
Symmetric Functions Capture General Functions

Richard J. Lipton
College of Computing

Georgia Tech, Atlanta, GA, USA

Kenneth W. Regan
Department of CSE

University at Buffalo (SUNY)

Atri Rudra∗

Department of CSE
University at Buffalo (SUNY)

August 20, 2011

Abstract

We show that the set of all functions is equivalent to the set of all symmetric functions
up to deterministic time complexity. In particular, for any function f , there is an equivalent
symmetric function fsym such that f can be computed form fsym and vice-versa (modulo an
extra deterministic linear time computation). For f over finite fields, fsym is (necessarily) over
an extension field. This reduction is optimal in size of the extension field. For polynomial
functions, the degree of fsym is not optimal. We present another reduction that has optimal
degree “blowup” but is worse in the other parameters.

1 Introduction

Symmetric polynomials have been central in both arithmetic complexity and Boolean circuit com-
plexity. All function families in ACC0 are known to reduce to symmetric polynomials via small
low-depth circuits. The Boolean majority function and related symmetric functions on {0, 1}n are
hard for low-depth circuit classes, but analogous functions over infinite fields have small constant-
depth arithmetic formulas [8]. The best-known lower bounds of Ω(n log n) on arithmetic circuit
size apply to some simple symmetric functions such as xn1 + · · · + xnn [5]. Symmetric polynomials
have a rich algebraic structure. It is therefore interesting to ask whether they are easier to compute
than general polynomials.

Our main results are reductions from a general polynomial f ∈ F[x1, . . . , xn] of degree d to
symmetric polynomial(s) gf ∈ F′[y1, . . . , yN] of some degree D. Upper and lower bounds are
classified according to whether F is a finite or infinite field (and later, a ring), whether one or more
queried polynomials gf are involved, by the degree s of F′ as an extension of F, and by D and
N in relation to the given d and n. Once the best achievable combinations of those parameters
are determined, the issues become the running time of the reduction, whether it is computable by
low-depth circuits or formulas (with oracle gate(s) for the call(s) to gf), and whether the entire
computation is randomized and/or correct only for a large portion of the input space Fn.

∗Supported by NSF CAREER grant CCF-0844796.

1

1.1 Symmetric Functions—Hard or Easy?

Here are some contexts in which symmetric functions are hard or powerful. Lu [18] remarked
that all of the early circuit lower bounds were proved for symmetric functions such as parity and
congruence of Hamming weight modulo m [11, 25, 20, 21]. Grigoriev and Razborov [13] (see also
[12]) proved exponential lower bounds for depth-3 circuits computing certain symmetric functions
over finite fields. Beigel and Tarui [7] showed that every language in ACC0 can be represented
as a Boolean symmetric function in quasi-polynomially many arguments, with each argument a
conjunction of inputs xi or their negations.

In other contexts, symmetric functions are easy. Over GF(2) they depend on only O(log n) bits
of information, and hence have linear-size, O(log n)-depth Boolean circuits. Beame et al. [6] showed
that every n-input Boolean symmetric function can be computed by threshold circuits of linear size
and O(log log n) depth. Over infinite fields, some symmetric polynomials that are hard over finite
fields become easy owing to the availability of polynomial interpolation (see [24]). The elementary
symmetric polynomials, which form an algebra basis for all symmetric polynomials, are easy over
all fields, and surprisingly easy in the rings of integers modulo certain composite numbers [14].

So are symmetric functions hard or easy? Or are there contexts in which they have all levels
of complexity? In this paper, we prove some results of this last type. Thus we aim to transfer
general issues of complexity entirely into the domain of symmetric functions, where we can avail
their special algebraic properties.

1.2 Our Results and Techniques

Given a polynomial f(x1, . . . , xn) over a field (or ring) F, the objective is to find a symmetric
polynomial fsym, possibly over a larger field F′ and/or in a different number m of variables, such
that f reduces to fsym, and importantly, vice-versa. The reductions from f to fsym are substitutions,
meaning we have functions γ1, . . . , γn of possibly-new variables y = y1, . . . , ym such that

fsym(y) = f(γ1(y), . . . , γn(y)).

Because symmetric functions form an algebra, if γ1, . . . , γn are symmetric then so is fsym. We
presume that the γi are easy to compute; whereupon if f is easy then so is fsym. Thus fsym reduces
to f . The reverse reduction, to recover values of f(x) from calls to fsym(y) for suitable y, is the
more-problematic one. Let Ef be an encoding function that generates y from x, or E′f to generate
a next y from past history, and let Df stand for decoding the values of fsym. The procedure in
general is:

1. On input x, compute y = Ef (x).

2. Compute z = fsym(y).

3. Possibly iterate, computing y(j) = E′f (x, z, z2, . . . , zj−1) and zj = fsym(y(j)).

4. Output f(x) as a function Df of the z value(s).

We first make the observation that the reduction above becomes trivial if we do not care about
the complexity of the function Df . In particular, consider the following instantiation of the general
procedure above. Define fsym(u1, . . . , un) =

∑n
i=1 ui, and for 1 6 j 6 n define y(j) ∈ Fn to

be the vector that is zero in every position except position j, where it has the value xj . Note
that by our choices zj = xj for every 1 6 j 6 n. Thus, if we pick Df to be f , then trivially

2

Df (z1, . . . , zn) = f(x). Of course this reduction is not interesting as the complexity of the reduction
is exactly the same as that of computing f , which is undesirable.

