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Abstract

Many randomized algorithms M in the literature have the following features: M may
produce different valid outputs for different random strings, may output erroneous values,
and/or may fail to give any output at all. This paper formalizes and studies these features,
and compares the probabilistic function classes thus defined to language classes such as BPP,
RP, and ZPP. The two main problems we study are whether the distribution of outputs can
be skewed in favor of one valid value, and whether the probability that M behaves correctly
can be amplified. We show that if a certain symmetry between two values in fully-polynomial
randomized approximation schemes can be broken, then the answer to the former is yes, and
we prove many cases in which the answer to the latter is no.
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1 Introduction

The purpose of this paper is to investigate systematically the many kinds of “randomized algo-
rithms” which have been developed in the literature. These algorithms may produce different
outputs on different random inputs, or may produce no outputs at all. Right away this requires
attention to concepts of multivalued and partial functions, of types of error the algorithms may
make, and of bounds on these errors.

Consider the following two randomized algorithms in finite fields, specialized to the fields
GF(2n) for n ≥ 1. The first, given by von zur Gathen and Giesbrecht [vzGG90], searches for an
element u in GF(2n) which is normal over GF(2), meaning that the elements {u, u2, u4, . . . , u2n−1 }
form a basis for GF(2n) as vector space over GF(2). The second one searches for an element u
which is primitive, meaning that the set {u, u2, u3, . . . , u2n−1 } of powers of u runs through all
the non-zero elements of GF(2n).

M1: Input 0n

Flip n coins to form an element u ∈ GF(2n).
Run the Hensel test (see [vzGG90]) to determine whether u is normal.
If the test passes, output u, else output ⊥.

M2: Input 0n

Run the deterministic polynomial-time procedure of Shoup [Sho92], which forms
a set Sn of polynomial size such that at least one element of Sn is primitive.

Flip coins to select an element u of Sn.
Output u and halt.

M1 computes the multivalued function normal(0n) 7→ u if u is normal in GF(2n) over GF(2).
Its success probability on one trial is at least 1/ log n, according to estimates in [vzGG90]. The
Hensel test for GF(2n) is computable in polynomial time, and characterizes normal elements.
Hence it is possible to amplify the success probability to 1 − 2−q(n), q a polynomial, by doing
d(log n)q(n) loge 2e repeated trials of M1. The resulting randomized algorithm M ′1 runs in poly-
nomial time, never outputs an erroneous value, and outputs ⊥ with exponentially vanishing (ev)
error probability.

However, no counterpart of the Hensel test is known for the multivalued function prim(0n) 7→
u if u is primitive in GF(2n). Instead, M2(0n) is prone to make a mapping error (ME); that is,
output an incorrect value when a correct value exists. Since S has polynomial size, we can at least
say that the success probability is non-negligible, or equivalently, that the error is non-prohibitive
(np). But we know of no way to amplify it. Some theoretical issues of practical importance are:

(1) When can probabilities be amplified?

(2) For all x, can a single element of set-f(x) be found with high probability?

We call (2) the problem of monic selection; this is not known to be possible for finding normal
elements and many similar functions. This paper undertakes a formal study of these questions.
We present a uniform notation system for all the concepts in this introduction, and give some
absolute separation results among the classes of partial functions so defined. We tie certain other
questions to long-standing open problems about language classes.
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2 Preliminaries

In this paper, strings given as inputs, typically denoted by x, y, z, w, . . . are defined over some
alphabet Σ which includes, but need not equal, { 0, 1 }. Random strings, typically denoted by r,
are over { 0, 1 } only. The empty string is denoted by λ. If x is an initial substring (i.e., prefix) of
y, then we write x v y. The length of a string x is denoted by |x|, the cardinality of a set S by
‖S‖. By “polynomials” we always mean strictly increasing polynomials.

Formally, a partial multivalued function f is the same as a function set-f from Σ∗ to finite
subsets of Σ∗. We write f(x) 7→ y if y ∈ set-f(x), and say that y is a value of f . We will sometimes
regard functions f as taking values in the integers Z or the non-negative integers N rather than
Σ∗. If for all x, ‖set-f(x)‖ ≤ 1, then f is (partial) single-valued . The domain of f is defined by
dom(f) = {x : set-f(x) 6= ∅ }. If dom(f) = Σ∗, then f is total . The graph of f is defined by
graph(f) = { 〈x, y〉 : f(x) 7→ y }, where 〈·, ·〉 is some pairing function which is computable and
invertible in linear time.

We take for granted in this paper that multivalued functions f are polynomial length bounded ,
meaning that there is a polynomial q such that whenever y ∈ set-f(x), |y| ≤ q(|x|). With this
in mind, Selman’s class NPMV [Sel82] can be defined as { f : graph(f) ∈ NP }. In naming our
probabilistic function classes, we follow the general notational scheme of [Sel91] exemplified by
the following:

• NPSV = { f ∈ NPMV : f is single-valued }.

• NPMVg = { f ∈ NPMV : graph(f) ∈ P }.

• NPMVt = { f ∈ NPMV : f is total }.

These modifiers can be combined: NPSVg, NPMVgt, and so on. PF denotes the class of deter-
ministic polynomial time computable total functions.

If dom(f) = dom(g) and graph(f) ⊆ graph(g), then f is a refinement of g. Finally, for any
classes F and G of multivalued partial functions, we write G ⊆c F to signify that every function
in G has a refinement in F . For example, the function sat which maps a Boolean formula x to
y iff y is a satisfying assignment of x belongs to NPMVg, but not to NPMVt. It is known that
NPMV ⊆c NPSV iff sat has a refinement in NPSV, and this happens only if the polynomial
hierarchy collapses to Σp

2 [HNOS93].

3 Probabilistic Transducers and Function Classes

The following formalizes the model used widely in the literature, and conveniently lets us write
Prr[M(x, r) = y] with r understood as drawn uniformly from { 0, 1 }p(|x|).

