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Abstract  
 
We present results of a preliminary study that applies cognitive load theory (CLT) to investigate how 
students with different amounts of prior experience learn algorithms. We test the following assertions 
from the CLT framework: The high CL of algorithm learning comes from intrinsic CL  meaning the 
complexity of the information being processed. There is also high germane CL  that induced by the 
instructional intervention  in tasks designed to assess the learned knowledge. Lowering either of these 
two CLs results in measurable learning gains. Lowering the complexity of incremental steps is the key 
determinant of ge and 
experience influence the process of learning algorithms. This also involved testing whether an algorithm 
visualization tool (Map-based Educational Tools for Algorithm Learning, METAL) improves the 
understanding of graph algorithms. Our study adapted an existing survey instrument developed by 
Klepsch, et al., to algorithmic thinking tasks and used it as a tool to measure CL components. We 
explored and measured three types of CL for breadth-first and depth-first graph traversal algorithms, 
and among three groups of participants, non-Computer Science students, beginning CS students, and 
more advanced CS students. Results include: (i) Among different types of CL, germane load was the 
most substantial type for all groups.  Students with more background in CS showed lower levels of all 
types of CL. (ii) The three groups showed similar relative effects of intrinsic, germane, and extraneous 
CL. We discuss future research and limitations of the study. 
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1. INTRODUCTION 
 

As computer science has opened wide to students 
of diverse backgrounds and different levels of 
prior experience, the educational community 
needs progressively better understanding of how 
to optimize learning across this spectrum. 
Algorithm visualization (AV) tools have been 
shown to be effective (Hansen et al. 2002) but 
they fit a wider picture. We gain insight by 
conducting an experiment that employs Cognitive 
Load Theory (CLT) (Paas et al. 2003a; Sweller et 
al. 2011) to see how students at various levels 
learn when guided by an AV tool. 
 
The experiment involves university students at 
three levels of experience with computing: non-
computer science majors, those early in the CS 
major, and those at a more advanced stage of the 
major. We first describe CLT and how it applies in 
this context. Then we present results that accord 
with expectations from previous work in CLT and 
draw further conclusions. 

 
 2. COGNITIVE LOAD THEORY 

 
CLT aims to structure the analysis of what is 

we define and measure the effort required to 
learn concepts? We want to measure the 
efficiency of a learning process as the proportion 
that drives acquired knowledge and skills, versus 
the part expended on incidentals of the learning 
process. This can inform the design and ordering 
of instructional materials, and also evaluate the 
efficacy of automated learning tools. Much of the 
effort goes into memorizing and retention, which 
mean both the memory immediately needed to 
function and the memory of how concepts and 
procedures are ordered so they can be efficiently 
recovered from notes.  
According to CLT, cognitive workload is the level 
of measurable mental effort put forth by an 
individual in response to one or more cognitive 
tasks (Van Gog & Paas 2008). In other words, 
cognitive load can be defined as the ratio between 
the workload that directly leads to the acquisition 
of knowledge and skills, and the workload that is 
expended on incidentals of the learning process. 
In general, there are three categories of cognitive 
workload (Sweller et al. 2019), reflected also in 
(Klepsch et al. 2017; Klepsch & Seufert 2020): 
 

 Intrinsic cognitive load (ICL) 
 Extraneous cognitive load (ECL) 
 Germane cognitive load (GCL) 

 
Intrinsic cognitive load refers to the complexity of 
the information being processed. It also relates to 

the concept of element interactivity. Interactive 
elements have to be processed simultaneously in 
working memory for learning to begin. 
Consequently, learning new material with a high 
number of interacting elements will impose a high 
cognitive workload. The other two kinds of loads 
are not considered inherent to learning the 
material, but as imposed by the design of 
instructional units for that material. When the 
load imposed by the design is ineffective or 
detrimental for learning, it is called extraneous 
cognitive load; when it is effective for learning it 
is referred to as germane cognitive load (Sweller 
et al. 2019).  
 
The overall key to improving learning for novices 
is reducing the undesirable parts of the cognitive 
load to allow maximum memory usage for 
learning (Morrison et al. 2016). One of the 
original assumptions of CLT is that the three 
basic types of load (ICL, ECL, and GCL) are 
additive (Paas et al. 2003); thus, if the ECL is 
using the capacity of working memory, little can 
be devoted to the GCL. Because working memory 
is considered to be a fixed size (Miller 1956), it 
falls upon the instructional designer to minimize 
the ECL, design appropriately for the ICL, and 
emphasize the GCL. To accomplish this, one must 
be able to measure the specific load components 
for any pedagogical intervention. 
 
