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Abstract

A parameterized problem 〈L, k〉 belongs to W [t] if there exists k′ computed from k such that
〈L, k〉 reduces to the weight-k′ satisfiability problem for weft-t circuits. We relate the fundamental
question of whether the W [t] hierarchy is proper to parameterized problems for constant-depth
circuits. We define classes G[t] as the analogues of AC0 depth-t for parameterized problems, and
N [t] by weight-k′ existential quantification on G[t], by analogy with NP = ∃ · P. We prove that
for each t, W [t] equals the closure under fixed-parameter reductions of N [t]. Then we prove,
using Sipser’s results on the AC0 depth-t hierarchy, that both the G[t] and the N [t] hierarchies
are proper. If this separation holds up under parameterized reductions, then the W [t] hierarchy
is proper.

We also investigate the hierarchy H[t] defined by alternating quantification over G[t]. By
trading weft for quantifiers we show that H[t] coincides with H[1]. We also consider the complex-
ity of unique solutions, and show a randomized reduction from W [t] to Unique W [t].

Keywords: computational complexity, Boolean circuits, parameterized complexity, randomized
algorithms



1 Parameterized Problems and the W Hierarchy

Many important and familiar problems have the general form

Instance: An object x, a number k ≥ 1.
Question: Does x have some property Πk that depends on k?

For example, the NP-complete Clique problem asks: given an undirected graph G and natural
number k, does G have a clique of size k? The Vertex Cover and Dominating Set problems
ask whether G has a vertex cover, respectively dominating set, of size k. Here k is called the
parameter .

Formally, a parameterized language is a subset of Σ∗ ×N. A parameterized language A is
said to be fixed-parameter tractable, and to belong to the class FPT, if there is a polynomial p, a
function f : N→ N, and a Turing machine M such that on any input (x, k), M decides whether
(x, k) ∈ A within f(k)·p(|x|) steps. A is in strongly uniform FPT if the function f is computable.
Note that if M runs in time polynomial in the length of (x, k) then it meets this condition with
f computable. Examples of problems in FPT for which the only f are uncomputable are given
in [DF93], while [DF95c] describes natural problems in FPT for which the only known f are not
known to be computable.

The best known method for solving the parameterized Clique problem is the algorithm of
Nesetril and Poljak [NP85] that runs in time O(n( 2+ε

3
)k), where 2+ε represents the exponent on the

time for multiplying two n× n matrices (best known is 2.376 . . ., see [CW90]). For Dominating

Set we know of nothing better than the trivial O(n1+k)-time algorithm that tries all vertex subsets
of size k. Vertex Cover, however, belongs to FPT, via a depth-first search algorithm that runs
in time 2k·O(n) (see [DF95c]). Quite a few other NP-complete problems, with natural parameter
k, are in FPT via algorithms of time f(k)·O(n) through f(k)·O(n3), while many others treated
in [DF95a] seem to be hard in the manner of Clique and Dominating Set. The established
way in complexity theory of comparing the hardness of problems is by formulating appropriate
notions of reducibility and completeness. Here the former is provided by

Definition 1.1. A parameterized language A FPT-many-one reduces to a parameterized lan-
guage B, written A ≤fptm B, if there are a polynomial q, functions f, g : N → N, and a Turing
machine T such that on any input (x, k), T runs for f(k)·q(|x|) steps and outputs (x′, g(k)) such
that (x, k) ∈ A ⇐⇒ (x′, g(k)) ∈ B.

The reduction is strongly uniform if f is computable. Then (strongly uniform) FPT is closed
downward under (strongly uniform) FPT reductions. Note that g is computable, and the param-
eter k′ = g(k) in the reduction does not depend on x.

For the completeness notion, Downey and Fellows [DF95a] defined a natural hierarchy of
classes of parametrized languages

FPT ⊆W [1] ⊆W [2] ⊆W [3] ⊆ . . . ⊆W [poly ], (1)

and showed that the parameterized version of Clique is complete for W [1] under FPT reductions,
while that of Dominating Set is complete for W [2]. This gives a sense in which Dominating

Set is apparently harder than Clique. The formal definition of the W hierarchy is deferred to
the next section, but the main idea can be seen by examining the logical definitions of Clique

and Dominating Set. For each k, the language of graphs with a clique of size k is defined by
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the existential formula
φk := (∃u1 . . . uk) :

∧
i,j≤k

E(ui, uj),

where E(·, ·) formalizes the adjacency relation for graphs. By contrast, the language of graphs
with a dominating set of size k is requires two blocks of like quantifiers to define in first-order
logic, such as by the Σ2 formula

ψk := (∃u1 . . . uk) : (∀v)
∨
i≤k

(v = ui ∨ E(v, ui)).

Both problems are about searching for a set of vertices of size k that satisfy the condition following
the ‘:’, but in ψk the condition is more complex, because it has the extra quantifier over vertices
v. Put another way, once candidate vertices have been assigned to u1, . . . , uk, the condition for
Clique is entirely “local” in a sense studied for parameterized languages in [Reg89], while that for
Dominating Set requires a “global” reference to other parts of the graph. Some parameterized
problems on graphs have conditions that make several alternating first-order quantifications over
the graph, and are known to belong to W [t] only for higher values of t. Other problems have
conditions that are not first-order definable at all, and some of these are complete for W [poly ]
(see [ADF95, DFHKW94]). Intuitively, the question

Does W [1] = W [2]?

asks whether a local check of a fixed-size substructure can do the same work as a global check.
The question

For all t, does W [t] = W [2]?

asks whether the simple check over vertices v in the W [2]-complete Dominating Set problem
suffices to verify any condition that is definable by circuits of bounded weft t. Similarly, if
W [poly ] = W [2] then fixed-parameter many-one reductions have an enormous power to simplify
the checking of properties. Note that “k-slices” of Vertex Cover have logical definitions of
form similar to that of ψk and yet are fixed-parameter tractable. The parameterized versions of
the NP-complete problems Perfect Code, Subset Sum, and Subset Product (see [GJ79,
DF95a, FK93]) are known to belong to W [2] and to be hard for W [1], and are equivalent to each
other under FPT reductions.

