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Abstract

This paper furthers the study of quasi-linear time complexity initiated by Schnorr and

Gurevich and Shelah. We show that the fundamental properties of the polynomial-time

hierarchy carry over to the quasilinear-time hierarchy. Whereas all previously known

versions of the Valiant-Vazirani reduction from NP to parity run in quadratic time, we

give a new construction using error-correcting codes that runs in quasilinear time. We

show, however, that the important equivalence between search problems and decision

problems in polynomial time is unlikely to carry over: if search reduces to decision for

SAT in quasi-linear time, then all of NP is contained in quasi-polynomial time. Other

connections are made to work by Stearns and Hunt on “power indices” of NP languages,

and to work on bounded-query Turing reductions and helping by robust oracle machines.



1 Introduction

The notion of “feasible” computation has most often been identified with the concept

of polynomial time. However, an algorithm that runs in time n100 or even time n2 may

not really be feasible on moderately large instances. Quasi-linear time, namely time

qlin := n · (log n)O(1), reduces the problem of the exponent of n. Let DQL and NQL

stand for time qlin on deterministic and nondeterministic Turing machines. Schnorr

[Sch76, Sch78] showed that SAT is complete for NQL under DQL many-one reductions

(≤ql
m). Together with Stearns and Hunt [SH86, SH90], it was shown that many known

NP-complete problems also belong to NQL and are complete for NQL under ≤ql
m , so that

the NQL vs. DQL question takes on much the same shape as NP vs. P. (Throughout

this paper, log n stands for the real-valued logarithm to base 2. When it is important to

make the value an integer, we write blog nc or dlog ne accordingly.)

One theoretical difficulty with the concept of quasilinear time is that it appears not

to share the degree of independence on particular machine models that makes polynomial

time such a robust concept. Gurevich and Shelah [GS89] showed that a wide variety of

models related to the RAM under log-cost criterion [CR73] accept the same class of

languages in deterministic quasilinear time. They also showed that nondeterministic qlin

time for these machines equals NQL; i.e., the nondeterministic RAM variants are no

more powerful than nondeterministic Turing machines for qlin time. However, currently

it appears that the deterministic machines in [GS89] accept more languages than those in

the deterministic Turing machine class DQL. Moreover, for all d > 1, Turing machines

with d-dimensional tapes may accept more languages in time qlin than do TMs with

(d−1)-dimensional tapes. Graedel [Gra90] studied the class of languages L such that for

all ε > 0, L is acceptable in time O(n1+ε) by one of the respective kinds of machines,

observing a slightly better robustness picture. (For background on these machines and

simulations, see [WW86, vEB90].) Our answer to this problem of non-robustness is to

arrange that all of our quasilinear-time upper bounds be attainable by Turing machines,

and that our lower bounds hold even for RAMs.

Our main motivation is to ask: How much of the known theory of complexity classes

based on polynomial time carries over to the case of quasilinear time? Section 2 observes

that the basic results for the polynomial hierarchy hold also for the quasilinear hierarchy.

Section 3 shows that the randomized reduction from NP to parity given by Valiant

and Vazirani [VV86] and used by Toda [Tod91], which was previously proved by con-

structions that run in quadratic time (see [VV86, Tod91, CRS93, Gup93]), can be made

to run in quasilinear time. Our construction also markedly improves both the number

of random bits needed and the success probability, and uses error-correcting codes in an

interesting manner first noted in [NN90].
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Section 4 studies what may be the major difference between polynomial and quasi-

linear time: the equivalence between functions and sets seems no longer to hold. It has

long been known that every function can be computed in polynomial time using some set

as an oracle. In contrast, we show that there exist functions that cannot be computed

in quasilinear time using any set as an oracle whatsoever. Many natural problems in

NP have associated search functions that reduce to the decision problems in polynomial

time—in most cases, quadratic time (cf. [Sel88, JY90]). Theorem 4.2 shows that for

SAT , search does not reduce to decision in quasilinear time, unless all of NP is contained

in quasi-polynomial time, viz. DTIME[2polylogn]. We also show that the quadratic upper

bound is tight unless the power index of SAT is less than 1, which would be contrary to

a conjecture of Stearns and Hunt [SH90].

Section 5 shows how our notion of counting the number of query bits used by oracle

machines relates to previous work on counting queries [Bei87b, AG88, BGH89, ABG90,

Bei91, BGGO93, HN93, BKS93] and on “helping” [Sch85b, Ko87, Bal90]. We observe

that the known equivalence between having search reduce to decision and one-sided

helping in polynomial time carries over to any reasonable time bound t(n). This yields

other forms of our main results in Section 4. We construct an oracle A relative to

which search reduces to decision for SAT in quasilinear time (in fact, O(n log2 n) time),

but still NPA 6= PA, so that SAT relative to A is still “PA-superterse” (see [BKS93]).

This also gives evidence that our quasipolynomial simulation of NP in Theorem 4.2 is

close to optimal. The oracle construction is related to ones by Kintala and Fischer

[KF80] on classes defined by polynomial-time NTMs allowed to make at most O(logk n)

nondeterministic moves; for other related work on “limited nondeterminism,” see [BG93,

BG94]. A concluding Section 6 summarizes the significance of this work and suggests

some problems for further research.