Definition 3.1. A probabilistic polynomial-time transducer is a deterministic Turing machine M
which has two input tapes, one for the input x and one for the random string r, and which runs
in time p(|x|), where p is a polynomial. On any input x of length n, r is chosen under uniform
distribution from { 0, 1 }p(n). M(x, r) may either accept and output a value y ∈ Σ∗, or reject and
output ⊥. For short we call M a p-machine.

Our intent is that M probabilistically computes a partial function f(x) of one variable. In ac-
tuality, M deterministically computes a polynomial-time function g(x, r) of two variables; if we
count ⊥ as a value, then g is total. There are several kinds of errors which a p-machine M can
make on a given input x and random r:
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Erroneous Rejection: x ∈ dom(f), but M(x, r) rejects.
Erroneous Acceptance: x /∈ dom(f), but M(x, r) accepts.
Mapping Error: x ∈ dom(f), but M(x, r) returns a string y /∈ set-f(x).

These three kinds of errors are mutually exclusive. We write PrME(M,f, x) for
Prr[M on input x makes a mapping error], and PrER(M,f, x), PrEA(M,f, x) similarly for erro-
neous rejection or acceptance. We say that M makes a domain error if it makes either a rejection
or acceptance error. Having these three kinds of error is intended as the function-class analogue
of “1-sided” or “2-sided” error for languages.

Definition 3.2. Let er, ea, and em be functions from N into [0, 1] which stand for tolerated
probabilities of error. Then a multivalued partial function f belongs to PRMV(er, ea, em) if there
is a p-machine M such that for all inputs x, PrER(M,f, x) ≤ er(|x|), PrEA(M,f, x) ≤ ea(|x|), and
PrME(M,f, x) ≤ em(|x|).

If f is partial single valued, we write f ∈ PRSV(er, ea, em). If for all x, ‖set-f(x)‖ ≤ 2, then
f ∈ PR2V(er, ea, em).

Just as it is useful to speak of “bounded error” for languages in BPP without specifying a particular
bound, so we generalize the above in terms of conditions on error probabilities.

Definition 3.3. The following error bound conditions on error probabilities P (n), where P (n)
stands for max|x|=n PrER(M,f, x), max|x|=n PrEA(M,f, x), or max|x|=n PrME(M,f, x), can be used
in defining PRMV(·, ·, ·) function classes (here q stands for a polynomial):

Name Abbrev. Defining condition
No condition − (∀∞n) P (n) < 1
Non-prohibitive np (∃q)(∀∞n) P (n) < 1− 1/q(n)
Unbounded u (∀∞n) P (n) < 1/2
Bounded b (∃ε > 0) (∀∞n) P (n) < 1/2− ε
Vanishing v (∀ε > 0) (∀∞n) P (n) < ε
Polynomially vanishing (q fixed) pv q (∀∞n) P (n) < 1/q(n)
Negligible n (∀q) (∀∞n) P (n) < 1/q(n)
Exponentially vanishing (q fixed) ev q (∀∞n) P(n) < 2−q(n)

Zero error z (∀∞n) P(n) = 0.

Given conditions Er, Ea, and Em, f belongs to PRMV(Er, Ea, Em) if there exists a p-machine M
such that PrER(M,f, x) satisfies Er, and similarly for Ea and Em.

When languages L in BPP are said to have “exponentially vanishing error,” the meaning
is that for every polynomial q there exists a BPP-machine M such that for all x, Pr[M(x) 6=
L(x)] ≤ 2−q(|x|). Rather than take one more level of abstraction to formalize this, we appeal to
this common parlance to make the meaning of e.g. “PRMV(ev , ev , ev)” clear; viz. for each q,
there exists an M which meets ev q conditions on all three kinds of error simultaneously. The
following most important examples illustrate the notation.

Definition 3.4. BPMV stands for PRMV(b, b, b). That is, a partial multivalued function f
belongs to BPMV if there exists a p-machine M and ε > 0 such that for all x ∈ Σ∗,

(i) x ∈ dom(f) =⇒ Prr[M(x, r) ∈ set-f(x)] > 1/2 + ε.
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(ii) x /∈ dom(f) =⇒ Prr[M(x, r) 6= ⊥] < 1/2− ε.

If f is total, then (ii) can be deleted, and we can write f ∈ PRMV(b, z , b). Note that f ∈
PRMV(b, z , b) need not imply that f is total; but one can extend f to a total function f ′ by
defining f ′(x) = 0 for x /∈ dom(f), and make the p-machine M output 0 instead of ⊥. Doing
this introduces one subtlety: previously when x ∈ dom(f) and M(x, r) = ⊥ this was classed as
erroneous rejection, but now it is a mapping error. To define BPSV for partial single-valued f ,
replace (i) by

x ∈ dom(f) =⇒ Prr[M(x, r) = f(x)] > 1/2 + ε. (1)

Definition 3.5. ZPMV stands for PRMV(b, z , z ). Put another way, f ∈ ZPMV if there exist
ε > 0 and a p-machine M such that for all x ∈ Σ∗:

(a) For all r ∈ { 0, 1 }p(n), M(x, r) ∈ set-f(x) or M(x, r) = ⊥.

(b) x ∈ dom(f) =⇒ Prr[M(x, r) = ⊥] < 1/2− ε.

Similarly, ZPSV stands for PRSV(b, z , z ). The choices of names are justified by results in the
next section. First we express the observation that bounded-error probabilities can be amplified
if either (a) f is single-valued, or (b) graph(f) belongs to P (or to BPP, for that matter). When
graph(f) ∈ P , erroneous acceptance and mapping errors need never occur.

Proposition 3.1 (a) BPSV = PRSV(ev , ev , ev).
(b) BPMVg, ZPMVg, and even PRMV(np,np,np), are all the same as PRMVg(ev , z , z ).

The proof is by standard means of taking polynomially many repeated trials, using majority vote
in (a). As a corollary to (a) of the known result for BPP, functions in BPSV have polynomial-sized
circuits. In Section 6 we prove strong senses in which probabilities cannot be amplified at all for
general PRMV(·, ·, ·) functions.