Earlier work [ADF95, DF93, DF95a] noted that if the W hierarchy is proper, or so long as
FPT 6= W [poly ], then P 6= NP. The paper [DF93] constructed a recursive oracle relative to which
P 6= NP and yet W [poly ] = FPT, so the above questions are in a sense stronger than P =?NP.
Our results in this paper provide some evidence for a positive answer to the question,

Are all classes in (1) distinct?

We also compare the structure of the W hierarchy to that of the polynomial hierarchy. Our larger
purpose is to examine how the W hierarchy can be characterized in ways that are important to
other aspects of complexity theory.

We make the following progress on the above questions: First, each class W [t] is shown to
be definable via existential quantification on the class of parameterized languages recognizable
by polynomial-sized circuits of constant weft t, analogous to the way NP is defined by existential
quantification on P. The circuits we obtain are actually AC0 circuits of depth t except for extra
layers of gates of fan-in 2, and providing also for parameterization, we call them G[t] circuits.
In symbols we have W [t] = 〈N [t]〉, where N [t] = ∃·G[t]. Also W [poly ] = N [poly ]=def∃·G[poly ],
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without the closure notation. Then we show that not only is the G[t] hierarchy proper, but
more importantly the N [t] hierarchy is proper. Thus among the three “elements” of the W
hierarchy, namely parameterized languages, circuit weft, and FPT-reductions, only the last can
be responsible for any collapse. We explain how these results rule out any “normal” argument for
collapse of the W hierarchy, and give this as evidence that the hierarchy doesn’t collapse.

Second, by analogy with the polynomial hierarchy, we define for each t a hierarchy H[t] using
alternating ∀· and ∃· quantification over G[t]. The hierarchy over G[1] contains all levels of all of
the hierarchies: For all t > 1, H[t] equals H[1].

Natural fixed-parameter analogues of the BP·and ⊕·operators on complexity classes can also
be defined, and all of this raises questions about the relationships between classes defined by these
operators. For example, it would be interesting to know if

∃·G[t] = N [t] ⊆ BP·⊕G[t]

holds, which would be an analog of the Valiant-Vazirani lemma NP ⊆ BP ·⊕P. Although this
remains an open problem, we show by similar techniques that there is a randomized reduction of
W [t] to Unique W [t].

2 Parameterized Circuit Complexity and the W [t] Classes

Boolean circuits are said to be of mixed type if they may contain both small gates of fan-in ≤ 2
and large AND and/or OR gates of unbounded fan-in. We consider only decision circuits; i.e.,
those with a single output gate. The weft of such a circuit is the maximum number of large gates
on a path from an input to the output. The n inputs are labeled by variables x1, . . . , xn, and
the Hamming weight wt(x) of an assignment x ∈ { 0, 1 }n equals the number of bits that are set
to 1. The circuit is monotone if it has no NOT gates, and anti-monotone if all wires from an
input go to a NOT gate, and these are the only NOT gates in the circuit. A pure Σt circuit
as defined by Sipser [Sip83] consists of t levels of large gates that alternate ∧ and ∨ with a
single ∨ gate at the top (i.e., the output), and with the bottom-level gates connected to the
input gates x1, . . . , xn and their negations x̄1, . . . , x̄n. A pure Πt circuit is similarly defined with
a large ∧ gate at the output. In both cases, “pure” means that the circuit has no small gates. A
Boolean expression is the same as a circuit in which each gate has fan-out 1. We call a Boolean
expression t-normalized if it forms a pure Πt circuit. For t = 2 this is the same as an expression
in conjunctive normal form. For t = 3 this is product-of-sums-of-products (P-o-S-o-P) form; for
t = 4 this is P-o-S-o-P-o-S form, and so on.

For all constants h, t > 0, the parameterized Weighted Circuit Satisfiability problem
is defined by:

WCS (t, h)
Instance: A circuit C of weft t and overall depth t+ h.
Parameter: k.
Question: Does C accept some input of Hamming weight exactly k?

Then for all t ≥ 1, W [t] may be defined to be the class of parameterized languages A such
that for some h, A ≤fptm WCS (t, h) (see [DF95a]). Also W [poly ] equals the class of problems
that FPT many-one reduce to the problem WCS with no restriction on depth or weft. WCS
is the parameterized version of the standard NP-complete Circuit Satisfiability problem, of
which SAT is the specialization to the case where the circuit is a Boolean formula (in conjunctive
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normal form). An interesting aspect of the W [·] theory is that more-extreme special cases of the
parameterized versions remain complete. For all t ≥ 2 define:

Weighted t-Normalized Boolean Expression Satisfiability WBES (t)
Instance: A t-normalized Boolean expression E.
Parameter: k.
Question: Is there some assignment a of Hamming weight exactly k such that

E(a) = true?

Monotone WBES (t) (MWBES (t))
Restriction of WBES (t) to instances E that are monotone.

Anti-Monotone WBES (t) (AWBES (t))
Restriction of WBES (t) to instances E that are anti-monotone.