2 Notation and Basic Results

Let Σ := { 0, 1 }. Given strings y1, . . . ym ∈ Σ∗ such that
∑m
i=1 |yi| = r, let y = 〈y1, . . . , ym〉

stand for the binary string of length 2r + 2m obtained by translating 0 to 00, 1 to 11,

and ‘comma’ to 01, with an extra 01 at the end. For any language R we often write

R(x, y) in place of ‘〈x, y〉 ∈ R’ and consider R to be a predicate. For convenience

we call q a quasilinear function if there are constants k, c, d ≥ 0 such that for all n,

q(n) = cn(logk n) +d. Where n is understood we write q as short for q(n), and also write

(∃qy) for (∃y ∈ { 0, 1 }q(n)), (∀qy) for (∀y ∈ { 0, 1 }q(n)). The notation (#qy : R(x, y))

means “the number of strings y ∈ { 0, 1 }q(|x|) such that R(x, y) holds.” The following

generalizes a standard notion to other time bounds.
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Definition 2.1. A witness predicate for a language A is any binary predicate R such

that A = {x : (∃y)R(x, y) }. If R ∈ P and there is a polynomial p such that A =

{x : (∃py)R(x, y) }, then we call R a polynomial witness predicate; while if R ∈ DQL

and there is a quasilinear function q such that A = {x : (∃qy)R(x, y) }, then R is a

quasilinear witness predicate.

Now we note the following provision about oracle Turing machines M made standard

in both [WW86] and [BDG88] (see also [LL76, Wra76, Wra78]): Whenever M enters its

query state q? with the query string z on its query tape, z is erased when the oracle gives

its answer.

If A and B are languages such that L(MB) = A and MB runs in quasilinear time,

then we write A ≤ql
T B. As usual we may also write A ∈ DQLB or A ∈ DQL(B), and

if M is nondeterministic, A ∈ NQLB or A ∈ NQL(B). Henceforth our notations and

definitions of complexity classes are standard, with ‘P’ replaced by ‘QL’, except that we

use square brackets for “class operators”:

Definition 2.2. For any languages A and R, letting q stand for a quasilinear function:

(a) A ∈ NQL[R] if there exists q such that for all x ∈ Σ∗, x ∈ A ⇐⇒ (∃qy)R(x, y).

(b) A ∈ UQL[R] if there exists q such that for all x ∈ Σ∗,

x ∈ A =⇒ (#qy : R(x, y)) = 1, and

x /∈ A =⇒ (#qy : R(x, y)) = 0.

(c) A ∈ ⊕QL[R] if there exists q such that for all x, x ∈ A⇐⇒ (#qy :R(x, y)) is odd.

(d) A ∈ BQL[R] if there exists q such that for all x ∈ Σ∗,

x ∈ A =⇒ (#qy : R(x, y))/2q > 2/3, and

x /∈ A =⇒ (#qy : R(x, y))/2q < 1/3.

(e) A ∈ RQL[R] if there exist q and ε > 0 such that for all x ∈ Σ∗,

x ∈ A =⇒ (#qy : R(x, y))/2q > 2/3, and

x /∈ A =⇒ (#qy : R(x, y)) = 0.

For any class C of languages, NQL[C] equals ∪R∈CNQL[R], and similarly for the other

operators. With C = DQL these classes are simply written NQL, UQL, ⊕QL, BQL,

and RQL. It is easy to check that “machine definitions” of these classes are equivalent
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to the above “quantifier definitions”; e.g. UQL is the class of languages accepted by

unambiguous NTMs that run in quasilinear time. By standard “amplification by repeated

trials,” for any function r = O(logk n), the classes BQL and RQL remain the same if

‘1/3’ is replaced by 2−r(n) and ‘2/3’ by 1− 2−r(n); and similarly for BQL[C] and RQL[C]
provided C is closed downward under “polylogarithmic majority truth table reductions.”

(A language A polylog-majority truth-table reduces to a language B if there exist k > 0

and a polynomial-time computable function f such that for all but finitely many x, f(x)

is a set S of at most (log |x|)k-many strings that satisfies x ∈ A ⇐⇒ more than half of

the members of S belong to B.) This is also enough to give BQL[BQL[C]] = BQL[C].

Definition 2.3. The quasilinear time hierarchy is defined by:
∑ql

0 =
∏ql

0 = ∆ql
0 = DQL,

and for k ≥ 1, ∑ql
k = NQL[

∏ql
k−1],

∏ql
k = co-

∑ql
k , ∆ql

k = DQL
∑ql

k−1 .

Also QLH := ∪∞k=0

∑ql
k , and QLSPACE := DSPACE[qlin]. By the results of [GS89], all

these classes from NQL upward are the same for Turing machines and log-cost RAMs.

The proofs of Cook’s Theorem in several standard references [Coo71, GJ79, HU79,

Pap94] Schnorr [Sch78] showed that the formula size and running time of Cook’s Theo-

rem applied to a time-q(n) nondeterministic TM N , which is quadratic or cubic in q(n)

in the proofs given by several standard references [Coo71, GJ79, HU79, Pap94], can be

brought down to O(q(n) log q(n)). For later reference we give a brief sketch of Schnorr’s

construction, following Buss and Goldsmith [BG93]. Given N , form the time-q(n) deter-

ministic TM M such that for all x, x ∈ L(N) ⇐⇒ (∃qy)[M accepts 〈x, y〉]. Then as

shown in an earlier paper by Schnorr [Sch76], M can be converted into a uniform family

of O(q(n) log q(n))-sized circuits Cn of fan-in 2 in variables x1, . . . , xn and y1, . . . , yq such

that for all x, x ∈ L(N) ⇐⇒ (∃y1, . . . , yq)Cn(x1, . . . , xn, y1, . . . , yq) = 1. Now assign a

dummy variable to each of the O(q(n) log q(n)) wires in Cn and write a 3-CNF formula

that expresses that each output wire has the correct value given its input wires. This

reduces L(N) to SAT and is computable in time O(q(n) log q(n)).

which is again quasilinear.

Next we observe the following concavity property of quasilinear functions.

Lemma 2.1 (a) Let q(n) = cn logk n, let n1, . . . , nm ≥ 1, and let r =
∑m
i=1 ni. Then∑m

i=1 q(ni) ≤ q(r).