Our first symmetrization makes z = f(x), so Df is the identity function, but generally needs
the encoding function Ef (x) to map into an extension field. For 1 6 j 6 m = n it takes γj to be
the j-th elementary symmetric polynomial

ej(x) =
∑

S⊆[n],|S|=j

∏
i∈S

xi, and defines fsym(x) = f(e1(x), . . . , en(x)).

Since the ej are easily computed [14], so is fsym.
To compute f(b) = f(b1, . . . , bn) by reduction to fsym, we find a = a1, . . . , an such that for each

j,
bj = ej(a1, . . . , an), so that f(b) = fsym(a).

The values aj are found by splitting the univariate polynomial

φb(X) = Xn +
n∑
i=1

bi ·Xi−1

into linear factors. This is guaranteed to be possible only in the splitting field F′ of φb. In other
words, the complexity of computing f from fsym via the reduction above is the same as finding
roots of a degree n polynomial over F′. Using known randomized algorithms for computing roots
of a univariate polynomial, the (time) complexity of the reduction is determined by the degree of
the extension field F′.

Now, the degree of F′ over F is known to equal the least common multiple of the degrees of
the irreducible factors of φb (see [10]). An easy calculation shows that this degree cannot be more
than nO(

√
n). However, this would be too expensive for lower bounds against low-level complexity

classes.
Next, we sketch how we get around this predicament. We use the fact proved in [10] that the

degree of the splitting field of a random monic polynomial is nO(logn) with high probability. We
employ this under two relaxations: (i) If we consider the average-case complexity of f , then it
follows immediately that for most inputs, f and fsym are equivalent under pseudo-polynomial time
reductions. (ii) Under certain restrictions on the degree of f and |F|, we can talk about worst-case
complexity of f and fsym. In particular, we use well-known properties of Reed-Muller codes that
have been used numerous times in the local testing algorithms and PCP constructions [3, 2, 1, 16,
15]. However, unlike the local testing results which need to handle errors, in our application we
only need to handle erasures—roughly because we can efficiently determine the degree of F′ without
computing the vector a, which leads to better bounds.

The drawback of this reduction is that the degree of F′ is very large. For comparison, we show
by a counting argument that the degree of F′ need only be O(logq n), which is super-exponentially
better than the bound obtained above. However, note that by construction the degree of fsym is
no worse than a factor n more than that of f– we show this to be tight with an additive constant
factor from the optimal (again by a counting argument).

Our second symmetrization is superior in that it gives linear-time equivalence over any finite
field Fq. It is inferior only in giving somewhat higher degree of the resulting symmetric polynomial.

The intuition behind the second reduction is somewhat similar to the “reduction” outline earlier
that defined Df = f . In particular for every input value xi, we will associate it with the pair (i, xi).
(We can do this over extension fields of finite fields and over reals by thinking of (i, xi) to be the

3

“base n” representation of xi.) The main idea in defining fsym from f is to convert every input
(i, xi) back to xi. Doing this while ensuring that fsym is symmetric requires a bit of care.

We compare the two methods in the table below, giving the deterministic reductions only.
(We’ve shortened DTIME to DT to fit the table.)

f from fsym fsym from f s deg(fsym)

Elem. Sym. DT(nO(
√
n)qO(1)) DT(n log2 n) nO(

√
n) n · deg(f)

Direct DT(n) DT(n) dlogq ne+ 1 snq2 · deg(f)

Lower Bds ? ? dlogq ne − 3 ndeg(f)
e2

(1-o(1))− 2n2/5

2 Preliminaries

We denote a field by F. For a prime power q, we denote the finite field with q elements as Fq.
A function f : Fnq → Fq is equivalent to a polynomial over Fq and we will use deg(f) to denote
the degree of the corresponding polynomial. To express the complexity of our reductions, we set
up more notation. For any function f : Fn → F: (i) C(f) denotes its time complexity; (ii) Cε(f)
denotes the time complexity of computing f correctly on all but an ε fraction of the inputs, where
0 < ε < 1; (iii) Over a field F, DTIME(t(n)) denotes O(t(n)) deterministic operations over F;1 (iv)
RTIME(t(n)) likewise denotes O(t(n)) (Las Vegas) randomized operations over F; while (v) for any
0 6 δ < 1/2, RTIMEδ(t(n)) denotes randomized Fr-operations when we allow for an error of δ.

When moving from a general function (over a finite field F) to an equivalent symmetric function,
the latter must be over an extension field of F. We start with two elementary counting lower bounds
on the degree of the extension field and on other parameters. The proofs are in the Appendix.

Theorem 1. Let q be a prime power and n > 1 be an integer. If every f : Fnq → Fq is equivalent
to a symmetric function fsym : (Fqs)n → Fqs, then

s > dlogq ne − 3.

Recall that every function f : Fnq → Fq is equivalent to a polynomial (over Fq) in n variables
and degree at most qn. Next, we will lower bound the degree blow-up necessary in assigning every
function to an equivalent symmetric function.

Theorem 2. If every function f : Fnq → Fq of degree d is equivalent to some symmetric function

fsym : Fnqs → Fqs of degree at most dsym such that s(d+ n− 1) 6 2o(n), then we must have

dsym >
dn

e2
· (1− o(1))− 2

5
· n(n+ 2).