For t = 1, also define AWBES (1, 1) to be the restriction of WCS (t, 1) to instances consist of
a single large AND gate, with input from a layer of binary OR gates, with the OR gates connected
to negated inputs only.

Theorem 2.1 ([DF95a]) (a) For all even t ≥ 2, MWBES (t) is complete for W [t] under ≤fptm .
Hence so is WBES (t).

(b) For all odd t ≥ 3, the problem AWBES (t) is complete for W [t] under ≤fptm . Hence so is
WBES (t).

(c) The problem AWBES (1, 1) is complete for W [1] under ≤fptm .

For t = 1, the extra level of small OR gates is necessary (unless W [1] = FPT) [DF95b].
The methods there and in Section 4 in [ADF95] remove this layer of small gates from earlier
completeness proofs for odd t ≥ 3.

We point out one important aspect of FPT reductions that strongly governs the size of the
objects one can produce. Suppose A ≤fptm WCS (t, h), and take the polynomial q and functions
f, g : N → N from Definition 1.1. Since T on input (x, k) must run in time f(k)q(n) (n = |x|),
the circuits Cx,k it produces have size polynomial in n for fixed k, and most importantly, the
exponent of the polynomial is independent of k. Let n′ = f(k)q(n) and k′ = g(k), the latter being
the Hamming weight parameter for Cx,k and independent of x.

Definition 2.1. A parametric connection is a function α : (N×N)→ (N×N) : (n, k) 7→ (n′, k′),
a polynomial q, and arbitrary functions f, g : N → N with n′ = f(k)q(n) and k′ = g(k). A
parametric connection is nice if g(k) is recursive and α can be computed in time h(k)p(n) where
h is an arbitrary function and p is a polynomial.

To economize on notation we write n, k, n′, k′, n′′, k′′, . . . to indicate that the first four quantities
represent one parametric connection, the third through sixth another, and so on. The connection
relation is transitive. This notion enables us to define circuit complexity directly for parameterized
problems:

Definition 2.2. A parameterized family of circuits is a bi-indexed family of circuits F = {Cn,k }
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such that each Cn,k has n inputs and size at most n′, where n′ is part of a connection with n, k.
We say that such a family is FPT-uniform if there is a algorithm to produce the circuit Cn,k in
time O(n′).

The idea of bounded Hamming weight in the weighted circuit satisfiability problems has
been very successful in classifying many problems to belong to, and be complete for, the W [t]
classes [BFH94, DF95a, DF95b, DFHKW94, FK93]. We suspect that it is really central in fixed-
parameter theory. We bring this idea down to tractable parameterized problems, and then use it
in a notion of limited nondeterminism.

Definition 2.3. G[t] (Uniform G[t]) is the class of parameterized languages L ⊆ Σ∗ × N for
which there is a parameterized (uniform) family of weft t circuits F = {Cn,k } such that for all
x and k, with n = |x|, (x, k) ∈ L ⇐⇒ Cn,k(x) = 1. If there is no restriction on the circuit
weft, then we obtain the class of parameterized languages G[poly ]. Monotone G[t] and Uniform
Monotone G[t] are defined in exactly the same way for monotone circuit families.

Proposition 2.2 Uniform G[poly ] = FPT.

Proof. If a parameterized language L is in Uniform G[poly ] then membership of (x, k) in L,
|x| = n, can be decided in the right amount of time O(n′) by generating the circuit Cn,k and
evaluating it on input x. The converse also holds by imitating the usual proof that languages in
P have polynomial-sized circuits.

Thus the classes Uniform G[t] contain problems that are all fixed-parameter tractable. Now
we can build upon them in much the same way that NP is definable by bounded existential
quantification over P. NP uses a polynomial length bound, while our classes N [t] use bounds on
Hamming weight.

Definition 2.4. (a) For any class C of parameterized languages, ∃ · C stands for the class of
parameterized languages A such that for some B ∈ C there are nice parametric connections
(n, k, n′, k′, n′′, k′′) giving for all (x, k), (x, k) ∈ A ⇐⇒ (∃y ∈ Σn′)[wt(y) = k′ ∧ (xy, k′′) ∈
B]. (Here n = |x|, n′ = |y|, and n′′ = n+ n′.)

(b) For all t ≥ 1, N [t] stands for ∃ ·Uniform-G[t], and N [poly ] stands for ∃ ·Uniform-G[poly ].

In a corresponding way, we can define “bounded weight” versions of the other familiar class
operators ∀, ⊕, and BP. Combining the latter two formally, we have that a language A belongs
to BP · ⊕ · C if there exists B ∈ C and nice connections giving for all (x, k), (x, k) ∈ A =⇒

Pry∈{ 0,1 }n′ ,wt(y)=k′ [‖{ z ∈ { 0, 1 }n′′ : wt(z) = k′′ ∧ (xyz, k′′′) ∈ B }‖ is odd] > 3/4,

while (x, k) /∈ A =⇒ Pr[. . .] < 1/4. If the latter probability is zero (i.e., we have one-sided error),
then we write A ∈ RP · ⊕ ·G[t].

Definition 2.5. If C is any class of parameterized languages, then by < C > we denote the
parameterized languages that are reducible to a language in C, and refer to this as the FPT-
closure of C.
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3 A Computational Characterization of W Classes

Despite the obvious success of the W hierarchy as a classification mechanism for concrete param-
eterized problems, the classes W [t] often seem a bit strange. One of the central issues is that they
do not seem to embody any “computational mechanism” but are rather defined by reducibility
to a particular problem, Weighted t-Normalized Satisfiability. The main theorem of this
section gives a more computational characterization of W [t].