(b) If q(n) = cn logk n+ d, and the bound r in (a) is given by a quasilinear function

r(n), then
∑m
i=1 q(ni) is bounded by a quasilinear function.

Proof. (a) True for m = 1. By the induction hypothesis for m − 1,
∑m
i=1 q(ni) ≤

q(r−nm)+q(nm). Define the real function Q(x) = q(r−x)+q(x). For k ≥ 2, the second
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derivative of Q with respect to x equals

ck(log e)

[
(log e)(k−1) logk−2 x

x
+

logk−1 x

x
+

logk−1(r − x)

r − x
+

(log e)(k−1) logk−2(r − x)

r − x

]
.

This is positive for all real x such that 1 < x < r−1, so the maximum value of Q(x) on

the closed interval [1, r−1] is attained at one of the endpoints. This value equals q(r−1),

which is less than q(r). Since nm ≥ 1 and r − nm ≥ 1, the conclusion follows. (Indeed,

for m ≥ 2 we have
∑m
i=1 q(ni) < q(r).)

(b) By (a),
∑m
i=1 q(ni) ≤ q(r(n)) + dm. Since each ni ≥ 1, m ≤ r(n), and so the

additive term dm is quasilinear. If r(n) = c′n logk
′
n + d′, then substituting gives a

quasilinear bound of the form c′′n logk+k′ n+ d′′, for some constants c′′ and d′′.

Corollary 2.2 The relation ≤ql
T is transitive. In particular, DQLDQL = DQL.

Proof. Let A = L(MB
0 ) and B = L(MC), where M runs in time q(n) and M0 in time

r(n). Define M1 on any input x to simulate M0(x) but use M to answer the queries

y1, . . . , ym made by M0. For each query yi let ni := max{ |yi|, 1 }. Then
∑
i ni is bounded

by r(n), q(ni) bounds the runtime of M on input yi, and Lemma 2.1(b) bounds the total

runtime of M1.

With this in hand it is straightforward to show that the most fundamental properties of

the polynomial hierarchy (from [Sto76, Wra78]) carry over to QLH.

Theorem 2.3 (a) (Equivalence of oracles and quantifiers): For all k ≥ 1,
∑ql
k =

NQL
∑ql

k−1.

(b) (Upward collapse): For all k ≥ 0, if
∑ql
k =

∏ql
k then QLH =

∑ql
k .

(c) (Turing closure): For all k ≥ 0,
∑ql
k ∩

∏ql
k is closed downward under ≤ql

T .

(d) For each k ≥ 1, the language Bk of quantified Boolean formulas in prenex form

with at most k alternating quantifier blocks beginning with ‘∃’ is complete for
∑ql
k

under DQL many-one reductions.

(e) QLH ⊆ QLSPACE.

Proof. (a) The base case k = 1 follows via NQLDQL = NQL[DQLDQL] = NQL[DQL] =

NQL. The induction case for k > 1 is typified by showing that NQLNQL ⊆ Σql
2 . Let the

oracle NTM N accept L with oracle A ∈ NQL in quasilinear time r(n). Without loss of

generality, we may suppose thatN does not write a query bit and make a nondeterministic
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move in the same step. There is a DQL predicate R and a quasilinear function q such

that for all y ∈ Σ∗, y ∈ A ⇐⇒ (∃qv) R(y, v). Let q′(n) = q(r(n)) for all n. Then for all

x ∈ Σ∗,

x ∈ L ⇐⇒ (∃r~c )(∃q′~v )(∀q′ ~w ) Matrix (x,~c, ~v, ~w),

where Matrix (x,~c, ~v, ~w) states the following: ~c is an accepting computation of N on

input x in which some queries y1, . . . , yl are listed as being answered “yes,” and the other

queries z1, . . . , zm recorded in ~c are listed as being answered “no,” and ~v encodes a list

of strings v1, . . . , vl such that R(y1, v1) ∧ . . . ∧ R(yl, vl), and if ~w encodes a list of

strings w1, . . . , wm, then ¬R(z1, w1) ∧ . . . ∧ ¬R(zm, wm). That the quasilinear length

bound on the quantification over ~v and ~w is sufficient follows from Lemma 2.1(b). Since

Matrix (x,~c, ~v, ~w) is decidable in quasilinear time, this is a Σql
2 definition of L.

Parts (b) and (c) follow from (a) by standard means. The case k = 1 of (d) is

the main theorem of Schnorr [Sch78] that SAT is complete for NQL under ≤ql
m . It

is worth sketching Schnorr’s construction here (see also [BG93]) for reference below:

Given A ∈ NQL, there are quasilinear functions q, r and a DTM M such that for all

x, x ∈ A ⇐⇒ (∃qy)[M accepts 〈x, y〉], where for all x and y, M(〈x, y〉) halts within

r(|x|) steps. Then as shown in [Sch76], for all n, M can be converted into a uniform

family of O(r(n) log r(n))-sized circuits Cn of fan-in 2 in variables x1, . . . , xn and y1, . . . , yq

such that for all x, x ∈ A ⇐⇒ (∃y1, . . . , yq)Cn(x1, . . . , xn, y1, . . . , yq) = 1. Then

assign a dummy variable to each of the O(r(n) log r(n)) wires in Cn and write a 3-

CNF formula that expresses that each output wire has the correct value given its input

wires. This reduces A to SAT and is computable in time O(r(n) log r(n)), which is again

quasilinear. The cases k > 1 follow by inserting this construction into the corresponding

parts of the proofs for polynomial-time reductions in [Sto76, Wra78], similar to what we

do in Proposition 2.4(a) below. Part (e) follows because the language QBF = ∪kBk of

quantified Boolean formulas belongs to quasilinear (in fact, linear) space.