4 Single-Valued Functions and Language Classes

We start with some respects in which BPSV and ZPSV are natural analogues of BPP and ZPP.
The characteristic function of a language A, denoted by χA, is defined for all x by χA(x) :=
0 if x /∈ A, 1 if x ∈ A. The partial characteristic function ρA instead has ρA(x) = undefined if
x /∈ A. Besides graph(f) = { 〈x, y〉 : f(x) 7→ y }, we associate to f the sets

subgraph(f) := { 〈x,w〉 : (∃y) [f(x) 7→ y ∧ w ≤ y] },
prefs(f) := { 〈x,w〉 : (∃y) [f(x) 7→ y ∧ w v y },
code(f) := { 〈x, i, b〉 : (∃y) [f(x) 7→ y ∧ the ith bit of y is b] }.

The first few results are simple, and proofs are omitted. Proposition 4.2 reflects the well-known
contrast between graph(f) and subgraph(f), which is familiar from the classes C=P and PP. An
example showing that the converse to (a) is unlikely to hold, even when graph(f) ∈ P, is the
following NPSV representation of factoring . Define f(m) = (p1, c1, i1, p2, c2, i2, . . . , pk, ik, ck),
where p1 < p2 < . . . < pk, m = pi11 p

i2
2 · · · p

ik
k , and for each j, 1 ≤ j ≤ k, cj is the unique certificate

for the primality of pj given by the method of Fellows and Koblitz [FK92]. However, f ∈ BPSV
would be very surprising.

Proposition 4.1 (a) For any f ∈ BPSV, dom(f) ∈ BPP.
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(b) For any language A, A ∈ BPP ⇐⇒ χA ∈ BPSV.
(c) For any language A, A ∈ BPP ⇐⇒ ρA ∈ BPSV.
(d) For any language A, A ∈ ZPP ⇐⇒ χA ∈ ZPSV.

Proposition 4.2 For any partial single-valued function f ,

(a) f ∈ BPSV =⇒ graph(f) ∈ BPP.
(b) f ∈ ZPSV =⇒ graph(f) ∈ ZPP
(c) f ∈ BPSV ⇐⇒ subgraph(f) ∈ BPP ⇐⇒ prefs(f) ∈ BPP ⇐⇒ code(f) ∈ BPP.
(d) f ∈ ZPSV ⇐⇒ subgraph(f) ∈ ZPP ⇐⇒ prefs(f) ∈ ZPP ⇐⇒ code(f) ∈ ZPP.

Matters become more difficult and interesting when we consider connections to the classes
RP and coRP. Recall that a language A belongs to RP iff there is a probabilistic polynomial
time TM acceptor N such that for all x, x ∈ A =⇒ Pr[N(x) accepts] > 1/2, and x /∈ A =⇒
Pr[N(x) accepts] = 0. That is, if N(x) accepts then certainly x ∈ A, while rejection by N may err.
The error probability can be made exponentially vanishing by polynomially many repeated trials.
One technical point is that the outcome M(x, r) = ⊥ may come from either the case x ∈ dom(f)
or x /∈ dom(f)—this already shows up in the question f ∈ ZPSV =⇒? dom(f) ∈ ZPP, in
comparison to (a) in Proposition 4.1. Instead:

Proposition 4.3 (a) For any f ∈ ZPSV, dom(f) ∈ RP.
(b) For any language A, A ∈ RP ⇐⇒ ρA ∈ ZPSV.

Recall that ZPSV is PRSV(b, z , z ). The subgraph and prefix languages instead lead to:

Proposition 4.4 Let f be a partial single-valued function.

(a) If subgraph(f) ∈ RP or prefs(f) ∈ RP, then f ∈ PRSV(b, z , b).
(b) subgraph(f) ∈ RP ⇐⇒ there is a p-machine M which computes f within bounds (b, z , b)

such that whenever x ∈ dom(f) and M(x) outputs y, y ≤ f(x).
(c) prefs(f) ∈ RP ⇐⇒ there is a p-machine M which computes f within bounds (b, z , b) such

that whenever x ∈ dom(f) and M(x) outputs y, y v f(x).

The converse to (a) appears not to hold: if f ∈ PRSV(b, z , b), the most we seem to have is
subgraph(f) ∈ BPP. For code(f) the situation appears to be quite different, and to depend on
whether the exact length of f(x) is known in advance.

Proposition 4.5 Let f be given, and suppose there is a total function g ∈ PF such that for all x,
if x ∈ dom(f) then g(x) = |f(x)| in unary. Then f ∈ ZPSV ⇐⇒ code(f) ∈ RP ⇐⇒ code(f) ∈
coRP ⇐⇒ code(f) ∈ ZPP.

The subgraph and prefix languages give results symmetrical to Proposition 4.4 (b) and (c) in
regard to coRP:

Proposition 4.6 Let f be a partial single-valued function.

(a) subgraph(f) ∈ coRP ⇐⇒ there is a p-machine M which computes f within bounds (z , b, b)
such that whenever x ∈ dom(f) and M(x) outputs y, y ≥ f(x).

(b) prefs(f) ∈ coRP ⇐⇒ there is a p-machine M which computes f within bounds (z , b, b)
such that whenever x ∈ dom(f) and M(x) outputs y, f(x) v y.
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However, when code(f) ∈ coRP and the hypothesis on g in Proposition 4.5 is absent, we can
only deduce that f ∈ PRSV(z , b, b). For multivalued functions, we have:

Theorem 4.7 The following are equivalent:

(a) NP = RP,
(b) NPMV ⊆ PRMV(np,−,np),
(c) NPMV ⊆ PRMV(n,np,−),
(d) NPMV ⊆ PRMV(np,n,−),
(e) NPMV ⊆ PRMV(ev , z , z ).