Context and Relevant Work 
Sweller (Sweller 1988) proposed CLT, which 
articulated the association between cognitive 
resources and task demands in creating cognitive 
load. Key elements defined in (Groth-Marnat & 
Wright 2016) and (Van Gog & Paas 2008) are 
schemata and schemas. The former means 
cognitive structures representing generic 
knowledge, i.e., structures that do not contain 
information about particular entities, instances or 
events, but rather about their general form. 
People use schemata to organize current 
knowledge and provide a framework for future 
understanding. Examples of schemata include 
academic rubrics. Schemas, on the other hand, 
are single information elements that combine to 
form schemata.  
 
Learning is considered to happen through schema 
construction, elaboration, and automation. 
Automation means execution without controlled 
processing through intensive and consistent 
practice (Van Gog & Paas 2008). Cognitive load is 
metered by resources that learners consume 
while performing tasks. In this model, working 
memory is a cognitive resource, but is a limited 
one; only a small fraction of elements can be 
consciously handled per unit time, especially 



Journal of Information Systems Applied Research  16 (3) 
ISSN: 1946-1836  November 2023 

©2022 ISCAP (Information Systems & Computing Academic Professionals)  Page 60 
https://proc.conisar.org; https://iscap.info 

when they are novel or unfamiliar. However, 
long-term memory provides the ability to 
overcome the limitation of working memory, with 
the help of schemas (Xie et al. 2017). 
 
In the field of educational research, CLT is mainly 
used to explain the effects of various forms of 
instructional design (Sweller et al. 2011). 
According to this theory, ICL is not directly 
affected by instructional design. It is related to 
element interactivity in learning materials and 

specific task is usually treated as depending on 
the level of element interactivity (Xie et al. 2017). 
An element can be anything that will be or has 
been presented, for example a concept or a 
procedure. Instructional materials with low 
element interactivity allow single (or several) 
element(s) to be processed with little or even no 
reference to other elements, thus resulting in a 
low ICL; however, high element interactivity 
materials contain elements that heavily interact 
with each other and cannot be processed 
separately, leading to a high ICL. The theory 
supports the position that GCL is directly 
beneficial to learning, whereas ECL only is 
detrimental to learning. In particular, GCL is 
imposed by cognitive processes of active schema 
construction, such as clarifying, inferring, and 
organizing, whereas ECL obstructs schema 
construction and automation. 
 
The total cognitive load during information 
processing is the sum of the three kinds of 
cognitive loads. One important objective of 
instructional design is to ensure that the total 

capacity, in order to avoid cognitive overload 
(Paas et al. 2003b). Techniques used to measure 
cognitive load include subjective rating scales, 
dual-task performance, and physiological 
measures (Antonenko et al. 2010; Paas et al. 
2003b; Whelan 2007). Paas (Paas 1992) 
introduced the mental effort scale, which was a 

scale (Bratfisch et al. 1972) for measuring 
-point mental 

effort scale included one item that asked learners 
to report how much mental effort they invested 
when learning the material. Since then, the 
mental effort or perceived difficulty scale has 
been widely used in research in the field of 
learning and instruction because it is easy to 
administer, is non-invasive, and has good 
reliability and validity (Paas et al. 2003b) 
 
 

3. USING METAL AS AN INTERACTIVE 
ALGORITHM VISUALIZATION 

 
Transfer of learning occurs when people apply 
information, strategies, and skills they have 
learned to a new situation or context (Olson 
2015). Transferring this learning performance 
generally requires additional instructional support 
that allows learners to go below the schema level 
in the level of hierarchy of learning and to 
understand the rationale of individual solution 
steps. One promising avenue to support learners 
in this type of reasoning is to embed interactive 
visualizations within an example-based 
hypermedia environment (Van Merriënboer et al. 
2003). This study uses a variant of this idea, 
based on an interactive AV tool. The AV system 
provided by the Map-based Educational Tools for 
Algorithmic Learning (METAL) project (Teresco et 
al. 2018) has several advantages: scalability, a 
customizable API, visualizations that show the 
progress of algorithms overlaid on Leaflet Maps, 
color-coded tables showing contents of data 
structures, and example real-world data sets in a 
variety of sizes. These all enhance student 
engagement (Teresco et al. 2018). Figures 1 and 

for the two algorithms used in our study: 
breadth-first search within a graph (BFS) and 
depth-first search within a graph (DFS). 
 