Interestingly enough, we do not know whether QBF is complete for quasilinear space

under quasilinear-time reductions. The standard reduction in [HU79], when applied to

a given set A in DSPACE[O(n)], has a quadratic blowup in size. This seems related

to the issue of whether Savitch’s simulation of nondeterministic space s(n) = Ω(log n)

by deterministic space O(s(n)2) must have quadratic blowup. By the same token, the

familiar “one-line proof” that there is an oracle A making NPA = PA, namely NPQBF ⊆
NPSPACE = PSPACE = PQBF , is not valid for QL. However, the result (a) below is still

true:

Proposition 2.4 (a) There exists an oracle A such that NQLA = DQLA.
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(b) There exists an oracle B such that not only is NQLB 6= DQLB, but also for any

fixed quasilinear function q, NQLB is not contained in DTIMEB[2q(n)].

Proof. (a) Tretkoff [Tre86] showed that if one takes A := { 〈M,x, 0n〉 :

the DTM M accepts x in spacen }, then DLINA = NLINA = LINSPACEA (using the

above oracle convention). By the same token we note that DQLA = NQLA: Let

L ∈ NQLA via an OTM N that runs in quasilinear time q(n). Let M ′ be a non-oracle

deterministic TM with some tapes devoted to simulating all branches of N , and others

devoted to answering all oracle calls made by N . Since N runs in q(n) time, it cannot

write any queries of length > q(n). Since the space overhead for simulating the NTM

N and for universal simulation of DTMs M is linear, M ′ runs in q′(n) = O(q(n)) space.

Hence a DQL-machine M ′′ on input x can write down the query 〈M ′, x, 0q
′(|x|)〉 to A, and

in fact, L ≤ql
m A.

(b) This follows by inter-twining over all q(n) the standard construction of an oracle

B such that Lq := { 0n : B ∩ Σq(n) 6= ∅ } is not in DTIMEB[q(n)].

Remark: In (a) one can also take A = QBF : Let L ∈ NQLQBF via the oracle NTM

N . Let N ′ be an oracle NTM that on any input x, guesses an accepting computation

~c of N . The string ~c includes the nondeterministic moves made by N and also lists

y1, . . . , yl of queries answered positively and queries z1, . . . , zm answered negatively. By

Schnorr’s construction, the condition that ~c is an accepting computation can be encoded

as a Boolean formula φ1 of quasilinear size. By the foregoing convention and lemmas on

oracle queries, the condition that all the answers given in ~c are correct can be represented

by a Boolean formula φ2, which is just the conjunction of l+m instances of QBF and also

has quasilinear size. Finally, a deterministic machine can in quasilinear time construct

a formula φx that is equivalent to (∃~c )(φ1 ∧ φ2). Then x ∈ L ⇐⇒ φx ∈ QBF .

(This shows in fact that L is in DQLQBF with one query, and that QBF is complete

for NQLQBF under ≤ql
m . The important difference from the polynomial case is that this

appears not to work if N is quasilinear space bounded, even if N is deterministic.)

The result of [PZ83] that ⊕P
⊕P = ⊕P also carries over because of the quasilinear

bound on the total length of all queries in an oracle computation: ⊕QL
⊕QL = ⊕QL.

However, it is unclear whether the theorem BPPBPP = BPP [Ko82] carries over, because

the amplification of success probability to 1− 2− polylog obtainable for BQL seems insuf-

ficient. However, we show in the next section that the well-known NP ⊆ BP[⊕P] lemma

from [VV86] and [Tod91] does carry over by a new construction, where all previous known

constructions were quadratic or worse.
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3 Quasilinear-Time Reduction to Parity

Let A ∈ NP with witness predicate R(x, y) and length bound q = q(n), and for any

x let Sx := { y ∈ { 0, 1 }q : R(x, y) } be the corresponding witness set, so that x ∈
A ⇐⇒ Sx 6= ∅. Valiant and Vazirani [VV86] constructed a probabilistic NTM N that

on any input x of length n first flips q2-many coins to form q-many vectors w1, . . . , wq

each of length q. N also flips coins to form a number j, 0 ≤ j ≤ q. Then N guesses

y ∈ { 0, 1 }q and accepts iff R(x, y) and for each i, 1 ≤ i ≤ j, y · wi = 0, where · is inner

product of vectors over GF(2). Let Nw,j stand for the NTM N with w = w1, . . . , wq and

j fixed. Clearly whenever x /∈ A, for all w and i, the number #acc(Nw,j, x) of accepting

computations of Nw,j on input x is zero. The basic lemma of [VV86] states that whenever

x ∈ A, Prw[(∃j)#acc(Nw,j, x) = 1] ≥ 1/4. In particular, Prw,j[#acc(Nw,j, x) is odd] ≥
1/4(q + 1). A “product construction” yields an N ′ which flips coins to form just w,

guesses strings y0, . . . , yq, and achieves

x ∈ A =⇒ Prw[#acc(N ′w, x) is odd] ≥ 1/4,

x /∈ A =⇒ Prw[#acc(N ′w, x) is odd] = 0

for all x. In symbols, this says that NP ⊆ RP[⊕P] (cf. [Tod91]).

However, in the case A = SAT addressed by [VV86], with q(n) = n, N ′ runs in

quadratic time—in fact, N ′ flips quadratically many coins and makes quadratically many

nondeterministic moves. It was observed in [BCGL89] that one can use small families

H = {Hk } of universal2 ([CW79]) hash functions for the Valiant-Vazirani reduction,

and using such a family hk : { 0, 1 }q → { 0, 1 }k (1 ≤ k ≤ q + 1) cuts the number

r(n) of random bits used to 2q(n). The construction of [CRS93] achieves the same

effect, still with quadratic runtime when q(n) = n. Gupta [Gup93] gives a randomized

reduction to parity which achieves constant success probability 3/16 with only ν(n) =

q(n) nondeterministic moves, but still using q2-many random bits and quadratic time.