The proofs of (b) and (c) use the self-reducibility structure of SAT , and are related to results
of Adleman and Manders [AM77]. The most interesting immediate question is the relationship
between BPMV and NPMV.

Proposition 4.8 Under any of the above definitions of BPMV,

BPMV ⊆ NPMV =⇒ BPMV ⊆c NPMV =⇒ BPSV ⊆ NPSV =⇒ BPP ⊆ NP.

Proposition 4.9 If BPMV ⊆c BPSV and BPP ⊆ NP then BPMV ⊆c NPSV.

5 Monic Selection and Symmetry-Breaking

Suppose we have a BPMV algorithm M for a function f such as finding normal elements in a
field. Can we replace M by a p-machine M ′ with the property that for all x ∈ dom(f), there is a
single y ∈ set-f(x) such that Prr[M(x, r) = y] > 3/4? If so, we say that f allows monic selection.
Formally, this is the same as saying that f has a refinement in BPSV (note that the “3/4” can
be amplified). The most common examples of BPMV functions f have graph(f) ∈ P, and then
the question of monic selection becomes: Is BPMVg ⊆c BPSV?

A “yes” answer would imply that two users running M ′ on separate machines would with high
probability find the same y. Thus our question seems related to important issues in distributed
consensus (albeit with no element of communication), but several inquiries have not turned up a
prior reference as of this writing. Much previous work (e.g. [JVV86, GMS87]) has been devoted
to the problem of selection with uniform distribution on the solution space, but we have not seen
comparable studies of how far the distribution can be biased . Our requirement is also different
from the notion of probabilistically “isolating a unique element” in Chari, Rohatgi, and Srinivasan
[CRS93]. They use the method from [MVV87] of assigning random weights to edges so that with
high probability, there is a unique minimum-weight perfect matching (when one exists at all), but
different random weightings can yield different matchings.

The following natural example illustrates the difficulty of our question even when there are
only two possible values. A function f : Σ∗ → N is said to have a fully polynomial time randomized
approximation scheme (fpras) [KL83, JVV86] if there is a p-machine M such that for all x ∈ Σ∗

and ε > 0 (where we suppose ε = 1/c for some integer c):

Prr
[
f(x)

(1 + ε)
≤ M(〈x, 0c〉, r) ≤ f(x)(1 + ε)

]
> 3/4. (2)

Jerrum and Sinclair [JS89] showed that the permanent function for 0-1 matrices, which is #P-
complete [Val79], has an fpras. Note that M is multi-valued. We observe that the approximation
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can be done by a total function which is at most 2-valued. The “3/4” here and in (2) can be
amplified to give exponentially vanishing error.

Proposition 5.1 Let f have an fpras. Then there is a p-machine M ′ such that for all x ∈ Σ∗

and c > 0, there are two values y1, y2 such that f(x)/(1 + ε) ≤ y1 ≤ y2 ≤ f(x)(1 + ε) and
Prr[M ′(x, 0c) ∈ { y1, y2 }] > 3/4.

The proof idea is to let u = M(x, r) and round u off to the nearest of appropriately-chosen
gridpoints. However, if the true value of f(x) is midway between gridpoints, then we may expect
“equal scatter” between the two values, with no non-negligible advantage for either. If instead
we always “round down,” then we have a similar situation when f(x) is close to a gridpoint. We
call the problem of whether M ′ can be made single-valued the “symmetry-breaking problem for
fpras.”

We first show that if monic selection is possible between two values, then it is possible from
among exponentially many. Let PR2V(ev) abbreviate PR2Vt(z , z , ev).

Theorem 5.2 If PR2Vt(ev) ⊆c BPSV, then BPMVg ⊆c BPSV.

The proof is not so simple as that for the analogous result NP2V ⊆c NPSV =⇒ NPMVg ⊆c NPSV
(see [Sel91, HNOS93]. One attempt is to let f ∈ BPMVg be given, let M be a p-machine
computing f , and by analogy with the next-ID function of an NPMV machine, define g(x, u) 7→ b
if (∃r w ub)M(x, r) ∈ set-f(x). (Here b ∈ { 0, 1 }.) However, u might be a node in the tree of M
with very few valid outputs below it, and so g might not be in BP2V. A second attempt is to define
g(x, u) 7→ 1 if Prrwu[M(x, r) ∈ set-f(x)] ≥ 1/4, and g(x, u) 7→ 0 if Prrwu[M(x, r) ∈ set-f(x)] ≤
3/4. Then g is total and does belong to PR2V(ev), so by hypothesis there is a total single-valued
restriction g′ and an M ′ which computes it with high probability. However, depth-first backtrack
search on ‘1’ values of g′ might take exponential time. Our proof modifies the second definition
to make the search halt in expected polynomial time.

Proof Sketch. Given f and the p-machine M , let q(n) = 2p(n) + 5. For all a, 0 ≤ a ≤ p(n) + 1,
and all u ∈ { 0, 1 }<p(n), define

g(x, u) 7→ a if Prrwu[M(x, r) ∈ set-f(x)] ∈ [
2a
q(n)

. . .
2a+ 3
q(n)

].

This covers [0 . . . 1] with p(n) + 1 intervals so that adjacent intervals overlap, but no point is in
more than two intervals and there is a large gap between every second interval. Then g is total.
Since graph(f) ∈ P, one can estimate Prrwu[M(x, r) ∈ set-f(x)] to within an additive term of
1/p(n)2 with high probability by taking polynomially many trials. Hence g ∈ PR2Vt(ev). By
hypothesis, g has a single-valued restriction in g′ ∈ BPSV. The probability of error in g′ can be
made exponentially vanishing in polynomial time, so that with high probability, a search which
requests polynomially many values of g′ never obtains an erroneous one. The conclusion follows
from the observation that if g′(x, u) = a, then at least one child v of u has g′(x, v) ≥ a− 1. The
root has value g′(x, λ) = p(n)+1. Hence the path which takes the left child iff its value is at most
one less than the current node hits the bottom before the probability reaches zero.