3 Results for the Elementary Symmetrization

We study the following particular substitution by the elementary symmetric polynomials:

fsym(x) = f(e1(x), e2(x), . . . , em(x)).

We first note that fsym is almost as easy as f itself.

1We use parentheses (· · ·) to emphasize that these time measures can be added in time expressions, whereas
DTIME[t(n)] with [· · ·] strictly denotes a class of functions.

4

Proposition 3. For any function f : Fnq → Fq,

C(fsym) 6 C(f) + DTIME
(
n(log n)2

)
.

Proof . Note that the result will follow if we can show how to compute e1(a), . . . , en(a) in
DTIME(n(log n)2). This follows from the well-known identity that

Xn +
n∑
i=1

ei(a) ·Xi−1 =
n∏
j=1

(X − ai),

since the polynomial on the RHS can be multiplied out via divide-and-conquer and FFT-based
polynomial multiplication. �

We now consider the problem of showing the converse of Proposition 3, i.e. we would like to
bound the complexity of f in terms of the complexity of fsym. We can show the following converses:

Theorem 4. Let f : Fnq → Fq be a function, then (for any 0 < δ < 1/2) the following are true:

C(f) 6 C(fsym) + DTIME(nO(
√
n) · qO(1)). (1)

Cexp(−Ω(
√

logn))(f) 6 C(fsym) + RTIME(nO(logn) · logO(1) q), (2)

Cexp(−Ω(
√

logn))(f) 6 C(fsym) + DTIME(nO(logn) · qO(1)), (3)

C(f) 6 C(fsym)·O(n deg(f) log(
1

δ
))+RTIMEδ((n log q)O(1)) (4)

provided q > Ω(n deg(f) log(1
δ)). Also:

C(f) 6 O(deg(f) log(
1

δ
) · C(fsym)) + RTIMEδ(n

O(logn) · logO(1) q + qO(1)), (5)

provided q > Ω(deg(f)), and

C(f) 6 O(qx · log(
1

δ
) · C(fsym)) + RTIMEδ(n

O(logn) · logO(1) q + qO(1)), (6)

provided 1 6 x 6 n and deg(f) 6 min(x(q − 1), O(q
√

log n/ log q)).

All of the results above start with the same basic idea, which we present next.

3.1 The Basic Idea

Note that we can prove the converse of Proposition 3 if for every b = (b1, . . . , bn) for which we
want to compute f(b), we could compute a = (a1, . . . , an) such that for every 1 6 i 6 n, bi = ei(a)
and evaluate fsym(a) (which by definition would be f(b)). In other words, given the polynomial

φb(X) = Xn +

n∑
i=1

bi ·Xi−1,

we want to completely factorize it into linear factors, i.e. compute a = (a1, . . . , an) such that

n∏
i=1

(X − ai) = φb(X).

5

It is not very hard to see that such an a might not exist in Fnq . Thus, we will have to look into
extension fields of Fq. In particular, the splitting field of any polynomial over Fq is the smallest
extension field over which the polynomial factorizes completely into linear factors. The following
result is well-known:

Proposition 5 (cf. [10]). Let h(X) be a univariate polynomial over Fq of degree k. Let s denote
the least common multiple of all the distinct degrees of irreducible factors of h(X) (over Fq). Then
the splitting field of h(X) is Fqs.

Given the above, the algorithm for computing a is direct:

Invert(b)

1. Compute the polynomial φb(X).

2. Compute the smallest s = s(b) such that Fqssplits
φb(X).

3. Compute an irreducible polynomial of degree s over Fq.

4. Compute the roots of φb(X) over Fqs .

The correctness of the algorithm follows from the discussion above. (The computation of the
irreducible polynomial in Step 3 is to form a representation of the finite field Fqs .) To analyze
its running time, we define some notation: split(b, q) denotes the time required to compute the
smallest s = s(b, q) such that Fqs is the splitting field of φb(X), irr(k, q) is the time required to
generate a degree k irreducible polynomial over Fq and root(k, q) is the time required compute all
the roots of a degree k polynomial over Fq.

The above implies the following:

Lemma 6. For any b ∈ Fnq , Invert(b) can be computed in time DTIME(n) + split(b, q) + irr(s, q) +
root(n, qs).

This would imply that if Invert(·) can be computed in time T (n), then one has C(f) 6 C(fsym)+

T (n). Unfortunately, the quantity s in Step 2 above can be as large as nO(
√
n). This implies that

T (n) = nO(
√
n), which leads to (1). To get a better time complexity, we will use the fact that for

random b ∈ Fnq , s(b) is quasi-polynomial with high probability. This almost immediately implies
(2) and (3). The rest of the claims follow from the usual testing algorithms for Reed-Muller codes
(though in our case we only need to handle erasures).

Some known results that we use to prove Theorem 4 are given in the Appendix.

3.2 Proof of Theorem 4

We first bound the time complexity of the Invert(·) algorithm. In particular, Lemma 6, Theo-
rems 18, 20 and 21 show that Invert(b) can be computed in DTIME

(
nO(1) · s(b, q)O(1) · qO(1)

)
.

Also by using Theorems 17 and 19 instead of Theorem 18 and 20 respectively, one obtains that

Invert(b) can be computed in RTIME
(
nO(1) · s(b, q)O(1) · logO(1) q

)
.