Theorem 3.1 For all t ≥ 1, W [t] = 〈N [t]〉.

To see what is interesting about this theorem, consider the special case of t = 2 and the
W [2]-complete parameterized problem Dominating Set. The original criterion for showing
Dominating Set to be in W [2] requires constructing, for each graph G and positive integer k, a
weft 2 circuit CG that accepts a weight k input vector iff G has a k-element dominating set. The
point is that for each graph G we construct a different circuit, thus perhaps 2(n2) different circuits
for graphs of order n for a fixed value of k. By contrast, to show that Dominating Set belongs
to the FPT-closure of N [t], we must refer all of the graphs of order n (for a fixed value of k) to a
single circuit Cn′,k′ . The input to Cn′,k′ consists of the concatenation xy of a string x representing
G and a string y representing the k log n bits of nondeterminism. For this particular instance our
proof must devise a bi-indexed family of weft 2 circuits, each circuit Cn′,k′ of which is “universal”
for the dominating set problem for graphs of order n and for the parameter k. These “universal
circuits” resemble programmable logic arrays.

Proof. Assume first that t ≥ 2 and that t is even. Let L be a parameterized language in W [t].
We can assume without loss of generality that the reduction showing membership of L in W [t]
maps (x, k) to (Cx, k′) where:

1. Cx is a t-normalized circuit

2. Cx has n′ inputs

3. Cx has exactly n′′ gates on each level other than the input and output levels (achievable by
padding)

4. k′, n′ and n′′ are described by nice parametric connections.

Let the gates (including inputs) of Cx be described by the set

{g[s, i] : 0 ≤ s ≤ t, 1 ≤ i ≤ n′′}.

Here the level of the gate is indicated by the first index. Note that on level t only one gate (the
output) is important (the padding is just a notational convenience). We may assume the output
gate is g[t, 1].

We consider the following uniform circuit family FL = {Cm,k′ }, m = t(n′′)2 +n′. (To arrange
for FL to have one circuit for each possible pair of indices, simply pad with nonaccepting empty
circuits for index pairs not of the indicated form.)

The circuit Cm,k′ is described as follows. There are 2t + 1 levels of gates L0, ..., L2t. The
inputs to the circuit constitute level 0. The gate sets are described as follows:

L0 = {aX [s, i, j] : 1 ≤ s ≤ t, 1 ≤ i ≤ n′′, 1 ≤ j ≤ n′′} ∪ {aY [i] : 1 ≤ i ≤ n′},
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and for s = 1, ..., t,
L2s = {c[2s, i] : 1 ≤ i ≤ n′′}

L2s−1 = {b[2s− 1, i, j] : 1 ≤ i ≤ n′′, 1 ≤ j ≤ n′′}

According to our assumption that t is even, we assign the following logic functions to these
gates: for s = 1, ..., 2t the gates of Ls are ∧ gates if s is congruent to 0 or 1 mod 4; the other
levels are ∨ gates.

The gates in the circuit Cm,k′ are connected as follows.

1. For s = 1, ..., t the gate c[2s, i] receives input from each of the gates b[2s − 1, i, j] for j =
1, ..., n′′.

2. For s odd, 2 ≤ s ≤ t, the gate b[2s− 1, i, j] computes the Boolean expression c[2(s− 1), j]∧
aX [s, i, j].

3. For s even, 2 ≤ s ≤ t, the gate b[2s− 1, i, j] computes the Boolean expression c[2(s− 1), j]∨
¬aX [s, i, j].

4. The gate b[1, i, j] computes the Boolean expression aY [j] ∧ aX [1, i, j].

The aX [∗, ∗, ∗] inputs to the circuit have the role of describing the circuit Cx. The aY [∗] inputs
represent the (nondeterministic) inputs to Cx. The gates on even-indexed levels L2s provide a
PLA-type template on which to simulate the circuit Cx. Note that these are large gates of the
same logical character as the gates on level s of Cx. The gates on odd-indexed levels L2s−1 are
small gates whose function is to interpret the description of Cx so that Cx can be simulated.

The aX [∗, ∗, ∗] inputs describe Cx in the following way. Set aX [s, i, j] = 1 if and only if in
Cx the gate g[s, i] takes input from g[s − 1, j]. Let χ(Cx) denote the length t(n′′)2 0-1 vector
that describes Cx in this way. The following claim establishes that the the circuit Cm,k′ works
correctly.

Claim 1. For all y ∈ Σn′ of weight k′, Cm,k(χ(Cx) · y) = 1 if and only Cx(y) = 1.
Claim 1 is easily proved by induction on the levels of the circuit simulation.
An essentially identical argument handles t odd, t ≥ 3. The case of t = 1 presents additional

difficulties and must be handled as a special case. (The simulation above would would result in
universal circuits of weft 2.)

It suffices to show a “universal” family of circuits for the W [1]-complete problem Indepen-

dent Set. What we want is a weft 1 circuit that takes as input the concatenation of two strings x
and y where x describes a graph of order n, and y represents the candidate k-element independent
set. We can accomplish this by having the first part of the input x = (x[1, 2], x[1, 3], ..., x[n−1, n])
represent the adjacencies of G as a 0-1 string of length

(n
2

)
, and letting y = (y[1], ..., y[n]) (the

nondeterministic part of the input) have length n and weight specification k. The circuit can
simply represent the Boolean expression

C =
∏

1≤i<j≤n
(¬x[i, j] ∨ ¬y[i] ∨ ¬y[j]).