The attempt to do the left-leaning path directly with g again runs into symmetry-breaking
problems if the value g(x, v) of the left child of u is in the overlap between “one less” and ‘two
less.” Now we observe:
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Theorem 5.3 If the symmetry-breaking problem can be solved for fpras (for #P functions), then
every function in BPMVg allows monic selection.

Proof Sketch. Let f ∈ BPMVg be given, and with reference to the last proof, define

h(x, u) = 2p(n) + 2|u| · ‖{ r ∈ { 0, 1 }p(n) : r w u ∧ M(x, r) ∈ set-f(x) }‖.

Then h ∈ #P. We claim that thanks to the padding term 2p(n), h has an fpras computable
by sampling polynomially many values as in the previous proof. (Before, g only estimated the
number of witnesses below node u additively, not up to a multiplicative factor of (1+ε), and might
give zero if the number were small, but now that the numbers are between 2p(n) and 2p(n)+1, the
factor pulls off a large interval.) Taking ε ≈ 1/p(n) makes it possible to cover [2p(n) . . . 2p(n)+1]
by p(n) + 1 overlapping intervals of roughly equal size whose endpoints are powers of (1 + ε).
Symmetry breaking for the fpras allows monic selection of these endpoints, which then plays the
role of g′ in the previous proof.

We have not been able to find any interesting “collapses,” even of BPP into RP or coRP,
from the hypothesis BPMVg ⊆ BPSV. In the next section we show unconditionally that
BP2V6⊆cBPSV, and that probabilities in BPMV (without the condition graph(f) ∈ P) cannot
be amplified in general.

6 Containments and Separations Among General PRMV Classes

Say that a p-machine M covers a multivalued function f if for all x ∈ dom(f), every value of f
has nonzero probability, i.e. (∀y ∈ set-f(x)) Prr[M(x, r) = y] > 0. Adhering to this requirement
prevents one from playing undue tricks with the range of f in the diagonalization results which
follow. First we observe that if the probability of erroneous acceptance or rejection is bounded,
it can be made exponentially small via majority-vote.

Proposition 6.1 Let M be a p-machine, and suppose that there exist nonnegative constants
c, d < 1

2 such that for every x, PrEA(M,f, x) ≤ 1
2 − c and PrER(M,f, x) ≤ 1

2 − d. Then for any
polynomial p, there is a p-machine N such that for every x:

1. PrEA(N, f, x) ≤ 2−p(|x|). In particular, PrEA(N, f, x) = 0 if PrEA(M,f, x) = 0.
2. PrER(N, f, x) ≤ 2−p(|x|). In particular, PrER(N, f, x) = 0 if PrER(M,f, x) = 0.
3. PrME(N, f, x) = PrME(M,f, x).
4. If M covers f at x, then so does N .

Corollary 6.2 For any error bound condition E, the following relationships hold in a manner
that also preserves the property of f being covered by machines meeting the bounds.

1. PRMV(u,−, E) ⊆ PRMV(ev ,−, E)
2. PRMV(−,−, E) ⊆ PRMV(−, ev , E)
3. PRMV(b, u, E) ⊆ PRMV(ev , ev , E)
4. PRMV(u, b, E) ⊆ PRMV(ev , ev , E)
5. PRMV(b, z , E) ⊆ PRMV(ev , z , E)
6. PRMV(z , b, E) ⊆ PRMV(z , ev , E)

Next we say when, given a p-machine for f , one can build a new p-machine that covers f .
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Lemma 6.3 Let f ∈ MV and M be a p-machine. Let q be an arbitrary polynomial. Then there
is a p-machine N such that for every x, the following conditions are satisfied:

1. PrEA(N, f, x) = PrEA(M,f, x);
2. PrER(N, f, x) = PrER(M,f, x);
3. PrME(N, f, x) ≤ PrME(M,f, x) + 2−q(|x|); and
4. If Prr[M(x, r) accepts] > 0, then N covers f at x.

Corollary 6.4 For any error bounds (E1, E2, E3) with E3 6= z , PRMV(E1, E2, E3) is unchanged
by the requirement that p-machines meeting these bounds must also cover f .

For the lone exception to Corollary 6.4, we use a new symbol z ∗ to state that a p-machine M
computes f with zero mapping error and also covers f . The bound z ∗ will not be used for accepting
error bounds or rejecting error bounds. Let E stand for the set of error bounds in Definition 3.3,
and let E(∗) = E ∪{z ∗}. By Corollaries 6.2 and 6.4, every PRMV class coincides with one of either

• PRMV(u, u, E) with E ∈ E(∗).
• PRMV(E1, E2, E3) with E1, E2 ∈ { z , ev ,−} (not both −) and E3 ∈ E(∗).

Now we consider a problem of whether, given a p-machine that computes a function f , one
can reduce the mapping error probability of the machine without increasing the probability of a
domain error. Recall PrDE(M,f, x) = PrER(M,f, x) + PrEA(M,f, z).

Lemma 6.5 Let s and t be recursive functions of natural numbers to [0, 1), p be a polynomial, and
r : N 7→ N be a recursive function. Suppose that for all but finitely many n, t(n) < r(n) ·2−p(n) ≤
s(n). Then there is a total multivalued function f such that:

1. For some p-machine N and all x, PrDE(N, f, x) = 0 and PrME(N, f, x) ≤ r(n) · 2−p(n) ≤
s(n).

2. For all N and x, either PrEA(N, f, x) = 1 or PrME(N, f, x) > t(|x|).

Theorem 6.6 1. PRMV(z , z ,−) 6⊆ PRMV(−,−, u).
2. PRMV(z , z , u) 6⊆ PRMV(−,−, b).
3. PRMV(z , z , b) 6⊆ PRMV(−,−, v).
4. PRMV(z , z , v) 6⊆ PRMV(−,−, pv).
5. PRMV(z , z , pv) 6⊆ PRMV(−,−,n).
6. PRMV(z , z ,n) 6⊆ PRMV(−,−, ev).
7. PRMV(z , z , z ) 6⊆ PRMV(−,−, z ∗).