Lemma 13 along with the discussion above proves statement (1).
Corollary 16 says that for all but an exp(−Ω(

√
n)) fraction of b ∈ Fnq , we have s(b, q) 6

2log2 n = nlogn. This along with the discussion above proves (2) and (3). (After Step 3 in Invert(·)
if log s > log2 n then we halt and output “fail.”)

6

We now move to the proof of (4). Call c ∈ Fnq good if s(c, q) 6 n. Note that by Step 2 of
Invert(c), we will know if c is good or not. If it is good then we continue with the algorithm else we
halt and output “fail.” Recall that we want to compute f(b). Note that if b is good then we can
run Invert(b) in DTIME(nO(1) logO(1) q) (and hence compute fsym(Invert(b)) = f(b)). However, in
the worst-case b need not be good. Thus, we do the following: we pick a random line through b
and evaluate the function f restricted to the line on points other than b.

In particular, consider the univariate polynomial Pb(X) = f(b+m ·X) for a uniformly random
m ∈ Fnq . Consider any subset S ⊆ F∗q with |S| = 4n(deg(f) + 1). Now by Proposition 23 and
Theorem 14 in expectation (over the choice of m), at least 2n(deg(f) + 1) points in the set {b +
α ·m|a ∈ S} are good.

We now move to the proof of (5). Call c ∈ Fnq good if s(c, q) 6 nlogn. (Otherwise call it
bad.) Note that by Step 2 of Invert(c), we will know if c is good or bad. If it is good then we
continue with the algorithm else we halt and output “fail.” Recall that we want to compute f(b).
Note that if b is good then we can run Invert(b) in RTIME(nO(logn) logO(1) q) (and hence compute
fsym(Invert(b)) = f(b)). However, in the worst-case b might be bad. Thus, we do the following:
we pick a random line through b and evaluate the function f restricted to the line on points other
than b.

In particular, consider the univariate polynomial Pb(X) = f(b+m ·X) for a uniformly random
m ∈ Fnq . Consider any subset S ⊆ F∗q with |S| = 3(deg(f) + 1). (Note that we will need q − 1 >
3(deg(f) + 1), which will be satisfied by the condition on q > Ω(deg(f)). Now by Theorem 14 in
expectation (over the choice of m), at most exp(−Ω(

√
log n) ·3(deg(f)+1) 6 (deg(f)+1) points in

the set {b+α ·m|α ∈ S} are bad. (The inequality follows for large enough n.) Thus, by Markov’s
inequality, with probability at least 1/2 (over the choice of m) there are at most 2(deg(f) + 1) bad
points in {b + αm|α ∈ S}. (Recall that we know when a point is bad, and thus we can recognize
when we have at most 2(deg(f) + 1) bad points.) In other words, our algorithm will compute
Pb(b+αm) correctly for at least deg(f) + 1 points α ∈ S. Proposition 23 then implies that we can
compute Pb(X) in DTIME(deg(f)3) ∈ DTIME(q3) by our assumption on q. Note that we can now
read off f(b) = Pb(0). Note that the procedure above has an error probability of at most 1/2. We
can reduce this to δ by running O(log(1/δ)) independent runs of this procedure and stop whenever
we compute f(b).

The proof of (6) is a generalization of the proof for (5) to the multivariate case. In particular,
given an integer 1 6 x 6 n, we pick a random subspace of Fnq of dimension x by picking x basis
vectors (say e1, . . . ex) at random. Now consider the set S = {b +

∑x
j=1 αj · ej |(α1, . . . , αx) ∈ Fxq}.

It is easy to see that the function f restricted to S is an x-variate polynomial with the degree at
most deg(f) (here the scalars α1, . . . , αx are thought of as the variables). Thus, by Corollary 25,
we can recover f(b) if at most q− deg(f)/q fraction of the points in S are bad. This happens with
probability at least a 1/2 (by Markov’s argument and Theorem 14) if exp(−Ω(

√
log n)) is at most

q− deg(f)/q/2. This inequality is implied by the assumption that deg(f) 6 O(q
√

log n/q). Also we
need deg(f) 6 (q−1)x to ensure that we can apply Corollary 25 to f projected down to S. Finally,
we run the procedure above independently O(log(1/δ)) times to bring the error probability down
to δ.

4 Results for the Second Symmetrization

4.1 Functions over Finite Fields

We state our main result for functions defined over finite fields:

7

Theorem 7. Let n > 1 be an integer and q be a prime power. Define s = 1 + dlog ne. Then for
every function f : Fnq → Fq, there exists a symmetric function fsym : Fnqs → Fq such that

C(fsym) 6 C(f) + DTIME(n), (7)

C(f) 6 C(fsym) + DTIME(n). (8)

Further, deg(fsym) 6 snq2 · deg(f).

In the rest of the section, we will prove the theorem above. Before we describe fsym, we first set
up some simple notation (and assumptions). We will assume that we have access to an irreducible
polynomial of degree s over Fq.2 In particular, we will assume that every element α ∈ Fqs is
represented as

∑s−1
`=0 α` · γ` for some root γ ∈ Fqs of the irreducible polynomial. Further, we will

assume that [n] is embedded into Fs−1
q . (Note that by definition of s, qs−1 > n.) From now on we

will think of i ∈ [n] interchangeably as an integer in [n] and an element in Fs−1
q . We first claim the

existence of certain polynomials.

