces

as output two (b+1)-bit numbers b1, b2 such that a1 + a2 + a3 = b1 + b2. Thus in one phase, the

original sum of r bits is reduced to taking the sum of 2
3r numbers, and after O(log r) additional

phases, the problem is reduced to taking the sum of two log r-bit numbers, and this sum can be

produced by a full carry-lookahead adder circuit of O(log r) depth. Finally, since the circuits have

polynomial size, r is polynomial in n, and so O(log r) = O(log n). 2

Thus in particular, ∪kACk = ∪kTCk = NC. The only proper inclusion known, besides the trivial

case NC0 ⊂ AC0, is AC0 ⊂ TC0, discussed in Section 3.5 below. For all we know at this time, TC0

may be equal not only to NC, but even to NP!

Several relationships between complexity classes based on circuits and classes based on Turing

machines are known:

Theorem 3.5 NC1 ⊆ L ⊆ NL ⊆ AC1.
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In fact, the connection with Turing machines is much closer than this theorem suggests. Using

alternating Turing machines (see Section 2.8 above), we define the following complexity classes:

• ASPACE,TIME[s(n), t(n)] is the class of languages recognized by alternating Turing machines

that use space at most s(n) and also run in time at most t(n).

• ASPACE,ALTS[s(n), a(n)] is the class of languages recognized by alternating Turing machines

that use space at most s(n) and make at most a(n) alternations between existential and

universal states.

• ATIME,ALTS[s(n), a(n)] is the class of languages recognized by alternating Turing machines

that run in time t(n) and make at most a(n) alternations between existential and universal

states.

Theorem 3.6 (a) For all k ≥ 1, NCk = ASPACE,TIME[O(log n), O(logk n)].

(b) For all k ≥ 1, ACk = ASPACE,ALTS[O(log n), O(logk n)].

(c) NC1 = ATIME[O(log n)].

(d) AC0 = ATIME,ALTS[O(log n), O(1)].

For AC1 and the higher circuit classes, changing the uniformity condition to L-uniformity does not

change the class of languages. However, it is not known whether L-uniform NC1 differs from NC1,

nor L-uniform AC0 from AC0. Thus the natural extension (c,d) of the results in (a,b) is another

advantage of DLOGTIME-uniformity. Insofar as the containment of NC1 in L is believed to be

proper by many researchers, the definition of L-uniform NC1 may allow more computing power to

the “preprocessing stage” than to the circuits themselves. Avoiding this anomaly is a reason to

adopt DLOGTIME-uniformity.

As discussed in Chapter 45, many other models of parallel computation can be used to define

NC. This robustness of NC supports the belief that NC is not merely an artifact of some arbitrary

choices made in formulating the definitions, but instead captures a fundamental aspect of parallel

computation. The criticism has been made that NC is overly generous in allowing polynomial size.

Again, the justification in complexity theory is that the ultimate goal is to prove lower bounds,

and a lower bound proved against a generous upper-bound notion is impervious to this criticism.
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3.5 Why Focus on These Circuit Classes?

The class AC0 is particularly important for the following reasons:

• It captures the complexity of important basic operations such as integer addition and sub-

traction.

• It corresponds closely to first-order logic, as described in Chapter 29, Section 4.

• Most important, it is one of the few complexity classes for which lower bounds are actually

known, instead of merely being conjectured.

It is known that AC0 circuits, even non-uniform ones, cannot recognize the language Parity

of strings that have an odd number of 1’s. Consequently, constant depth unbounded fan-in

AND/OR/NOT circuits for Parity must have super-polynomial size. However, Parity does

have constant-depth polynomial-size threshold circuits; indeed, it belongs to TC0.

Note that this also implies that AC0 is somehow “finer” than the notion of constant space,

because the class of regular languages, which includes Parity, can be decided in constant space.

There has been much progress on proving lower bounds for classes of constant-depth circuits. Still,

the fact that TC0 is not known to differ from NP is a wide gulf in our knowledge. Separating NC

from P, or L from P, or L from NP would imply separating TC0 from NP.