A similar diagonalization idea, constructing a 3-valued g whose values are “close to equally-
likely,” so that all 2-valued refinements of g belong to BP2V, produces the following:

Theorem 6.7 PR2V(b, b, b) 6⊆c BPSV.

The one separation missing from Theorem 6.6 is whether PRMV[(z , z , ev)] 6⊆
PRMV[(−,−, z )], and this remains open. We show that separating PRMV classes with expo-
nentially vanishing mapping error from those with zero mapping error probability ties in to other
unsolved problems in about complexity classes, and investigate the relationships between PRMV
classes having the same mapping error bounds.

Theorem 6.8 If PP = RP, then PRMV(−,−, ev) ⊆ PRMV(ev ,−, z ).
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Theorem 6.9 Let E ∈ E be an arbitrary error bound condition.

1. If PRMV(u, u, E) ⊆ PRMV(ev , ev , E), then PP = BPP.
2. If PRMV(ev , ev , E) ⊆ PRMV(ev , z , E) ∪ PRMV(z , ev , E), then BPP = RP.
3. If either PRMV(ev , z , E) ⊆ PRMV(z , ev , E) or PRMV(z , ev , E) ⊆ PRMV(ev , z , E), then

RP = coRP.
4. If PRMV(z , ev , E) ∩ PRMV(ev , z , E) ⊆ PRMV(z , z , E), then RP ∩ coRP = P.
5. If either PRMV(z , ev , E) ⊆ PRMV(z , z , E) or PRMV(ev , z , E) ⊆ PRMV(z , z , E), then

RP = coRP = P.

Theorem 6.10 1. If PP = BPP, then for every E ∈ E, PRMV(u, u, E) ⊆ PRMV(ev , ev , E).
2. If BPP = RP, then ∀E ∈ E(∗): PRMV(ev , ev , E) = PRMV(z , ev , E) ∪ PRMV(ev , z , E).
3. If RP ∩ coRP = P, then ∀E ∈ E(∗): PRMV(ev , z , E) ∩ PRMV(z , ev , E) = PRMV(z , z , E).
4. If RP = P, then ∀E ∈ E(∗): PRMV(ev , z , E) = PRMV(z , ev , E) = PRMV(z , z , E).

7 Conclusion

We offer our concepts and formalism as useful tools for further study. One open problem is to
draw further consequences from the hypothesis that monic selection is possible for all BPMVg

functions. In particular, if a relativized form holds for all functions in BPMVNP
g , does the poly-

nomial hierarchy collapse? The idea is to combine the familiar Valiant-Vazirani reduction with
[HNOS93]. Another question is how the results in Section 6 relate to theorems of Rohatgi et al.
[CKR91, CR93, Roh93] which show that tiny amplifications in randomized reductions to certain
languages would collapse the hierarchy.
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8 Appendix with Selected Proofs

Proof of Proposition 4.4. (a) By hypothesis, there is a polynomial-time probabilistic TM M
such that for all x,w ∈ Σ∗,

x ∈ dom(f) ∧ w ≤ f(x) =⇒ Probr[M(〈x,w〉) accepts] > 2/3
x /∈ dom(f) ∨ w > f(x) =⇒ Probr[M(〈x,w〉) accepts] = 0.

The p-machine M ′ on input x first simulates M(〈x, λ〉). If M rejects, then M ′ rejects also.
Otherwise M ′ attempts to find f(x) by binary search. The bounding polynomial p of M ′ can be
set high enough so that by repeating calls to M , M ′ succeeds with probability at least 2/3. When
x ∈ dom(f), there is a nonzero chance that M ′ rejects at the outset. There is also a nonzero
chance of mapping error should M incorrectly reject some 〈x,w〉, causing the binary search to
go lower when it should go higher. Note that any erroneous value y returned by M ′ will have
y < f(x). When x /∈ dom(f), M ′ always rejects. Hence f ∈ PRSV(b, z, b).

(b) The forward part is as in (a). For the converse, suppose all mapping errors made by M
are underestimates, and M never accepts when x /∈ dom(f). Then define an acceptor M ′ which
on input 〈x,w〉 simulates M(x). If M(x) rejects, then M ′ rejects, while if M(x) returns a value
y, M ′ accepts iff w ≤ y. Then all “accept” outcomes of M ′ are correct, and the error in “reject”
outcomes is bounded, so M ′ is an RP-machine for subgraph(f). The proof of (c) is similar.

Proof of Proposition 4.5. Given a p-machine M which computes f within error bounds (b, z, z),
let the acceptor M ′ on input 〈x, j, b〉 first verify that j ≤ g(x) (if not, it rejects), and then run M(x)
repeatedly. If and when M(x) accepts and returns a value y, it follows from the bounds (b, z, z)
that y = f(x), so M ′ can halt and render an error-free verdict on whether 〈x, j, b〉 ∈ code(f).
So code(f) ∈ ZPP. Conversely, if code(f) ∈ RP, let the p-machine M on input x first calculate
k := g(x), and then repeatedly simulate the RP-machine for code(f) on the arguments

〈x, 1, 0〉〈x, 2, 0〉 . . . 〈x, k, 0〉
〈x, 1, 1〉〈x, 2, 1〉 . . . 〈x, k, 1〉

If and when it receives exactly one ‘yes’ answer in each column, M halts and outputs the indicated
value; if not, M rejects. The polynomial bound p on the runtime of M can be set high enough
so that when x ∈ dom(f), the chance that M gets these yes answers is at least 2/3. Since
‘yes’ answers from an RP-machine are always correct, M never makes a mapping error. When
x /∈ dom(f), the responses are always ‘no,’ so M correctly rejects. Hence M runs within error
bounds (b, z, z).

Similarly, if code(f) ∈ coRP, M waits until it receives exactly one ‘no’ answer in each column.