Lemma 8. There exist s-many explicit univariate polynomials πk : Fqs → Fq (0 6 k 6 s− 1) such
that for any α = αs−1 · γs−1 + · · ·+ α0 ∈ Fqs, πk(α) = αk. Further, deg(πk) = qs−1.

Proof . For any α =
∑s−1

i=0 αiγ
i ∈ Fqs , αq

j
=
∑s−1

i=0 αi(γ
i)q

j
for every 0 6 j 6 s − 1. Thus, we

have
(α αq αq

2 · · · αq
s−1

)T = V · (α0 α1 α2 · · · αs−1)T ,

where V is the Vandermonde matrix with the `th row being the first s powers of γq
`

(starting from

the 0th power)—note that all the elements γq
`

are distinct. Thus, we have that αk is the inner
product of the kth row of the inverse of the Vandermonde matrix and (α αq αq

2 · · · αq
s−1

).
The definition for πk(X) then follows from the (known) expressions for entries of the inverse of the
Vandermonde matrix (cf. [17]). �

Lemma 9. Fix j ∈ [n]. There exists an explicit n-variate symmetric polynomial φj(X1, . . . , Xn) :
(Fqs)n → Fq of degree at most sqs such that for any choice of αi = αis−1 ·γs−1 +· · ·+αi1 ·γ+αi0 ∈ Fqs
(1 6 i 6 n),

φj(α
1, α2, . . . , αn) =

∑
i∈[n],(αi

s−1,α
i
s−2,··· ,αi

1)=j

αi0, (9)

where we consider (αis−1, α
i
s−2, · · · , αi1) ∈ Fs−1

q .

Proof . For any j = (j1, . . . , js−1) ∈ Fs−1
q , consider the degree (s − 1)(q − 1) polynomial

Aj(Y1, . . . , Ys−1) over Fq:

Aj(Y1, . . . , Ys−1) =
s−1∏
`=1

∏
β∈Fq ,β 6=j`

(
Y` − β
j` − β

)
.

Note that Aj(i) = 1 if i = j else Aj(i) = 0 for every i ∈ Fs−1
q . Now consider the polynomial

φj(X1, . . . , Xn) =

n∑
i=1

Aj(π1(Xi), . . . , πs−1(Xi)) · π0(Xi).

2Otherwise in the reduction we can compute one in time DTIME(sO(1) · qO(1)).

8

Now by the properties of Aj(·) mentioned above, in the RHS of the equation above for
φj(α

1, . . . , αn), the only summands that will contribute are those i for which (αis−1, α
i
s−2, · · · , αi1) =

j (this follows from Lemma 8). Further each such summand contributes αi0 to the sum (by
Lemma 8). This proves (9). Further, it follows from definition that φj is a symmetric polyno-
mial. Finally, note that for every i ∈ [n], Aj(π1(Xi), . . . , πs−1(Xi)) has degree (s− 1)(q − 1) · qs−1.
Further, as π0 has degree qs−1, deg(φj) = qs−1(s− 1)(q − 1) + qs−1 6 sqs. �

We are now ready to define fsym : Fqs → Fq. For any a = (a1, . . . , an) ∈ Fnqs , define

fsym(a) = f (φ1(a), φ2(a), . . . , φn(a)) .

Since each of φ1, . . . , φn are symmetric, so is fsym. Further, as each of φ1, . . . , φn has degree at
most sqs, deg(fsym) 6 sqs · deg(f) 6 snq2 · deg(f), where the last inequality follows from the fact
that our choice of s implies qs−1 6 nq.

In what follows, we will assume that any α ∈ Fqs is presented to us as (αs−1, . . . , α1, α0), where
α = αs−1γ

s−1 + · · · + α1γ + α0. Note that this implies that πk(α) (for 0 6 k 6 s − 1) can be
“computed” in constant time.3

We first prove (7). Given b ∈ Fnqs , we will compute a ∈ Fnq in DTIME(n) such that fsym(b) =
f(a). Note that this suffices to prove (7). Notice that by definition of fsym, this is satisfied if
aj = φj(b) for j ∈ [n]. Further note that given β1, . . . , βs−1 ∈ Fq, one can compute Aj(β1, . . . , βs−1)
in DTIME(s).4 This along with the assumption that πk(α) can be computed in constant time for
any α ∈ Fqs , implies that φj(b) can be computed in DTIME(ns). This would immediately imply
a total of DTIME(n2s) for computing a. However, note that as all the aj values are sums, we can
compute a in one pass over b with space O(n). Thus, we can compute a from b in DTIME(n), as
desired.

Finally, we prove (8). We will show that given a ∈ Fnq we can compute b ∈ Fnqs in DTIME(n)
such that f(a) = fsym(b). Note that this will prove (8). Further, notice that we will be done
if we can show that for j ∈ [n], aj = φj(b). The definition actually is pretty easy: for every
i = (is−1, . . . , i1) ∈ [n], define bi = is−1γ

s−1 + · · · + i1γ + ai. Now it can be checked that φj(b) =
π0(bj) = aj , as desired. Further, it is easy to check that one can compute b in DTIME(n).