Subsequent to our finding the application of error-correcting codes to make the time

quasilinear and r(n) < 2n, we discovered that a trick of Naor and Naor [NN90, NN93] can

also be applied to this reduction: Build a probabilistic NTM N that first uses 2q+2 coin

flips to determine, for each k ≤ q(n) + 1, a hash function hk ∈ Hk. Next N flips q + 1

more coins to form u ∈ { 0, 1 }q+1. Then N nondeterministically guesses y ∈ { 0, 1 }q

and k, 1 ≤ k ≤ q + 1, and accepts iff R(x, y) ∧ hk(y) = 0 ∧ uk = 1. This uses

3q + 3 random bits, achieves success probability at least 1/8, and runs in the time to

compute hk, which is O(q log q loglog q). Our construction achieves better constants,

namely success probability arbitrarily close to 1/2 and always using less than 2q random

bits. Furthermore, it avoids the extra guess of k, and when applied to a given instance

φ of SAT , yields a formula φ′ of the simple form φ′ = φ ∧ ψ.
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Naor and Naor also mention error-correcting codes for similar purposes in-passing,

ascribing the idea to Bruck with a reference to [ABN+92]. However, using the codes

in [ABN+92] appears to require computing exponentiation in finite fields GF(2m) where

the size m of field elements is polynomial in n. This is not known to be possible in

quasilinear time, even by randomized algorithms, and the sequential method of von zur

Gathen [vzG91] takes quadratic time on TMs. The main point of our construction is

that by scaling down the size of the field, and using multi-variable polynomials, one can

achieve quasilinear runtime. Our code is similar to those used in recent improvements

of “holographic proof systems” [BFLS91, Sud92], and is only inferior to the code of

[ABN+92] in using nearly 2q rather than q +O(1) random bits.

3.1 Error-correcting codes

Let Γ be an alphabet of size 2l. We can give Γ the structure of the field F = GF(2l);

then ΓN becomes an N -dimensional vector space over F . An [N,K,D] code over F is a

set C ⊆ Γn which forms a vector subspace of dimension K (so ‖C‖ = 2lK), such that for

all distinct x, y ∈ C, dH(x, y) ≥ D, where dH is Hamming distance. Since C is closed

under addition (i.e., a linear code), the minimum distance D equals the minimum weight

(i.e., number of non-zero entries over F ) of a non-zero codeword. The rate of the code

is R = K/N , and the density is given by δ = D/N . Any basis for C forms a K × N
generator matrix for the code. If F = GF(2) we speak of a binary code. The following

two examples form the main components of our construction:

• The Hadamard code Hk over { 0, 1 } of length n = 2k has n codewords. The

codewords can be arranged into an n×n array with rows and columns indexed by strings

u, v ∈ { 0, 1 }k, and entries u · v, where · is inner product over GF(2). Hk has distance

dk = 2k−1, so δk = 1/2 is constant.

• The full 2k-ary generalized Reed-Muller code R2k(d,m) of order d, where d <

m(2k−1), has length N = 2km over the field F = GF(2k). Each polynomial f(x1, . . . , xm),

in m variables over F of total degree at most d, defines the codeword with entries

f(a1, . . . , am), where ~a = (a1, . . . , am) ranges over all sequences of arguments in F . In

the important case d ≤ 2k− 2 a generator matrix for this code is easy to describe: it has

one row for each monomial xi11 x
i2
2 · · ·ximm such that i1 + i2 + . . .+ im ≤ d. Since d ≤ 2k−2

these monomials are all distinct, and they are all linearly independent, so the dimension

is K = (m+d
d ). The well-known property on which these codes are based is that for every

two distinct polynomials f and g over F of total degree at most d, and for every I ⊆ F ,

|{~a ∈ Im : f(~a ) = g(~a ) }| ≤ d|I|m−1. (1)
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With I = F , it follows that the density ∆ is at least 1 − d/|F |. See [BFLS91, Sud92]

for more on the inequality (1), and [MS77, TV91] for further information on the above

codes. (Note: the notation in [TV91] for the generalized Reed-Muller code is Rq(r,m),

where q is a prime power and r < m(q − 1). Below we will have d = d0m.)

3.2 Application for reductions to parity

Let R(x, y) and q(n) be a witness predicate and a quasilinear function that define the

language A as before. Suppose we have an allowance of r(n) random bits, and desire

success probability δ. The idea is to find a 2q × 2r(n) generator matrix G for a binary

code C of constant density δ. Then we can build a probabilistic NTM N that works as

follows:

1. Flip r(n) coins to choose a column j.

2. Guess a row i, 1 ≤ i ≤ 2q, identified with a possible witness string yi ∈ { 0, 1 }q.

3. Accept iff R(x, yi) ∧ G(i, j) = 1.

Suppose S = Sx is nonempty. Then to S there corresponds the unique non-zero codeword

wS :=
∑
y∈S G(y, ·), where the sum is over GF(2). Then #acc(Nj, x) is odd iff the

jth entry of wS is a ‘1’. Since the proportion of non-0 entries of wS is at least δ,

Prj[#acc(Nj, x) is odd] ≥ δ; that is, N reduces A to parity with success probability at

least δ. And if S is empty, N has no accepting computations at all.

Thus to show NQL ⊆ RQL[⊕QL], we need to construct a binary code C so that

• Selected entries G(i, j) are computable in quasilinear time, and

• The density δ of C is constant, the closer to 1/2 the better.

In one level of coding over GF(2), approaching 1/2 from below is best possible, because

by well-known results concerning the Plotkin bound in coding theory (see [MS77]), any

binary code of density 1/2 or more has too few elements to support the above application.

The generalized Reed-Muller code R2k(d,m), which has length N and density ∆

over GF(2k), may instead be regarded as a binary code R′ of length kN over GF(2).