(Remark: Without the ability to compute k, M might allocate a column k+1 and then not be able
to trust the two ‘no’ answers it receives in that column. The best conclusion from code(f) ∈ RP
that we know without this is that f ∈ PRSV(b, z, b).

Proof of Proposition 5.1. Let M be the machine for f from the definition of an fpras. Let s > 3,
t = 2s+1, and c = 1/ε be integers. For each x, let a(x) = f(x)/(1+1/tc), b(x) = f(x) · (1+1/tc),
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and m(x) be the smallest integer m such that | log x−m log(1+1/sc)| ≤ 1/2. Define M ′ to be the
machine that, on input 〈x, 0c〉, simulates M on 〈x, 0tc〉 to get a value u, computes v = m(u), and
outputs b(1 + 1/sc)vc. For any x, with probability > 3/4, M ′ gets a value u in range [a(x), b(x)].
Since b(x)/a(x) = (1 + 1/tc)2 > 1 + 1/sc, for each x, there is an integer d(x) such that the value v
that M ′ computes is either d(x) or d(x) + 1 with probability more than 3/4. So, for each x, there
exist integers y1(x) and y2(x) with y1(x) ≤ y2(x) such that with probability 3 > 4, M ′ outputs
either y1(x) or y2(x). Since (1 + 1/tc)(1 + 1/sc) < 1/c, for any x, y2(x) ≤ f(x) · (1 + 1/c). By
choosing s sufficiently large, for any x, y1(x) ≥ f(x)/(1 + 1/c). This proves the proposition.

Proof of Lemma 6.3. Let f,M , and q be as in the hypothesis. Let PaccM (x) stand for the
probability that the p-machine M on input x accepts and outputs a value. Let p be a polynomial
bounding the length of f ; that is, for every x and y, if f(x) 7→ y, then |y| ≤ p(|x|). Define N to
be the machine that, on input x, behaves as follows:

(a) N simulates M on x. If M rejects x, then so does N . Otherwise, N proceeds to (b).

(b) Let y be the output of M that N obtained in (a). N chooses i, 0 ≤ i ≤ 2q(|x|)− 1, with equal
probability. If i 6= 0, then N outputs y and halts. Otherwise, it proceeds to (c).

(c) N chooses j, 0 ≤ j ≤ 2p(|x|)+1 − 1, with equal probability. N outputs the j-th smallest string
in Σ∗ and halts.

It is not hard to see that N accepts x with probability 1 after entering step (b). So, for every x,
PaccN (x) = Prob[N on x enters step (b) ] = PaccM (x). Thus, for every x, (1) and (2) are both
satisfied.

Let x ∈ dom(f). First suppose that PaccM (x) = 0. Then, N will never accept x, so
PrME(N, f, x) = 0, and thus, (3) and (4) are both satisfied. So, suppose that PaccM (x) > 0. For
every w of length ≤ p(|x|), N on x outputs w for some random seed. Since f is p(n) length-
bounded, this implies that N covers f at x. So, (4) is satisfied. Moreover, the probability that N
on x outputs a value not in f(x) is bounded by:

PaccM (x) · [(1− 2−q(|x|))PrME(M,f, x) + 2−q(|x|)]
≤ PaccM (x) · [PrME(M,f, x) + 2−q(|x|)].

So, PrME(N, f, x) ≤ PrME(M,f, x) + 2−q(|x|). Thus, (3) is satisfied. Hence, for every x, (3) and
(4) are both satisfied. This proves the lemma.

Proof of Lemma 6.5. Let s, t, p, and r be as in the hypothesis. Let m be such that for every
n ≥ m, t(n) < r(n) · 2p(n) ≤ s(n).

Below we will construct a total multivalued function f . For every x, f(x) will map only to
i, 1 ≤ i ≤ 2p(|x|), and have at least 2p(|x|) − r(|x|) values. Let M1,M2, · · · be an enumeration of all
p-machines. The values of f at x are determined as follows:

(Case 1) |x| < m:

We define the values of f(x) to be i, 1 ≤ i ≤ 2p(|x|).

(Case 2) |x| ≥ m:

Let x be the j-th smallest string of length n.
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(Case 2a) PrejMj
(x) < 1 and Prob[Mj(x) 7→ i, 1 ≤ i ≤ 2p(n)]/PaccMj (x) > 1− t(|x|):

Let l1, · · · , lk(k = 2p(n)) be an enumeration of 1, · · · , 2p(n) such that for every h, 1 ≤
h ≤ k − 1 Prob[Mj(x) 7→ lh] ≥ Prob[Mj(x) 7→ lh+1]. We define set-f(x) = { lh : h ≥
r(n) + 1 }.

(Case 2b) PrejMj
(x) = 1 or (PrejMj

(x) < 1 and Prob[Mj(x) 7→ i, 1 ≤ i ≤
2p(n)]/PaccMj (x) ≤ 1− t(|x|)):
We define set-f(x) = { i : 1 ≤ i ≤ 2p(|x|) }.

It is not hard to see that for every x, f(x) has at least 2p(|x|) − r(|x|) values and at most 2p(|x|)

values. Let N be a machine that, for an input x, outputs each i, 1 ≤ i ≤ 2p(|x|) with probability
2−p(|x|). Then, PrEA(N, f, x) = 0 and PrME(N, f, x) = r(|x|) · 2−p(|x|) < s(|x|). So, the condition
(1) is satisfied.

We prove, by way of contradiction, that the condition (2) is satisfied. Assume, to the contrary,
that there is a p-machine N such that for all x, PrEA(N, f, x) < 1 and PrME(N, f, x) ≤ t(|x|).
Let j be an index such that N = Mj , let n ∈ N be such that n ≥ m and 2m ≥ j, and x
be the j-th smallest string of length n. By our assumption, Prob[Mj(x) 7→ i, i is a value of
f(x)]/PaccMj (x) > 1 − t(n). Since f(x) 7→ i only if i ∈ {1, · · · , 2p(n)}, we have Prob[Mj(x) 7→
i, 1 ≤ i ≤ 2p(n)]/PaccMj (x) > 1 − t(n). So, Case 2a holds for x when we attempt to diagonalize
against Mj . By our choice of the values of f(x), it holds that Prob[Mj(x) 7→ i, i is a value of
f(x)]/PaccMj (x) ≤ 1− r(n) · 2−p(n) < 1− t(n). This is a contradiction. Hence, the condition (2)
is satisfied. This proves the lemma.