4.2 Functions over Reals

We state our main result for F = R:

Theorem 10. Let n > 1 be an integer. Then for every function f : Rn → R, there exists a
symmetric function fsym : Rn → R such that

C(fsym) 6 C(f) + DTIME(n), (10)

C(f) 6 C(fsym) + DTIME(n). (11)

The proof is similar to the one for finite fields, so we only sketch the differences here. Towards
this end, we think of every element x ∈ R as a triple (bbxc/nc , bxc mod n, x−bxc) ∈ Z×Z× [0, 1).
In particular, for any 1 6 j 6 n, we define

φj((u1, v1, w1), (u2, v2, w2), . . . , (un, vn, wn)) =
n∑
i=1

δvi,j · (ui + wi),

3If not, by the proof of Lemma 8, one can compute both values in O(s2 log q) operations over Fqs .
4Here we are also assuming that the map from [n] to the corresponding element in Fs−1

q can be computed in
constant time.

9

where δ`,k = 1 if ` = k and is zero otherwise. fsym is defined as before and the reduction from fsym

to f it also as before. The reduction from f to fsym is also pretty much the same as before except
we define bi = i+ n · baic+ ai − baic.

5 Conclusions

We have given two efficient ways to reduce a general polynomial r to a symmetric polynomial s.
If r is over a finite field F, then s will be over a larger finite field F′, but our results show that the
increases in degree, field size, and running time are reasonable.

This sheds new light on the question of how usefully the special structure of symmetric polyno-
mials can be leveraged for complexity lower bounds. Among questions for further research, we are
interested in aspects of how universality properties of functions such as the determinant polynomials
are preserved under our symmetrizations.

References

[1] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approxi-
mation problems. J. Assn. Comp. Mach. 45, 501–555 (1998)

[2] Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. Assn. Comp.
Mach. 45, 70–122 (1998)

[3] Arora, S., Sudan, M.: Improved low-degree testing and its applications. Combinatorica 23(3), 365–426
(2003)

[4] Assumus Jr., E.F., Key, J.D.: Polynomial codes and Finite Geometries in Handbook of Coding Theory,
Vol II , Edited by V. S. Pless Jr., and W. C. Huffman, chap. 16. Elsevier (1998)

[5] Baur, W., Strassen, V.: The complexity of partial derivatives. Theor. Comp. Sci. 22, 317–330 (1982)

[6] Beame, P., Brisson, E., Ladner, R.: The complexity of computing symmetric functions using threshold
circuits. Theor. Comp. Sci. 100, 253–265 (1992)

[7] Beigel, R., Tarui, J.: On ACC. In: Proc. 32nd Annual IEEE Symposium on Foundations of Computer
Science. pp. 783–792 (1991)

[8] Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proc. 15th Annual ACM Symposium
on the Theory of Computing. pp. 80–86 (1983)

[9] Berlekamp, E.: Factoring polynomials over large finite fields. Mathematics of Computation 24, 713–735
(1970)

[10] Dixon, J.D., Panario, D.: The dgree of the splitting field of a random poly-
nomial over a finite field. The Electronic Journal of Combinatorics 11(1) (2004),
http://www.combinatorics.org/Volume11/Abstracts/v11i1r70.html

[11] Furst, M., Saxe, J., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Sys. Thy. 17,
13–27 (1984)

[12] Grigoriev, D., Karpinski, M.: An exponential lower bound for depth 3 arithmetic circuits. In: Proc.
30th Annual ACM Symposium on the Theory of Computing. pp. 577–582 (1998)

[13] Grigoriev, D., Razborov, A.: Exponential lower bounds for depth 3 algebraic circuits in algebras of
functions over finite fields. Applicable Algebra in Engineering, Communication, and Computing 10,
465–487 (2000), (preliminary version FOCS 1998)

[14] Grolmusz, V.: Computing elementary symmetric polynomials with a sub-polynomial number of multi-
plications. SIAM Journal on Computing 32, 2002–02 (2002)

10

[15] Jutla, C.S., Patthak, A.C., Rudra, A., Zuckerman, D.: Testing low-degree polynomials over prime fields.
Random Struct. Algorithms 35(2), 163–193 (2009)

[16] Kaufman, T., Ron, D.: Testing polynomials over general fields. SIAM Journal on Computing 36(3),
779–802 (2006)

[17] Klinger, A.: The Vandermonde matrix. The American Mathematical Monthly 74(5), 571–574 (1967)

[18] Lu, C.J.: An exact characterization of symmetric functions in qAC0[2]. In: Proc. 4th International
Combinatorics and Computing Conference. pp. 167–173 (1998)

[19] Parvaresh, F., Vardy, A.: Correcting errors beyond the Guruswami-Sudan radius in polynomial time.
In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
pp. 285–294 (2005)

[20] Razborov, A.: Lower bounds for the size of circuits of bounded depth with basis {∧,⊕}. Mathematical
Notes, (formerly of the Academy of Natural Sciences of the USSR) 41, 333–338 (1987)

[21] Razborov, A.: On the method of approximations. In: Proc. 21st Annual ACM Symposium on the
Theory of Computing. pp. 167–176 (1989)

[22] Shoup, V.: New algorithms for finding irreducible polynomials over finite fields. Mathematics of Com-
putation 54, 435–447 (1990)

[23] Shoup, V.: A computational introduction to number theory and algebra. Cambridge University Press,
New York, NY, USA (2008)