But then we can only assert that the density of R′ is at least ∆/k, because two distinct

elements a1, a2 ∈ GF(2k) might differ in only one out of k places as binary strings. The

key idea, called concatenation of codes [For66], is to apply a second level of coding to

these elements. In this case we take the so-called inner code to be the Hadamard code

Hk. Then whenever a1 6= a2 in GF(2k), Hk(a1) and Hk(a2) differ in at least half of their

places as binary strings of length 2k. This results in a binary code C of length N2k that
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has density ∆/2. By arranging ∆ > 1 − 2ε, as follows when d/2k+1 < ε, one obtains

the desired density δ > 1/2 − ε. The delicate part of the construction is to make k

large enough for the desired density, but not too large that the length N2k and time for

operations in GF(2k) is prohibitive.

Let log+ n abbreviate logn loglogn logloglogn.

Theorem 3.1 Let q be a quasilinear function. For every language A in NTIME[q(n)],

and any fixed ε < 1/2, we can find a probabilistic parity machine N that accepts A with

success probability 1/2− ε, such that N makes no more than q = q(n) nondeterministic

moves on inputs of length n, runs in time O(n log+ n + q(n)), and uses a number of

random bits bounded by

2q − q loglog q/ log q + (1 + log(1/ε))q/ log q +O(log q).

Proof. On any input x, N does the following:

1. n := |x|, q := q(n)

2. b := dlog2 qe /*block length for exponents*/

3. d0 := 2b − 1 /*maximum degree in each variable*/

4. m := dq/be /*number of variables*/

5. k := dlog2 d0 + log2 m+ log2(1/ε)− 1e

6. Calculate an irreducible polynomial α of degree k over GF(2)

7. Flip mk + k coins to form j = 〈a1, . . . , am, v〉, where v ∈ { 0, 1 }k

8. Guess y ∈ { 0, 1 }q

9. Taking b bits of y at a time, form integers i1, i2, . . . , im−1, im ∈ { 0, . . . , d0 }. (It is

OK for im to be truncated.)

10. Compute u := ai11 · ai22 · · · aimm

11. Compute G(y, j) := u · v /*Hadamard code applied here*/

12. Accept iff R(x, y) ∧ G(y, j) = 1.

Steps 1–5 take linear time. That step 6 can be done deterministically in time polyno-

mial in k was shown by Shoup [Sho88], and since k is approximately log q+log n+log(1/ε),

which is O(log n) when ε is fixed, this time is negligible. Step 7 takes time about nk/ log n,

which for fixed ε is asymptotically less than the time q(n) for steps 8 and 9. For step

10, we first note that to multiply two polynomials of degree k− 1 over GF(2) and reduce
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them modulo α in the field GF(2k) takes time t1 = O(k log k loglog k) on standard Turing

machine models (see [AHU74] and [Rab80]). The time to compute ai in GF(2k) where

i ≤ q is t2 = O(log q · 2k log k loglog k) via repeated squaring, which is O(log(n) log+ n).

Thus the time for step 10 is O(mt2 +mt1) = O(n log+ n). Step 11 takes negligible time,

while step 12 takes another q(n) steps to compute R. This yields the stated time bound.

The random-bits bound follows on estimating mk + k.

Corollary 3.2 NQL ⊆ RQL[⊕QL].

The first open problem is whether two or more alternations can be done in quasilinear

time; that is, whether NQLNQL ⊆ BQL[⊕QL]. The obstacle is the apparent need to

amplify the success probabilities of the second level to 1− 2−q, for which straightforward

“amplification by repeated trials” takes time q2. The second is whether the code can be

improved and still give quasilinear runtime. Our codes have rate R = K/N = 2q/2(2q−...),

which tends to 0 as q increases. Families of codes are known for which R (as well as δ)

stays bounded below by a constant; such (families of) codes are called good . Good codes

require only q + O(1) random bits in the above construction. The codes in [ABN+92,

JLJH92, She93] are good, but appear not to give quasilinear runtime here.

4 Search Versus Decision in Quasilinear Time

The classical method of computing partial, multivalued functions using sets as oracles is

the prefix-set method (cf. [Sel88] ). To illustrate, let f be an arbitrary length-preserving,

partial function from Σ∗ to Σ∗. Define:

Lf = {x#w | w is a prefix of some value of f(x)}.

Clearly f is computable in quadratic time using Lf as an oracle. First we observe that for

“random” functions f , quadratic time is best possible. Fix a universal Turing machine

MU for the definition of Kolmogorov complexity (see [LV93]).

Theorem 4.1 There exist length-preserving functions f : Σ∗ → Σ∗ with the property

that there does not exist an oracle set B relative to which f is computable in less than

n2 − n steps.

Proof. Let B and an OTM M such that MB(x) = f(x) on all strings x ∈ { 0, 1 }n be

given, and suppose MB runs in time g(n). Then the following is a description of f on

{ 0, 1 }n:
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• The finite control of M , a finite description of the function computing the time

bound g(n), and a finite description of the part of this proof that tells MU how

to assemble f from the given data. (See the use of the term “this discussion” in

[LV93].) This has total length some constant C.

• A look-up table for all the strings of length less than n that belong to B—this is

specifiable by a binary string of length
∑n−1
i=0 2i = 2n − 1 < 2n.

• For each x ∈ { 0, 1 }n, the answers given by B to those queries z made by M on

input x such that |z| ≥ n. There are at most g(n)/n such queries. All of this is

specifiable by a binary string of length 2ng(n)/n.

Now let Kf be the Kolmogorov complexity of f (relative to MU). Then C + 2n +

2ng(n)/n ≥ Kf , so g(n) ≥ nKf/2
n − n− nC/2n. Since functions f : { 0, 1 }n → { 0, 1 }n

are in 1-1 correspondence with binary strings of length n2n, and (by simple counting)

some such strings have Kolmogorov complexity at least n2n, there exist f with Kf ≥ n2n.