The above arguments show that W [t] ⊆ N [t]. To see that this inclusion reverses, suppose L
is a parameterized language in N [t]. Then (x, k) ∈ L, |x| = n, if and only if ∃y ∈ Σn′ of weight
k′, such that a nicely produced weft t circuit Cn′′,k′′ accepts xy. To exhibit a reduction from L
to Weighted Circuit Satisfiability for weft t, we may just take the image of the reduction
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to be Cn′′,k′′ with the first n′′ − n′ inputs “removed” by being fixed to the value of x. ¿From
N [t] ⊆W [t] we obtain < N [t] >⊆W [t] by the trasitivity of parameterized reducibility.

In a similar way we can prove the following characterization of W [poly ].

Theorem 3.2 W [poly ] = N [poly ].

Proof. The proof is essentially the same as for Theorem 3.1. Note that the standard argument
proving Proposition 2.2 can be used to show that 〈N [poly ]〉 = N [poly ], by “folding the reductions
into the circuits.”

4 Separation Result

Let Σpoly
d stand for the class of languages recognized by depth-d unbounded fan-in Boolean circuits

of polynomial size having a single OR gate at the output, as described in the survey by Boppana
and Sipser [BS90]. Let Πpoly

d stand for the complements of these languages, which are recognized
by depth-d circuits with an AND gate at the output. Sipser [Sip83] showed that for all d ≥ 1,
Σpoly
d 6= Πpoly

d . It is not surprising that this carries over to the parameterized setting to show that
the G[t] hierarchy is proper, but it is noteworthy that it extends to our nondeterministic classes:

Theorem 4.1 For all t ≥ 1, N [t] ⊂ N [t+ 1].

Proof. Suppose N [t] = N [t+1], and let A0 be a language in Πpoly
t+1 . Define a simple parameterized

language A by A = { (x, k) : x ∈ A0 }. Then A ∈ G[t+1] ⊆ N [t+1]. By our supposition, A ∈ N [t].
By the definition of N [t] there exists a parameterized language B ∈ G[t] accepted by a bi-indexed
family of circuits C = {Cn,k } such that we have for all x and any fixed integer k0:

x ∈ A0 ⇐⇒ (x, k0) ∈ A ⇐⇒ (∃y ∈ { 0, 1 }n′)[wt(y) = k′0 ∧ (xy, k′′0) ∈ B]

⇐⇒ (∃y ∈ { 0, 1 }n′)[wt(y) = k′0 ∧ Cn′′,k′′0 (xy) = 1].

Here again the priming indicates that n and the fixed k0 are part of nice parametric connections,
with n′′ = |xy| = n+ n′.

Using Cn′′,k′′0 as a building block, we can create a circuit C̃n′′,k′′0 that evaluates Cn′′,k′′0 (xy) for

all possible y, with an output ∨ gate on all these possibilities. There are
(n′
k′0

)
possible y, but this

is permitted since k′0 is a constant. The family of circuits constructed from C in this way over all
n show that A0 ∈ Σpoly

t+1 , contradicting the fact that Πpoly
d is not contained in Σpoly

d , for all d.

The above theorem does not prove, of course, that the W [t] hierarchy is proper. If we could
prove that, then we would have P 6= NP. What it does show is that any “normal” approach of the
kind often employed in the study of the W classes, namely the use of additional (bounded-weight)
nondeterminism, will necessarily fail. For example, to show that W [t + 1] collapses to W [t] we
might hope to design some sort of gadgetry whose operation can be described by a weft t circuit
C ′, that would correctly verify that a circuit C of weft t + 1 accepts a particular weight k input
vector x on the basis of some additional k′ log n bits of nondeterministic information. Collapse
would then follow by using C ′ to process two guesses: the input x to C and the “proof” that
C(x) = 1. Since x has bounded weight and the size of C ′ can involve a blowup in size of f(k)ng(t)

for |C| = n and arbitrary functions f and g, we might well believe that there is some hope for
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this project. However, if this program were to succeed then we would in fact have shown that
G[t + 1] ⊆ N [t]. By the following easy but important proposition, in which the transitivity of
parametric connections enables us to “coalesce” two like quantifiers into one, we would then have
N [t+ 1] ⊆ N [t], contradicting Theorem 4.1.

Proposition 4.2 Let C be any class of parameterized languages. Then ∃ · ∃ · C = ∃ · C.

Although the parameterization of A0 in the proof of Theorem 4.1 is trivial by itself, the
manner in which the parameter interacts with the definition of ∃ · Uniform-G[t] and with the
switch between Σd and Πd circuits is noteworthy, and overall the information in the theorem
seems surprisingly good. It lends support to the conjecture that the W [t] hierarchy is proper.

5 The Hierarchy H[t]

The classes N [t] are defined by a single bounded-weight existential quantification. It is natu-
ral to consider corresponding classes defined by universal and by alternating bounded weight
quantification.

Definition 5.1. For each t ≥ 1, define Σ1[t] = W [t] = 〈∃· Uniform G[t]〉. Correspondingly define
Π1[t] = 〈∀ · Uniform G[t]〉. For i ≥ 2 define Σi[t] = 〈∃ · Πi−1[t]〉 and Πi[t] = 〈∀ · Σi−1[t]〉. Define
Σ0[t] = Π0[t] = 〈G[t]〉 = FPT. Finally, for each t define H[t] to be the union of these classes, viz.

H[t] =
∞⋃
i=0

Σi[t] ∪Πi[t].

As one would expect, the Πi[t] classes consist of the complements of parameterized languages
in the Σi[t] classes. Moreover, by the methods of [DF95a] and induction on i, it follows that the
Σi-quantified analogue of Weighted t-Normalized Boolean Expression Satisfiability is
complete for Σi[t].