 
 
 
Fig. 1. A METAL AV in progress using the BFS algorithm 
on the Delaware region graph. The violet dot shows the 
starting vertex. Blue vertices and edges have been 
found to be part of the spanning tree. Green vertices 

 and 
are in the queue of candidates to be added to the 
spanning tree in subsequent steps. The yellow edge 
and vertex just came out of the discovered queue as the 
next candidate to be added to the spanning tree. 
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Fig. 2. A METAL AV in progress using the DFS algorithm 
on the Delaware region graph. Colors here match those 
described in Figure 1, except here the green discovered 
vertices and edges are stored in a stack rather than a 
queue. 

 
4. METHOD 

 
Our cognitive load measurement survey is 
adapted from Klepsch, et al (Klepsch et al. 2017; 
Klepsch & Seufert 2020). It includes elements to 
measure each of the three cognitive load 
components (English translations). 
 

 For this task, many things needed to be 
kept in mind simultaneously (ICL). 

 This task was very complex (ICL). 
 For this task, I had to highly engage 

myself (GCL). 
 For this task, I had to think intensively 

what things meant (GCL). 
 During this task, it was exhausting to find 

the important information (ECL). 
 The design of this task was very 

inconvenient for learning (ECL). 
 During this task, it was difficult to 

recognize and link the crucial information 
(ECL). 

 
Participants responded to each item using a Likert 
score from 0 ("absolutely wrong") to 7 
("absolutely right"). For the study herein, the 
questions were as follows: 
 

 For BFS/DFS, many things needed to be 
kept in mind simultaneously (ICL). 

 BFS/DFS was very complex (ICL). 
 I made an effort, not only to understand 

several details, but to understand the 
overall context (GCL). 

 My point while dealing with BFS/DFS was 
to understand everything correctly (GCL). 

 The learning task consisted of elements 
supporting my comprehension of the task 

(GCL). 
 During this task, it was exhausting to find 

the important information (ECL). 
 The design of this task was very 

inconvenient for learning (ECL). 
 During this task, it was difficult to 

recognize and link the crucial information 
(ECL). 

 
 
Study Participants 
Participants were undergraduate students, aged 
18-24, in a university in the United States. 
Participants included both Computer Science (CS) 
majors, and students majoring in other 
disciplines. The CS majors were furthered divided 
into those at the CS1 stage of computer science 
and those at CS2 or higher (by the ACM 
classification). Thus, our participants are divided 
into 3 groups of 15 students each: ( ) Non-CS 

) CS1 
students (denoted ) CS2 or 
higher level stud
cognitive load survey was administered after 
students were exposed to learning tasks and 
interview questions. Surveys were online and 
took 10 minutes to complete for each task. 
During data collection, cognitive load surveys 
were monitored in a Zoom meeting. No invalid 
surveys were returned. A total of 90 cognitive 
load surveys, 45 each for BFS and for DFS were 
collected. 
 
Design of the Study 
The study involves two families of algorithms: 
breadth-first search (BFS) and depth-first search 
(DFS). Both BFS and DFS are accessible at some 
level to both an advanced CS major and a non-
major. The procedure of the study is divided 
into two blocks. One for BFS and one for DFS. 
After completing informed consent, the process 
below was used first for the BFS algorithm, then 
repeated for the DFS algorithm. 
 
(1) The participant was asked several interview 
questions relevant to the algorithm (CS1 and 
CS2+ only, as NCS participants are assumed to 
be unfamiliar with the algorithms). 
 
(2) The participant watched the METAL AV tutorial 
video for the algorithm. 
 
(3) The participant uses the interactive METAL AV 
for the algorithm. 
 
(4) The participant was asked several knowledge 
questions with different levels of complexity 
regarding the interaction with METAL and 
knowledge related to the algorithm. 
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(5) The participant completes the cognitive load 
survey. 