Proof of Theorem 6.6. (Parts 3. 4. and 7. only)

3. Let s(n) = 1/4 and t(n) = 1/5. Obviously, there is a polynomial p and a recursive function
r : N → N such that for all n, t(n) < r(n) · 2−p(n) ≤ s(n). Take such a pair of p and
r, and apply Lemma 6.5 to get the function f . By condition (1), there is a p-machine N
such that for all x, PrDE(N, f, x) = 0 and PrME(N, f, x) ≤ 1/4. So, f ∈ PRMV(z , z , b).
Moreover, by condition (2), there is no p-machine N such that for all x, PrEA(N, f, x) < 1
and PrME(N, f, x) ≤ 1/5. Thus, f cannot be in PRMV(−,−, v).

4. Let s(n) = 1/ log n and t(n) = 1/2 logn. Obviously, there is a polynomial p and a recursive
function r : N → N such that for all n, t(n) < r(n) · 2−p(n) ≤ s(n). Take such a pair of p
and r, and apply Lemma 6.5 to get f . By condition (1), there is a p-machine N such that
for all x, PrDE(N, f, x) = 0 and PrME(N, f, x) ≤ 1/ log n. Since s(n) is smaller than any
positive constant for all but finitely many n, f ∈ PRMV(z , z , v). Moreover, by condition
(2), there is no p-machine N such that for all x, PrEA(N, f, x) < 1 and PrME(N, f, x) ≤
t(|x|) = 1/2 log |x|. Since q(n)/2 log n tends to ∞ as n tends to ∞ for any polynomial q(n),
f cannot be in PRMV(−,−, pv).

7. Let A be a set not in NP. Define a total multivalued function f as follows:

• f(x) 7→ 0 for all x;
• f(x) 7→ 1 if and only if x ∈ A; and
• for every x, f(x) maps only to 0 and 1.

Define M to be the p-machine that, on input x, outputs 1 with probability 1. For every x,
PrEA(M,f, x) = PrER(M,f, x) = PrME(M,f, x) = 0. So, f ∈ PRMV(z , z , z ). The function
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f cannot be in PRMV(−,−, z ∗). Otherwise, there is a p-machine N such that for every x,
N(x) 7→ 1 if and only if x ∈ A, which contradicts to our assumption that A 6∈ NP. This
proves the theorem.

Proof of Theorem 6.8. Assume PP = RP. Then it holds that PPPP ⊆ PPBPP ⊆ PPPH ⊆
BPPPP ⊆ BPPBPP = BPP ⊆ PP = RP.

Let f be a p(n) length-bounded multivalued function in PRMV[(−,−, ev)]. There is a p-
machine M such that for every x ∈ dom(f), PaccM (x) > 1 and PrME(M,f, x) < 2−p(n)−1.
Since there are 2p(n)+1 − 1 strings of length at most n and (2p(n)+1 − 1)−1 > 2−p(n)−1, for every
x ∈ dom(f), there is a string y, |y| ≤ p(|x|), such that Prob[M(x) outputs y]/PaccMx > 2−p(|x|)−1.
For each x, let yx be the smallest y, |y| ≤ p(|x|), such that Prob[M(x) outputs y]/PaccMx >
2−p(|x|)−1. For every x ∈ dom(f), yx is the value of f(x); otherwise, PrME(M,f, x) > 2−p(n)−1,
which contradicts to our assumption. Define L = {(x,w) : yx < w}. Then, L ∈ NPPP, so, by our
assumption, L ∈ BPP. Define sets A,B, and C as follows:

A = {(x, i) : |yx| ≥ i};
B = {(x, i) : |yx| = i}; and
C = {(x, i, b) : b ∈ {0, 1}, yx(i) = b},

where yx(i) denotes the i-th symbol in yx Since L ∈ BPP, A,B,C ∈ RP. Since A ∈ BPP, there
is a probabilistic polynomial-time procedure R1 that, on input x,

• outputs yx with high probability if yx is defined; and
• outputs undefined with probability 1 if yx is undefined.

Since B is in RP, and |yx| ≤ p(|x|), there is a probabilistic polynomial-time procedure R2 that,
given x and i,

• outputs Y ES with high probability if |yx| = i; and
• outputs NO with probability 1 if |yx| 6= i.

So, by combining R1 and R2, we can construct a probabilistic polynomial-time procedure S that,
on input x,

• outputs |yx| with high probability if yx is defined;
• never outputs m such that m 6= |yx| if yx is defined; and
• outputs undefined with probability 1 if yx is undefined.

Now suppose that we have obtained from S, a purported value of |yx|. Call the value m. We
attempt to compute yx using C. By our assumption, C ∈ RP or C ∈ RP. If m = |yx|, then for
every i, 1 ≤ i ≤ m, and for every b ∈ {0, 1}, it holds that

(*) yx(i) = b if and only if (x, i, b) ∈ C if and only if (x, i, b′) ∈ C, where b′ = 0 if b = 1 and 0
otherwise.

So, there is a probabilistic polynomial-time procedure T that, given x, m, and i with 1 ≤ i ≤
m = |yx|;
• outputs yx(i) with high probability; and
• never outputs a value not equal to yx(i).

Then, by using T as a subroutine, after obtaining m, one can compute yx with high probability
if m = |yx|. Therefore, a single-valued function g = λx.[yx] is in PRMV[(ev , ev , z )]. So, f ∈
PRMV[(ev ,−, z )]. This proves the theorem.
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