The next theorem shows that in contrast to the proper inclusions of the N [t] hierarchy, the
H[t] hierarchy collapses to H[1].

Theorem 5.1 For all t ≥ 1, H[t] = H[1]

Proof. By induction, it suffices to show that H[t] ⊆ H[t− 2], for t odd. Let L ∈ Σs[t]. We argue
that L ∈ Σs+2[t − 2]. By the above remarks, L is FPT-reducible to the Σs-quantified version of
WBES (t). Accordingly, let E be a Boolean expression over a set of variables V that is partitioned
into sets V = V1 ∪ · · · ∪ Vs with Vi ∩ Vj = ∅ for 1 ≤ i < j ≤ s, such that E has the form

E =
m∏
i=1

mi∑
j=1

mij∏
k=1

E[i, j, k],

where E[i, j, k] is a literal if t = 3, and is otherwise a weft t − 3 expression that is a large ∨
of weft t − 4 subexpressions. Let (k1, ..., ks) be a sequence of positive integers. The quantified
satisfiability question for E is whether

∃ a weight k1 truth assignment to the variables of V1, such that
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∀ weight k2 assignments to the variables of V2,
. . . ,

such that E is satisfied. Now we describe an expression E′ over a set of variables

V ′ = V ∪ V∀ ∪ V∃, where
V∀ = {a[i] : 1 ≤ i ≤ m} and
V∃ = {e[i, j] : 1 ≤ i ≤ m, 1 ≤ j ≤ mi},

such that the answer to the quantified satisfiability question for E is “yes” if and only if the
answer to the quantified satisfiability question for E′ is “yes.” The latter is defined to hold iff

∃ a weight k1 assignment to V1, such that
∀ weight k2 assignments to V2,
. . . ,
∀ weight 1 assignments to V∀,
∃ a weight 1 assignment to V∃,

such that E′ is satisfied.
The expression E′ is described by E′ = E′1 · E′2, where the two factors are

E′1 =
m∏
i=1

mi∏
j=1

(e[i, j]→ a[i]), and

E′2 =
m∏
i=1

mi∏
j=1

mij∏
k=1

(E[i, j, k] ∨ ¬e[i, j]).

For t > 3, since E[i, j, k] is a large logical sum of subexpressions and has weft t− 3, the same
is true for (E[i, j, k] ∨ ¬e[i, j]), and therefore E′ has weft t − 2. If t = 3 then E′ is a product
of sums of size 2, and thus has weft 1. The verification that the construction works correctly is
straightforward and is left to the reader.

This proof does not tell us whether Σs[t] is equal to Σs+2[t − 2], and in general we do not
know exactly how the hierarchies H[t] intercalate for different t.

6 Randomized Reduction of W [t] to Unique W [t]

It would be interesting to know quite a bit more than we presently do about the calculus of the
operators ∃·, ∀·, BP ·, RP · and

⊕
· over the G[t] classes. For example, do the following analogs

of the theorems (respectively) of Valiant and Vazirani [VV86] and Toda [Tod91] hold?
(1) N [t] ⊆ BP ·

⊕
·G[t]

(2) H[t] ⊆ BP ·
⊕
·G[t]

Analogs in parameterized complexity (if they exist) of familiar structural theorems generally
present significant and novel difficulties and are in most cases not presently known. A parameter-
ized analog of Ladner’s density theorem remains elusive, although substantial partial results have
been obtained [DF93]. A parameterized analog of Mahaney’s theorem on the complexity of sparse
sets is proved in [CF96]. In this section we prove an analog of the Valiant-Vazirani theorem that
nevertheless falls short of (1). Our proof is modeled on (and will make use of) the proof of the
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Valiant-Vazirani result in §1.4.1 of [KST93]. The main difficulty is in fitting that argument into
weft 1 constructions. This can be accomplished by employing additional nondeterminism that is
uniquely determined.

Definition 6.1. A randomized (fpt, many-one) reduction from a parameterized language L to a
parameterized language L′ is a randomized procedure that transforms (x, k) into (x′, k′) subject
to the following conditions:
(1) The running time of the procedure is bounded by f(k)|x|c for some constant c and arbitrary
function f (i.e. the procedure is fixed-parameter tractable).
(2) There is a function f ′ and a constant c′ such that for all (x, k),

(x, k) ∈ L ⇒ Prob[(x′, k′) ∈ L′] ≥ 1/f ′(k)|x|c′

(x, k) /∈ L ⇒ Prob[(x′, k′) ∈ L′] = 0

In §2 we gave the usual definition of the W [t] hierarchy in terms of the Weighted Circuit

Satisfiability problem. We consider here the following unique-solution variant.

Unique WCS(t,h)

Instance: A circuit C of weft t and overall depth t+ h.
Parameter: k.
Question: Is there a unique input of Hamming weight k that is accepted by C?

Definition 6.2. For all t ≥ 1, Unique W [t] is the class of parameterized languages L such that
for some h, L is fpt many-one reducible to Unique WCS(t,h).

Our proof will make use of a technical but generally useful lemma showing that a restricted
form of Weighted t-Normalized Satisfiability is complete for W [t]. This lemma is essen-
tially implicit in earlier work. The variant is defined as follows.

Separated t-Normalized Satisfiability

Instance: A t-normalized Boolean expression E over a set of variables V that is
partitioned into k disjoint sets V1, ..., Vk of equal size,
Vi = {vi,1, ..., vi,n} for i = 1, ..., k.

Parameter: k.
Question: Is there a truth assignment of weight k making exactly one variable in each

of the Vi true and all others false and that furthermore satisfies the condition
that if vi,j is true, then for all i′ > i and j′ ≤ j, vi′,j′ is false.