[24] Shpilka, A., Wigderson, A.: Depth-3 arithmetic formulae over fields of characteristic zero. Computa-
tional Complexity 10, 1–27 (2001)

[25] Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In:
Proc. 19th Annual ACM Symposium on the Theory of Computing. pp. 77–82 (1987)

A Appendix—Omitted Proofs from Section 2

A.1 Proof of Theorem 1

For notational simplicity, define r = qs.
Note that every symmetric function from (Fr)n to Fr is determined by a table giving the value

for every r-tuple of nonnegative integers summing to n, which represent the count of variables set
equal to the respective element of Fr. If T denotes the number of entries in the table above, there
are rT symmetric functions. Now notice that T is exactly the number of ways one can split [n] into
r disjoint subsets (some of which can be empty). It is well-known that

T =

(
r + n− 1

n

)
.

On the other hand there are qq
n

functions from Fnq to Fq overall.
This enables us to give a lower bound on the degree of the extension field Fr over Fq. To make

sure that any function over Fq in n variables is equivalent to a symmetric polynomial over Fr in n
variables, by a simple counting argument, we need rT > qq

n
:

(qs)(
qs+n−1

n) > qq
n
.

This translates to

s ·
(
qs + n− 1

n

)
> qn,

11

which we claim implies qs > n/8. For the sake of contradiction assume that qs 6 n/8. Then note
that

s ·
(
qs + n− 1

n

)
6 logq n ·

(
9n/8

n

)
6 logq n · (9e)n/8 6 log n · (8

√
9e)n < 2n 6 qn,

which is a contradiction (note that we have used q > 2).

A.2 Proof of Theorem 2

Towards this end given a vector a = (a1, . . . , an) where ai > 1 are integers, define the set

Mn,a,d =

(i1, . . . , in)|
n∑
j=1

aj · ij 6 d; ij ∈ Z>0

 .

Note that Mv,1,d denotes the number of monomials of degree at most d and thus, the number of
functions f with deg(f) 6 d is exactly q|Mn,1,d|, where 1 = (1, 1, . . . , 1). On the other hand, recall
that any symmetric polynomial on m variables can be thought of a polynomial in the m elementary
symmetric polynomials. Thus, the number of symmetric polynomial fsym with deg(fsym) 6 dsym is

exactly (qs)|Mm,[m],dsym |, where [m] = (1, 2, . . . ,m). Note that if all degree at most d polynomials
were equivalent to at most degree dsym symmetric polynomials, we must have

s ·
∣∣Mm,[m],dsym

∣∣ > |Mn,1,d| . (12)

Towards this end, we first bound the size of M.

A.2.1 Bounding |M|

We bound |Mv,a,D| by a similar argument used in [19] to bound for the special case of a =
(1, k, . . . , k).

Consider the following simplex:

Sn,a,D′ =

(i1, . . . , in)|
n∑
j=1

aj · ij 6 D′; ij > R>0

 .

We will use |S| to denote the volume of the simplex S.
We begin with the following claim:

Claim 1. For all integers n,D > 1 and vector a ∈ Zn with ai > 1 for i ∈ [n], we have

|Sn,a,D| 6 |Mn,a,D| 6
∣∣∣Sn,a,D+

∑n
i=1 ai

∣∣∣ .
Proof . For notational simplicity define M =Mn,a,D and S` = Sn,a,D+`.

Consider the map φ that maps every element (i1, . . . , in) ∈ M to the cube in Rn with sides of
length 1 and (i1, . . . , in) as it’s lowest corner point, i.e.

φ(i1, . . . , in) = [i1, i1 + 1)× [i2, i2 + 1)× · · · × [in, in + 1).

Note that the volume of φ(i1, . . . , in) = 1 (we’ll denote this volume as |φ(i1, . . . , in)|). Note that
for every (i1, . . . , in) ∈M, φ(i1, . . . , in) ⊆ S∑n

i=1 ai
and (i1, . . . , in) ∈ S0. These imply that

S0 ⊆ ∪(i1,...,in)∈Mφ(i1, . . . , in) ⊆ S∑n
i=1 ai

,

which proves the claim. �

Next, we bound the volume of a simplex:

12

Lemma 11. For all integers n,D > 1 and vector a ∈ Zn with ai > 1 for i ∈ [n], we have

|Sn,a,D| =
Dn

n!
∏n
i=1 ai

.

Proof . We will prove the lemma by induction on n. Note that when n = 1, the volume of the
simplex is D/a1, which proves the base case. We assume that the equality holds up to n− 1. Note
that

|Sn,a,D| =
D/an∫
0

(D − an · in)n−1

(n− 1)!
∏n−1
i=1 ai

din

where the equality follows from the inductive hypothesis. Computing the integral completes the
proof. �

Claim 1 and Lemma 11 implies the following:

Corollary 12. For all integers n,D > 1 and vector a ∈ Zn with ai > 1 for i ∈ [n], we have

Dn

n!
∏n
i=1 ai

6 |Mn,a,D| 6
(D +

∑n
i=1 ai)

n

n!
∏n
i=1 ai

.

A.2.2 Computing the lower bound for m = n

Note that we have

|Mn,1,D| >
(
n+D − 1

D

)
>

(
D + n− 1

n− 1

)n−1

.