Then g(n) ≥ n2 − n.

(Remarks: . Via diagonalization rather than Kolmogorov complexity, one can construct

f so that it is computable in exponential time. The n2 − n is close to tight—an upper

bound of g(n) ≤ n2 + 2n log n is achievable by a modification of Lf .)

Hence the equivalence between functions and sets does not carry over to quasilinear

time complexity in general. Theorem 4.1 can be read as saying that Kolmogorov-random

functions have so much information that large query strings are needed to encode it.

We are interested in whether natural functions in NP, such as witness functions for NP

problems, pack information as tightly.

Recall that a binary predicate R is called a witness predicate for a language L if

L = {x : (∃y)R(x, y) }. Associated to R is the search problem: given x, on condition

x ∈ L, find some y such that R(x, y) holds. We represent this problem by the partial

multivalued function fR defined for all x by:

fR(x) 7→ y, if R(x, y),

calling this the search function for L given by R. A solution to the search problem is

a deterministic algorithm A such that for all x ∈ L, A(x) outputs some y such that

fR(x) 7→ y; i.e., such that R(x, y) holds. The main branch-point of the theory concerns

what A should do on inputs x /∈ L, which is related to the complexity of checking

R(x, y). The general theory presented by Selman [Sel94] considers cases where R is not

polynomial-time checkable but there is a solution A with the property A(x) = 0 for all

x /∈ L; and/or where A is nondeterministic but single-valued on inputs x ∈ L. Related
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matters are studied in [BD76, BBFG91, NOS93]. For our purposes, we decouple the

runtime of A from the complexity of checking R(x, y).

Definition 4.1. Let L be any language, and let t1, t2 be time-bound functions. Say that

search reduces to decision for L in time t1(n), with witness-checking in time t2(n), if

there exists a witness predicate R for L, a deterministic machine MR computing R(x, y),

and a deterministic oracle machine M such that for all x:

(a) ML(x) halts within t1(|x|) steps, and for all y with |y| ≤ t1(|x|), MR(x, y) halts

within t2(|x|) steps.

(b) If x ∈ L, then ML(x) outputs some y such that R(x, y) holds.

Note the existential quantification over all witness predicates R for L. In the case t2(n) =

t1(n) = t(n), we simply say that search reduces to decision for L in time t(n), or L has

SRD in time t(n) for short. An important subtlety is that this is stronger than stipulating

that for all x /∈ L, ML(x) = 0. The ability to check R(x, y) for all x, y makes it fruitful to

simulate M on other oracles besides L itself. A final remark is that “linear speedup” does

not hold in general for oracle machines; in particular, t1(n) not “O(t1(n))” is the asserted

bound on the total number of bits in queries made by M . In keeping with the promise in

the Introduction we allow M to be an oracle version of any of the RAM-related models

considered by Gurevich and Shelah, but arrange for our non-oracle simulator M ′ to be a

standard multitape Turing machine.

Theorem 4.2 Let search reduce to decision for L in time t(n) with witness-checking in

time t(n)O(1). Suppose that t(bn/2c) ≤ t(n)/2 for all but finitely many n. Then L is

decidable by a non-oracle Turing machine in time 22t(n) logn/n ·t(n)O(logn).

Proof. Let M be the oracle machine from Definition 4.1 that runs in time t(n), and let

n0 be a constant whose value will be fixed later. Also let g(n) be a function that we

subsequently fix as g(n) = bn/2c but retain in the first part of the analysis for later use.

It is not important whether t(n) is time-constructible.

We describe a non-oracle Turing machine M ′ that accepts L as follows: If the input

x to M ′ has length less than n0, then whether x ∈ L is looked up in a table; this takes

no more than n0 steps. For inputs x of length n ≥ n0, M ′ simulates M until M makes

some query z. If |z| < n0, M ′ answers from the table. If |z| > g(n), then M ′ simulates

both a “yes” and a “no” answer to z. Finally, if n0 ≤ |z| ≤ g(n), then M ′ calls itself

recursively on input z to answer the query.

In greater machine detail: The TM M ′ has one special “stack tape” as well as its

own worktapes. One worktape represents the query tape of M ′, and another acts as a
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surrogate input tape in recursive calls. For segments of computations by M between

queries, M ′ simulates M on its worktapes using any of the standard on-line simulations

of RAM-like models by TMs, which carry quadratic overheads in time and space (see

[CR73, PF79, WW86]). When M ′ encounters a query z with |z| > g(n), M ′ pushes a

copy of its current configuration aside from the stack onto the stack, and continues the

simulation from that branch point down the ‘0’ branch. This configuration has size at

most t(n)2. For a query z with n0 < |z| ≤ g(n), M ′ again pushes a copy of its current

configuration onto the stack, copies z to its surrogate input tape, and begins working on

z. Pushing onto the stack takes no more than t(n)2 steps in this case also. The value n0

is global, but the value g(|z|) is recomputed at each level of the recursion.

The main point of the simulation is that both the branchings and the recursive calls

can be handled without conflicts on the single stack. At all stages there is a current string

z, |z| ≥ n0, that M ′ is working on. At the bottom of the recursion, M ′ has simulated

some branch of the oracle computation of M (·)(z) to its completion. If the branch returns

a value y, then M ′ itself tests R(z, y). If R(z, y) holds, then M ′ pops its stack until it

finds the configuration that queried z, and proceeds from there with a “yes” answer. If

the branch does not return such a y, or returns 0, then M ′ retrieves the last branch

point from the stack and simulates the ‘1’ branch from that point. If there are no more

branch points left; i.e., if the configuration that queried z is uppermost, then M ′ proceeds

from there with a “no” answer. The whole computation is a left-to-right transversal of

the “hierarchical tree” formed by the branch points and recursive calls; we picture this

intuitively as a “flattened,” wide-spreading tree.