Lemma 6.1 Separated t-Normalized Satisfiability is complete for W [t] for all t ≥ 1.

Proof. We give separate arguments for t even and t odd. For t even we reduce from Monotone

t-Normalized Satisfiability and use the construction described in [DF95a]. Suppose the
parameter is k and that F is the monotone expression. The reduction is to a normalized expression
F ′ and the parameter k′ = 2k. The key point is that the variables for F ′ consist of 2k disjoint
blocks, and that any weight 2k truth assignment for F ′ must make exactly one variable true
in each block. The blocks can be padded so that they are of equal size. Including additional
enforcement for the condition in the definition of Separated t-Normalized Satisfiability is
straightforward. It is possible for this to be done in such a way that monotonicity is preserved.
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Fot t odd we similarly employ the reduction described in [DF95b], starting from Anti-

Monotone t-Normalized Satisfiability. In this case, antimonotonicity can be preserved.

Theorem 6.2 For all t ≥ 1 there is an fpt many-one randomized reduction of W [t] to Unique
W [t].

Proof. We reduce from Separated t-Normalized Satisfiability. Let E be the relevant
t-normalized Boolean expression over the k blocks of n variables:

Xi = {x[i, 1], ..., x[i, n]} for i = 1, ..., k

Let X denote the union of the Xi and assume for convenience (with no loss of generality) that n
is a power of 2, n = 2s, and that k − 1 divides s.

We describe how to produce (by a randomized procedure) a weft t expression E′ of bounded
depth, and an integer k′ so that the conditions defining a randomized reduction are met.

The reduction procedure consists of the following steps:
(1) Randomly choose j ∈ {1, ..., k log n}.
(2) Randomly choose j length n 0-1 vectors

yi = (y[i, 1], ..., y[i, n]), 1 ≤ i ≤ j.

(3) Randomly choose m ∈ {1, ..., 12}.
(4) Output

E′ = E1 ∧ E2 ∧ · · · ∧ E9 and k′

where the constituent subexpressions Ei and the weight parameter k′ are as described below.
The set X ′ of variables for E′ is

X ′ = X ′1 ∪X ′2 ∪X ′3

where

X ′1 = {u[a, b, c] : 1 ≤ a ≤ m, 1 ≤ b ≤ k, 1 ≤ c ≤ n}
X ′2 = {v[a, b] : 1 ≤ a ≤ k(k − 1), 1 ≤ b ≤ n}
X ′3 = {w[a, b] : 1 ≤ a ≤ m− 1, 1 ≤ b ≤ k}

We next describe the various constituent subexpressions of E′.
The subexpression E1.

Write X ′1(i) to denote the variables of X ′1 that have first index i, for i = 1, ...,m. That is,

X ′1(i) = {u[i, b, c] : 1 ≤ b ≤ k, 1 ≤ c ≤ n}

Note that the set X ′1(i) can be paired in a natural way with the set of variables X of the expression
E by the correspondence:

x[b, c]↔ u[i, b, c]

Let E1(i) denote the expression obtained from E (essentially, a copy of E) by substituting the
variables of X ′1(i) for the variables of X according to this correspondence.

E1 =
m∏
i=1

E1(i)
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The role of E1 is to hold each of the m copies of the variables of E accountable for satisfying a
copy of E.
The subexpression E2.

E2 =
m∏
a=1

k∏
b=1

∏
1≤c<c′≤n

(
¬u[a, b, c] ∨ ¬u[a, b, c′]

)
The role of E2 is to enforce that at most one variable is set true in each “block” of the variables
of X ′1 (there are km blocks, corresponding the m copies X, each copy consisting in a natural way
of k blocks).
The subexpression E3.

E3 =
m∏
a=1

k∏
b=1

n∏
c=1

k∏
b′=b+1

c∏
c′=1

(
u[a, b, c]→ ¬u[a, b′, c′]

)
The role of E3 is to enforce the ascending order condition on truth assignments (with respect to the
k blocks of variables) that occurs in the definition of Separated t-Normalized Satisfiability.
This condition is enforced for each of the m copies of the variables of E.
The subexpression E4.

We view X ′3 as consisting of m− 1 blocks:

X ′3(a) = {w[a, b] : 1 ≤ b ≤ k}

E4 =
m−1∏
a=1

∏
1≤b<b′≤k

(¬w[a, b] ∨ ¬w[a, b′])

The role of this subexpression is to enforce that at most one variable is set true in each of
the blocks of X ′3 in any any satisfying truth assignment for E′.
The subexpression E5.

E5 =
k(k−1)∏
a=1

∏
1≤b<b′≤n

(¬v[a, b] ∨ ¬v[a, b′])

The role of this subexpression is to enforce that at most one variable is set true in each of
the k(k − 1) blocks of X ′2.
The subexpressions E6 and E7.

E6 =
m−1∏
a=1

k∏
b=1

b−1∏
b′=1

∏
c 6=c′:1≤c,c′≤n

(¬w[a, b] ∨ ¬u[a, b′, c] ∨ ¬u[a+ 1, b′, c′])

E7 =
m−1∏
a=1

k∏
b=1

∏
1≤c′≤c≤n

(¬w[a, b] ∨ ¬u[a, b, c] ∨ ¬u[a+ 1, b, c′])

The m − 1 variables that are set true in the blocks of X ′3 in a satisfying assignment for
E′ provide evidence that the m “solutions” for E recorded in the m blocks of X ′1 are distinct
and recorded in the m blocks in increasing lexicographic order. The nature of this evidence is
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an indication of the first of the k choice blocks in which two consecutive solutions differ. The
subexpressions E6 and E7 enforce the increasing lexicographic ordering based on this evidence.
The subexpressions E8 and E9.