 
5. RESULTS AND DISCUSSIONS 

 
The experimental design gives several axes for 
comparisons. First, we compare the cognitive 
load experienced in the ICL, GCL and and ECL 
categories, which are reflected by three groups of 
questions: Q1-Q2, Q3-Q5, and Q6-Q8. Then we 
compare the three groups of non-majors, CS1, 
and CS2, repeating for BFS (Figures 3-5) and DFS 
(Figures 6-8). Finally we compare experiences 
with BFS vs. DFS holding other factors the same 
(Figures 9-11).  
 
In these comparisons, we try to refute a null 
hypothesis expressing that there is no difference 
between groups, i.e., that the inputs from the 
groups come from one underlying distribution. 
The basic Analysis of Variance (ANOVA) test 
presumes that this distribution is normal. For one 
student, the responses are drawn from the 0 to 7 
Likert scale. We avoid the controversial 

 
responses can be treated as drawn from a normal 
distribution centered somewhere on the Likert 
scale. Instead, for each of the eight questions, 
and within each group of 15 students, we average 
the responses to the question and input the mean 
as one data item. By appeal to the Central Limit 
Theorem, these means are representative 
of a normal distribution. As also stated in the 
footnoted excerpt from (Willett nd), we are shy of 
the conventional 30 for such appeal, but we 
compensate by having three groups of 15 and by 
the observation that our individual Likert 
responses do not have extreme polarization that 
is, they do not have two modes on the 0-7 scale 
where some students strongly agree and others 
strongly disagree. We still find significance even 
with just 8 data points per item in the ANOVA, 
while our results are conservative compared to 
the alternative procedure of treating individual 
responses as normally distributed.  We plot sums 
out of 105 rather than averages out of 7 for each 
group; this makes no difference to the ANOVA. 
 
The first null hypothesis (NH) we try to refute is 

experience of cognitive load between the items 
identified as ICL, GCL, and ECL. Under NH, we 
would be supposing that the sampled questions 
are indistinguishable from randomly drawn 
responses about stages of cognitive load. As per 
the original design in Klepsch, et al., there is 
sufficient homogeneity in what each of Q1,...,Q8 
addresses this also reflects the intent to divide 

reasonably uniform. 
 
BFS Algorithm Studies 
Participants in all groups first worked with the BFS 
algorithm and completed the surveys. 
 
Non-CS Majors. Recall that Q1 and Q2 are 
intended to measure ICL; Q3-Q5 measure GCL 
and Q6-Q8 measure ECL. 
 

 
Fig. 3. Sum of Likert scores by question for the BFS 

 
 
In Figure 3, we see the GCL is highest, followed 
by ICL, with ECL the lowest. To test if there is a 
significant difference among these three, we use 
an ANOVA analysis to obtain a probability (p-
value). This was computed as 0.012, less than a 
significance threshold of 0.05, indicating a 
significant difference. Details of this analysis are 
shown in Table 1. 
 

 
Table 1. Results of the ANOVA analysis for the BFS 

the three types of cognitive load measured. 
 

(Tukey 
1949) post hoc to indicate which groups in the 

significant difference, a number that represents 
the distance between groups, to compare every 
mean with every other mean. The results of this 
test indicate a significant difference between GCL 
and ECL. For an example of this, we quote Willett 
(Willett nd) from the Simulation Canada website: 

using parametric tests, such as the t-test or an 
ANOVA. Sometimes this is appropriate and 
sometimes it is not. So when can parametric 
tests, which are generally more sensitive and 
more powerful, be used? Only when the ordinal 
data meets all of the assumptions of the 
parametric test. These are: 1. The sampling 
distribution (not necessarily the data itself) is 
normally distributed. This will be true if 1. Sample 



Journal of Information Systems Applied Research  16 (3) 
ISSN: 1946-1836  November 2023 

©2022 ISCAP (Information Systems & Computing Academic Professionals)  Page 63 
https://proc.conisar.org; https://iscap.info 

size (n) is greater than 30; or 2. n<30 and the 
data appears to be normally distributed on 

 
 
CS1 students. Figure 4 shows that the three 
questions that measure GCL have the highest 
individual cognitive load for participants, and 
account more than half the total cognitive load. 
 