TC0 is important because it captures the complexity of important basic operations such as

integer multiplication and sorting. Further, integer division is known to be in P-uniform TC0, and

many suspect that DLOGTIME-uniformity would also be sufficient. Also, TC0 is a good complexity-

theoretic counterpart to popular models of neural networks.

NC1 is important because it captures the complexity of the basic operation of evaluating a

Boolean formula on a given assignment. The problem of whether NC1 equals TC0 thus captures the

question of whether basic calculations in logic are harder than basic operations in arithmetic, or

harder than basic neural processes. Several other characterizations of NC1 besides the one given for

ATIME[O(log n)] are known. NC1 equals the class of languages definable by polynomial-size Boolean

formulas (as opposed to polynomial-sized circuits; a formula is equivalent to a circuit of fan-out

1). Also, NC1 equals the class of languages recognized by bounded-width branching programs, for

which see [Barrington, 1989]. Finally, NC1 captures the circuit complexity of regular expressions.
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4 Research Issues and Summary

The complexity class is the fundamental notion of complexity theory. What makes a complexity

class useful to the practitioner is the close relationship between complexity classes and real com-

putational problems. The strongest such relationship comes from the concept of completeness,

which is a chief subject of the next chapter. Even in the absence of lower bounds separating

complexity classes, the apparent fundamental difference between models such as deterministic and

nondeterministic Turing machines, for example, provides insight into the nature of problem solving

on computers.

The initial goal when trying to solve a computational problem is to find an efficient polynomial-

time algorithm. If this attempt fails, then one could attempt to prove that no efficient algorithm

exists, but to date nobody has succeeded doing this for any problem in PSPACE. With the notion

of a complexity class to guide us, however, we can attempt to discover the complexity class that

exactly captures our current problem. A main theme of the next chapter is the surprising fact that

most natural computational problems are complete for one of the canonical complexity classes.

When viewed in the abstract setting provided by the model that defines the complexity class, the

aspects of a problem that make an efficient algorithm difficult to achieve are easier to identify.

Often this perspective leads to a redefinition of the problem in a way that is more amenable to

solution.

Figure 2 shows the known inclusion relationships between canonical classes. Perhaps even more

significant is what is currently not known. Although AC0 differs from TC0, TC0 (let alone P!) is

not known to differ from NP, nor NP from EXP, nor EXP from EXPSPACE. The only other proper

inclusions known are (immediate consequences of) L 6= PSPACE 6= EXPSPACE, P 6= E 6= EXP, and

NP 6= NE 6= NEXP—and these follow simply from the hierarchy theorems proved in this chapter.

We have given two examples of diagonalization arguments. Diagonalization is still the main tool

for showing the existence of hard-to-compute problems inside a complexity class. Unfortunately, the

languages constructed by diagonalization arguments rarely correspond to computational problems

that arise in practice. In some cases, however, one can show that there is an efficient reduction

from a difficult problem (shown to exist by diagonalization) to a more natural problem—with

the consequence that the natural problem is also difficult to solve. Thus diagonalization inside a
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complexity class (the topic of this chapter) can work hand-in-hand with reducibility (the topic of

the next chapter) to produce intractability results for natural computational problems.

5 Defining Terms

Canonical complexity classes: The classes defined by logarithmic, polynomial, and exponential

bounds on time and space, for deterministic and nondeterministic machines. These are the

most central to the field, and classify most of the important computational problems.

Circuit A network of input, output, and logic gates, contrasted with a Turing machine in that

its hardware is static and fixed.

Circuit complexity The study of the size, depth, and other attributes of circuits that decide

specified languages or compute specified functions.

Diagonalization: A proof technique for showing that a given language does not belong to a given

complexity class, used in many separation theorems.

Padding argument: A method for transferring results about one complexity bound to another

complexity bound, by padding extra dummy characters onto the inputs of the machines

involved.