In order to describe the subexpressions E8 and E9 we first must construct an interpretation
of the variables of X ′2. This consists of the following information:
(1) Each a ∈ {1, ..., k(k − 1)} is assigned a subset Ja ⊆ {1, ..., j} so that |Ja| = log n/(k − 1) and⋃

1≤a≤k(k−1) = {1, ..., j}.
(2) Each even-cardinality subset Sα ⊆ {1, ..., k} is assigned a unique 0-1 vector α of length k− 1.
(Note that this is possible, since there are 2k−1 such even-cardinality subsets.)
(3) Each variable v[a, b] ∈ X ′2 is interpreted as assigning an even-cardinality subset S(j′, a, b) to
each j′ ∈ Ja. This assignment is made in the following way. The index b can be regarded as a 0-1
vector of length logn. This index vector can be read as a sequence of |Ja| blocks of size k − 1. If
the rth block is α then the rth element of Ja is assigned the even-cardinality subset Sα.

E8 =
m∏
p=1

∏
1≤a≤k(k−1)

(¬v[a, b] ∨ ¬u[p, j′, q])

E9 =
m∏
p=1

∏
1≤a≤k(k−1)

∏
1≤b≤n

(¬v[a, b] ∨ ¬u[p, j′, q])

The variables that are set true in X ′2 in a satisfying truth assignment for E′ are intended
to indicate a proof (that can be checked by a weft 1 circuit) that each of the m weight k truth
assignments that are solutions for E recorded in the m blocks of X ′1 are orthogonal to the randomly
chosen length n 0-1 vectors yi. The proof that is indicated consists of showing that an even subset
of the k positions set to true in X ′1 have corresponding positions that are 1 in the yi. A variable
v[a, b] indicates part of such a proof, according to the interpretation mechanism described above.
The subexpressions E8 and E9 provide an enforcement for the interpretation.
The parameter.

The description of the reduction is completed by specifying the parameter that accompanies
E′.

k′ = mk + k(k − 1) + (m− 1)

We now argue for the correctness of the reduction. Half of this is easy. If E is not satisfiable
by a weight k truth assignment, then because of E2 and E1 there is no weight k′ truth assignment
that satisfies E′ (never mind whether it is unique).

For the other half we must argue that if E has a weight k truth assignment, then with the
required probability bound, E′ has a unique weight k′ truth assignment. Let X0 = {x[1], ..., x[n]}.
The weight k truth assignments to X that satisfy the additional conditions that define Separated

t-Normalized Satisfiability can be put in a natural 1:1 correspondence weight k truth as-
signments to X0. The correspondence is that if the rth variable assigned the value 1 in X0 is x[s]
then x[r, s] is assigned 1 in the truth assignment for X. Because of this correspondence we can
speak of a weight k truth assignment to X0 that satisfies E.

It follows from the arguments in [KST93] §1.4.1 that if there is any weight k truth assignment
to X0 that satisfies E (and noting that there are no more than nk such assignments), then with
probability at least 1

24k logn there are exactly m distinct weight k truth assignments that satisfy
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E and that are hashed by the function

h(x[1], ..., x[n])[s] =
n⊕
i=1

(x[i] ∧ y[s, i])

to 0j .
We argue that in this case, E′ is uniquely satisfied by a weight k′ truth assignment to X ′. The

subexpressions E1, E2, E3, E4, E6 and E7 can be satisfied if the m distinct truth assignments are
represented in lexicographically increasing ascending order in the blocks of X ′1, and if the evidence
for the lexicographic ordering is represented in X ′3. It is easy to check that if there are exactly
m distinct weight k truth assignments that satisfy E, then there is a unique truth assignment to
X ′1∪X ′3 that satisfies these subexpressions, and it must have weight mk+ (m−1). The key point
for this assertion is that the subexpressions E6 and E7 are sufficiently restrictive that not only is
increasing lexicographic ordering enforced, but also the evidence for this is uniquely determined.

In the above situation, the subexpressions E5, E8 and E9 can be satisfied by a weight k(k−1)
assignment to X ′2 that represents the hash function condition. Because this is also uniquely
determined, there is a unique weight k′ truth assignment for E′.

The subexpressions E2 through E9 have weft 1, and therefore the weft of E′ is the same as
the weft of E.

There are several obstacles to a proof of the statement (1) discussed at the beginning of this
section. Among these is the matter that our proof of Theorem 6.2 uses kn log n random bits, while
the definition of the BP· operator provides only k log n random bits. Furthermore, a method of
probability amplification would be needed (also employing only k log n random bits). How to
achieve this with weft 1 circuits is unclear. The question of whether (1) and (2) hold is quite
interesting, since together with Theorem 5.1 they would yield that Unique Clique is as hard
any parameterized problem in the W [t] hierarchy.

7 Conclusion

We have placed the W hierarchy on a computationally more useful basis. Indeed, we have proved
that the N [t] classes giving W [t] = 〈N [t]〉 arise naturally from a notion G[t] of “AC0 circuits for
parameterized problems” and form a proper hierarchy. Thus in the effort to determine whether
the W [t] hierarchy itself is proper, we need to focus attention on FPT-reductions themselves. Put
another way, the structure provided by the ideas of circuit weft and bounded Hamming weight
is robust by itself. A number of interesting and challenging questions remain open about the
structure of the H[t] hierarchy, especially about the calculus of complexity operators on the G[t]
classes.
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