 
Fig. 4. Sum of Likert scores by question for the BFS 

 
 
As expected, ECL is the lowest. The BFS 
algorithm is new to this group of participants, but 
there is a difference in learning BFS between CS1 
and NCS. CS1 students have some familiarity 
with the queue data structure at the core of the 
BFS algorithm, so we would expect this group to 
have some better schema creation, resulting in 
lower GCL, based on this previous experience that 
NCS participants did not have. This is observed in 
the GCL questions. ICL and ECL are also lower for 
the CS1 group compared to the NCS group. 
 
For this group, ANOVA analysis (Table 2) gives a 
p-value of 0.001, again below the significance 
threshold of 0.05, indicating significant 
differences among the three types of cognitive 
load. The post hoc Tukey test also indicates 
significant differences between each pair of 
cognitive load types. 
 
 

 
 
Table 2. Results of the ANOVA analysis for the BFS 

the three types of cognitive load measured. 
 
 
CS2+ Students. Similarly to the NCS and CS1 
groups, Figure 5 shows that the GCL is the largest 
component of cognitive load among the CS2+ 
group. CS2+ participants were familiar with the 

BFS algorithm but had not seen it recently (based 
on their pre-test interview) and had studied 
relevant data structures. The BFS AV for these 
students was more of a refresher. There was no 
significant difference between CS1 and CS2+ 

 

 
 
Fig. 5. Sum of Likert scores by question for the BFS 

icipants. 
 
 
The ANOVA analysis for CS2+ (Table 3) shows a 
significant overall difference among three 
cognitive loads (p-value 0.006). The post hoc 
Tukey test indicates a significant difference 
between ICL and GCL, and between ECL and GCL, 
but not between ICL and ECL. 
 

 
 
Table 3. Results of the ANOVA analysis for the BFS 

the three types of cognitive load measured. 
 
DFS Algorithm Studies 
Participants in all groups next worked with the 
DFS algorithm and completed the surveys 
 

 
Fig. 6. Sum of Likert scores by question for the DFS 

 
 
Non-CS Majors. 
interaction with DFS in Figure 6 show that all 
types of cognitive load are lower than for the 
same group with BFS, indicating a lower level of 
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difficulty (unsurprising, since they had done BFS 
first). As was the case with BFS for this group, 
GCL is higher than the other loads for DFS. 
 
NCS participants had a significant difference 
among the three types of load, as indicated by 
the p-value 0.009 obtained from the ANOVA 
analysis (Table 4). The post hoc test shows there 
is a significant difference only between ECL and 
GCL. 
 

 
 
Table 4. Results of the ANOVA analysis for the DFS 

three types of cognitive load measured. 
 
CS1 Students. With DFS, the CS1 group (Figure 
7) GCL is higher than ICL and ECL.  
 

 
 
Fig. 7. Sum of Likert scores by question for the DFS 

 
 

results with BFS in all three types of cognitive 
load, and indicate that the DFS and BFS algorithm 
for CS1 participants were about the same level of 
difficulty. 
 
The ANOVA analysis here (Table 5) gives a p-
value 0.001, demonstrating significant 
differences among the three types of cognitive 
load. The post hoc Tukey test shows there is a 
significant difference between each pair of ICL, 
ECL, and GCL. 
 

 
 
Table 5. Results of the ANOVA analysis for the DFS 

the three types of cognitive load measured. 

CS2+ Students. Again for DFS with the CS2+ 
group, Figure 8 shows that GCL is highest. 
 

 
Fig. 8. Sum of Likert scores by question for the DFS 

 
 
ANOVA analysis (Table 6) gives a significant 
difference among the types of load (p-value 
0.003). The post hoc Tukey test shows there is a 
significant difference between GCL and ECL, and 
between GCL and ICL, but not between ICL and 
ECL. CS2+ participants have the most familiarity 
with the algorithm and have little need for 
schema creation to store new knowledge, 
meaning less difference between ICL and ECL. 
 

 
Table 6. Results of the ANOVA analysis for the DFS 

the three types of cognitive load measured. 
 
Comparisons Between BFS and DFS 
Figures 9 (for the NCS group), 10 (for the CS1 
group), and 11 (for the CS2+ group), show side-
by-side comparisons of the results for BFS and 
DFS surveys presented earlier in this section. 
For NCS participants, we see that the cognitive 
loads are smaller for DFS than for BFS. For the 
CS1 and CS2+ groups, we observe a reduction in 
ICL and ECL for DFS compared to BFS. 
 