The lower bound along with the upper bound in Corollary 12 with (12) implies that for the
reduction to go through, we need

s · (dsym +m(m+ 1)/2)m

(m!)2
>

(
d+ n− 1

n− 1

)n−1

.

For now, we will only consider the case m = n, which implies that we need

(dsym + n(n+ 1)/2)n >
1

s
· (n!)2

(n− 1)n−1
· (d+ n− 1)n−1 >

1

s(d+ n− 1)
·
(

(d+ n− 1)n

e2

)n
,

which in turn implies that we need

dsym > d ·
n

e2 · n
√
s(d+ n− 1)

−
(

1

2
− 1

e2

)
· n(n+ 2).

The claimed bound follows from the assumption that s(d+ n− 1) 6 2o(n).

B Appendix—Known Results Used in Section 3

We begin with known results on the degree of the splitting field of φb(X) for b chosen uniformly
at random from Fnq .

Lemma 13. For every b ∈ Fnq ,

s(b, q) 6 nO(
√
n).

13

Proof . Recall that the degree of the splitting field is the least common multiple of all the distinct
degree of the irreducible factors of the polynomial. Thus, we want to bound the maximum least
common multiple of distinct positive integers i1, . . . , im such that i1, . . . , im = n. We consider the
contribution of ij 6

√
n and ij >

√
n separately. Note that integers smaller than

√
n can contribute

at most (
√
n)! to the l.c.m. Further, note that there can be at most

√
n integers larger than

√
n,

which by themselves can contribute at most n
√
n. Thus, we have

s 6 (
√
n)! · n

√
n 6
√
n
√
n · n

√
n 6 n3

√
n/2,

which completes the proof. �

Theorem 14 (Folklore, cf. [23]).

Pr
b∈Fn

q

[s(b, q) = n] >
1

2n
.

Theorem 15 ([10]). For every x > 1 and an absolute constant c0 > 0,

Pr
b∈Fn

q

[∣∣∣∣log(s(b, q))− 1

2
· log2 n

∣∣∣∣ > x√
3
· 2

√
log3 n

]
6 c0 exp

(
−x

4

)
.

The above implies the following corollary

Corollary 16.

Pr
b∈Fn

q

[
log(s(b, q)) > log2 n

]
6 exp

(
−Ω

(√
log n

))
.

Next we recall the known results about the time complexity of basic finite field algorithms to
implement the last three steps in Invert(·).

Theorem 17 ([23]). For any prime power q and integer k > 1,

irr(k, q) ∈ RTIME
(
k4 log q

)
.

Theorem 18 ([22]). For any prime power q and integers k, t > 1,

irr(k, qt) ∈ DTIME
(
k5t3
√
q
)
.

Since factorizing a polynomial gives all its roots, we have

Theorem 19 ([23]). For any prime power q and integer k > 1,

root(k, q) ∈ RTIME
(
k3 log q

)
.

Theorem 20 ([9]). For any prime power q and integers k, t > 1,

root(k, qt) ∈ DTIME
(
kO(1)qO(1)tO(1)

)
.

Next, we consider the problem of determining the degree of the splitting field of φb(X). Note
that this problem is solved by the distinct factorization problem, where the goal is to compute all
the distinct degrees of the irreducible factors (which is enough to compute the degree of the splitting
field) as well as the product of all irreducible factors of given degree. This problem can be solved in
O(k3 log q) deterministic time when the input is a degree k square-free polynomial [23]. Converting
a general degree k polynomial into a square-free one in turn takes O(k2 + k log q) deterministic
time [23]. This in turn implies the following:

14

Theorem 21. For any prime power q, integer n > 1 and b ∈ Fnq

split(b, q) ∈ DTIME(n3 log q).

Finally, we recall some basic results from coding theory.

Proposition 22. Any code with distance d can tolerate d− 1 erasures. Further, for a linear code
with block length n and distance d,one can decode from at most d− 1 erasures in DTIME(n3).

The well-known Reed-Solomon code, formed by evaluating univariate polynomials of degree k
is a well-known linear codes with distance n− k. This implies the following:

Proposition 23. Given the points (αi, yi)) for 1 6 i 6 k+ 1 for distinct ai’s, one can compute the
unique degree k polynomial P (X) such that P (αi) = yi for every i in DTIME(k3).

In fact, the above can be easily done in DTIME(k2) as the unique polynomial P (X) is given by
Newton’s interpolation formula:

P (X) =
k+1∑
i=1

∏
j∈[k+1],j 6=i(X − αj)∏
j∈[k+1],j 6=i(αi − αj)

· yi.

and thus, can be computed in DTIME(n2).
The generalization of Reed-Solomon codes to multivariate polynomial, known as Reed-Muller

codes, are also linear-codes with well know distance properties. In particular,

Lemma 24 ([4]). The Reed-Muller code defined by evaluating n-variate degree k 6 (q−1)n polyno-
mial over Fnq has distance (R+ 1)qQ, where Q and R are the quotient and reminder from dividing
(q − 1)n− k by q − 1.

Note that the above implies that the Reed-Muller code has distance at least qn−dk/(q−1)e, which
along with Proposition 22 implies that

Corollary 25. Given the evaluations of an n-variate degree k polynomial on all but q−k/q fraction
of the points in Fnq , the polynomial can be uniquely determined in DTIME(n3).

We have now set up everything referenced in the proof of Theorem 4.

15