Polynomial-Time Church-Turing Thesis: An analogue of the classical Church-Turing The-

sis, for which see Chapter 26, stating that the class P captures the true notion of feasible

(polynomial time) sequential computation.

Separation theorems: Theorems showing that two complexity classes are distinct. Most known

separation theorems have been proved by diagonalization.

Simulation theorems: Theorems showing that one kind of computation can be simulated by

another kind within stated complexity bounds. Most known containment or equality rela-

tionships between complexity classes have been proved this way.

Space-constructible function: A function s(n) that gives the actual space used by some Turing

machine on all inputs of length n, for all n

32



�
�
�
�

�
�
�
�

@
@
@
@

@
@
@
@

EXPSPACE

NEXP

EXP

PSPACE

NP

P

NC

NL

NC1

TC0

AC0

L

E

NE

Figure 2: Inclusion relationships between the canonical complexity classes.

33



Time-constructible function: A function t(n) that is the actual running time of some Turing

machine on all inputs of length n, for all n.

Uniform circuit family: A sequence of circuits, one for each input length n, that can be

efficiently generated by a Turing machine.

Uniform circuit complexity The study of complexity classes defined by uniform circuit families.
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Further Information

Primary sources for the results presented in this chapter are: Theorem 2.1 [Trakhtenbrot, 1964,

Borodin, 1972]; Theorem 2.2 [Blum, 1967]; Theorems 2.3 and 2.4 [Hartmanis and Stearns, 1965,

Lewis II et al., 1965, Savitch, 1970, Immerman, 1988, Szelepcsényi, 1988]; Theorem 2.5 [Hartmanis

and Stearns, 1965, Ibarra, 1972, Seiferas et al., 1978]; Theorem 2.6 [Book, 1974]; Lemma 2.7 [Ruby

and Fischer, 1965]; Theorems 2.9 and 2.10 [Chandra et al., 1981]; Theorem 3.1 [Savitch, 1970];

Theorem 3.2 [Pippenger and Fischer, 1979]; Theorem 3.3 [Borodin, 1977]; Theorem 3.6 [Ruzzo,

1981, Chandra et al., 1984, Sipser, 1983, Barrington et al., 1990]. Theorems 3.4 and 3.5 are a

combination of results in the last four papers; see also the influential survey by Cook [Cook, 1985].

Our proof of Theorem 2.5(b) follows [Zak, 1983].

For Section 3.1, a comparison of arithmetical circuits with Boolean circuits may be found in

[von zur Gathen, 1991], the result that bounded fan-in circuits can be given bounded fan-out is

due to [Hoover et al., 1984], and the sharpest simulation of general weighted threshold gates by

MAJORITY gates is due to [Hofmeister, 1996]. The theorem in Section 3.5 that Parity is not in

AC0 is due to [Furst et al., 1984, Ajtai, 1983], and the strongest lower bounds known on the size of

constant-depth circuits for Parity are those in [H̊astad, 1989]. The results mentioned for TC0 may

be found in [Barrington et al., 1990, Reif and Tate, 1992, Immerman and Landau, 1995].

The texts [Hopcroft and Ullman, 1979] and [Papadimitriou, 1994] present many of these results

in greater technical detail. Three chapters of the Handbook of Theoretical Computer Science,

respectively [Johnson, 1990], [van Emde Boas, 1990], and [Boppana and Sipser, 1990], describe
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more complexity classes, compare complexity measures for more machine models, and present more

information on circuit complexity. Relationships between circuits and parallel and neural models are

covered very accessibly in [Parberry, 1994]. Average-case complexity is discussed by [Wang, 1997,

Impagliazzo, 1995, Gurevich, 1991]. See also Chapter 29 and the notes at the end of that chapter

for further sources.

Two important new research areas that challenge our arguments about feasible computation in

Section 2.2 are quantum computing and DNA computing . Two new survey articles on these fields

are [Berthiaume, 1997] and [Kurtz et al., 1997].
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