 
 
Fig. 9. Side-by-side comparison of the sum of Likert 
scores by question for the BFS algorithm study and 

 NCS participants. 
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Fig. 10. Side-by-side comparison of the sum of Likert 
scores by question for the BFS algorithm study and 

 CS1 participants. 
 

 
 
Fig. 11. Side-by-side comparison of the sum of Likert 
scores by question for the BFS algorithm study and 

 CS2+ participants. 
 
Discussion 
In summary, our BFS and DFS studies produced 
the following results: 
 

 Students with more CS background (CS1 
and CS2+) showed lower levels of all 
three types of cognitive load. 

 Among types of cognitive load, GCL was 
the most substantial for all groups. 

 There was less difference between the 
CS1 and CS2+ groups in regard to 
cognitive load compared to the NCS 
group. 

 
 
Comparing the differences between the BFS and 
DFS algorithms, we obtained these results: 
 

 There was not significant difference 
between the two algorithms for the 
groups that have a background in CS 
(CS1 and CS2+). 

 There was a higher level of cognitive load 
for BFS than DFS for the NCS group. 

 GCL was the highest type of cognitive 
load for both algorithms. 

 
According to CLT literature, we can reduce ICL in 
two ways:  
 

1. The segmenting principle (Mayer and 
Moreno 2010). The goal of this principle 
is to reduce element interactivity by 
presenting information step by step. This 
process helps learners without prior 
knowledge to organize the incoming 
information. The METAL AV user interface 
presents the algorithm in a step-by-step 
manner, possibly explaining the low ICL 
in spite of the highly intrinsic nature of 
algorithmic learning. 

2. The pre-training principle (Mayer & 
Pilegard 2005). According to this 
principle, ICL is reduced by providing the 
learner with information about the 
content before starting with the learning 

knowledge supports the integration of 
new information. In the design of our 
study, students first watched a video of 
the algorithms to gain some familiarity 
with the topic. That might be another 
factor that helped to reduce ICL. 

 
6. LIMITATIONS 

 
Due to pandemic protocols, the algorithm 
learning experiment was conducted fully online 
through use of Zoom web conferencing. 
Participants were monitored during all the steps 
of study. If we could repeat the experiment in 
person, it is unclear if we would obtain similar 
results. Also, the motivation of our subjects to 
participate in the study is another key factor to 
consider. The background and previous 
knowledge of the population under study can 
affect the results. 
also a limiting factor. As discussed below, this 
experiment has the potential to be repeated with 
a larger sample size. The fact that DFS was 
learned before BFS is potentially a confounding 
factor. We are hoping to repeat the experiment 
with random order and then see the differences. 

 
7. CONCLUSIONS AND FUTURE WORK 

 
We hypothesized that the high level of cognitive 
load related to algorithm learning comes from 
ICL. We found that METAL has a positive impact 
on the learning process over all participants by 
helping to reduce ICL relative to GCL.  We found 
a significant difference between ICL and GCL 
within each of the CS1 and CS2+ groups.  This 
indicates that METAL was most effective for those 
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already with some CS background.  This runs 
counter to intuition that visual tools may have 
greatest impact for neophytes and argues their 
aptness within core CS curricula. 
 
We see this study as a first step that can enable 
many additional studies. The game plan for this 
includes the following: 
 
(1) Find a more accurate and reliable 
measurement of cognitive load, especially as 
related to learning algorithms. 
 
(2) Expand the use of the cognitive load survey in 
larger size algorithms classrooms. 
 
(3) Short of being able to scale up the study in its 
entirety, we can consider partial questionnaires 
given to larger groups that can provide 
supplementary information relevant enough to 
buttress the conclusions. 
 
(4) After the pandemic, it will be possible to 
employ physiological measurement tools such as 
eye-trackers to measure the cognitive process of 
algorithm learning. As a visual tool, METAL is 
suitable for this as well and will be a key 
component in this plan. 
 
(5) Replicate the study with the different groups  
of students and changing the order in which BFS 
and DFS are introduced.  
 
Points 1 3 raise the following general research 
question: Can we obtain results measuring 
cognitive load as accurately as the complex and 
time-consuming study that was used here with a 
streamlined study that can more reasonably be 
scaled to larger groups That could also mean we 
could do multiple studies or have multiple groups 
for a study within one larger cohort, gathering 
much more data in much less time. 
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