Let T (n) stand for the worst-case run-time of M ′ on inputs of length n. Let tR(n)

stand for the time to decide R. Then for all n < n0, T (n) ≤ n0, while for n ≥ n0, T (n)

satisfies the bound

T (n) ≤ 2t(n)/g(n) · t(n)(t(n)2 + T (g(n)) + 2t(n)/g(n)tR(n). (2)

To see this, first note that there can be at most t(n) (actually, t(n)/n0) recursive calls

along any branch of the simulation of M (·)(x). Each call involves pushing a configuration

of size at most t(n)2 onto the stack, and in the same time copying z to the surrogate-input

tape and re-setting the other worktapes of M ′. Since each branch is for a query of length

at least g(n), there can be at most 2t(n)/g(n) such branches.

Using the hypothesis that tR(n) = t(n)O(1), and letting c be the constant in the

“O(1)” plus 3, we obtain the even cruder upper bound

T (n) ≤ 2t(n)/g(n) · t(n)c · T (g(n)). (3)

Now let g(n) := bn/2c for all n. Fix n0 so that t(bn/2c) ≤ t(n)/2 for all n ≥ n0. Put

k = dlog2(n/n0)e. Unwinding the recursion, we obtain for n ≥ n0:
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T (n) ≤ 2
∑k

i=0
t(n/2i)/(n/2i+1) · t(n)ck

≤ 22t(n) logn/n · t(n)c logn.

Let polylog n abbreviate (log n)O(1) as before. Then DTIME[2polylogn] is often referred

to as quasi-polynomial time (cf. [Bar92]), which we abbreviate to QP.

Corollary 4.3 If search reduces to decision for SAT in quasilinear time with polynomial

witness-checking, then NP ⊆ QP.

The same conclusion holds under the hypothesis that some (any) NP-complete language

L has SRD in quasilinear time, with polynomial witness-checking.

Proof. For quasilinear t(n), t(n)/n = polylog(n), and since npolylog(n) = 2polylog(n), SAT

would belong to DTIME[2polylog(n)]. Since polylog(nc) = polylog(n), the conclusion ex-

tends to all of NP.

In fact, letting NQP stand for nondeterministic quasi-polynomial time, we would

have the conclusion NQP = QP. The next result follows by the same token, except that

the nearly-2n
ε

time bound need not extend to all of NP, just to NQL.

Corollary 4.4 If there exists an ε > 0 such that SAT has SRD in time O(n1+ε), with

polynomial witness-checking, then for all δ > ε, NQL ⊆ DTIME[2n
δ
].

Stearns and Hunt [SH90] define a language L ∈ NP to have power index ε if ε is

the infimum of all δ such that L ∈ DTIME[2n
δ
]. They classify familiar NP-complete

problems according to known bounds on their power indices, and conjecture that SAT

has power index 1. In this setting, Corollary 4.4 can be restated as:

Corollary 4.5 If there exists an ε > 0 such that search reduces to decision for SAT in

time O(n1+ε), then SAT has power index at most ε.

This establishes a relation between reducing search to decision and the power index of

an NP language. However, we now show that the converse is unlikely to be true.

Let EE stand for DTIME[22O(n)
], and NEE for its nondeterministic counterpart. The

classes EE and NEE were considered by Beigel, Bellare, Feigenbaum, and Goldwasser

[BBFG91], and there are reasons for believing it unlikely that NEE = EE.
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Theorem 4.6 Suppose NEE 6= EE. Then for all k > 0 there is a tally language in NP

whose power index is at most 1/k, but for which search does not reduce to decision in

polynomial time.

Proof. Let T be the tally set constructed in [BBFG91] such that search does not reduce

to decision for T in polynomial time, unless NEE = EE. Suppose p is a polynomial such

that for all n, all witnesses of the string 0n are of length p(n). Define:

T k = {0p(n)k | 0n ∈ T}.

It is easy to see that T k has power index at most 1/k, since an exhaustive search algorithm

recognizes T k in time 2n
1/k

. However if search reduces to decision in polynomial time for

T k, then it does so for T , which is a contradiction.

Now we push these results right up against the quadratic upper bound of Theorem 4.1

(which applies when |y| ≈ |x|), needing to use only one level of recursion. Say that a

function t(n) is “recursively o(n2)” if there is a total recursive function f : N→ N such

that f(n)→∞ as n→∞ and for all but finitely many n, t(n) ≤ n2/f(n).

Theorem 4.7 If SAT has SRD in time t(n) that is recursively o(n2), with witness-

checking in polynomial time, then SAT ∈ DTIME[2o(n)].

Proof. Given the computable function f associated to t(n) in the preceding remarks, we

replace f by an easily computable lower bound that still goes off to ∞ by the following

standard trick: For all n, define f ′(n) to be the largets value obtained by simulating the

computation of f(0), f(1), f(2), . . . for n steps. Now for all (sufficiently large) n define

g(n) := bn/
√
f ′(n)c. The time to compute g(n) is polynomial in n, and absorbing this

into the polynomial bound for witness-checking gives via (3), for some c > 0 and all

sufficiently large n:

T (n) ≤ 2n/
√
f ′(n) · nc · T (n/

√
f ′(n)).

Now instead of continuing the recursion below the top level as in Theorem 4.2, let M ′

on each query string z with |z| ≤ g(n) run the brute-force 2O(|z|) time algorithm for SAT

instead. Then the running time of M ′ is bounded by nc ·2O(n/
√
f ′(n)) = 2o(n).

The result extends to show that if the time to reduce search to decision for SAT is

not Ω(n2), then the deterministic time complexity of SAT is not Ω(2n) or even 2Ω(n).

One can also analyze the full recursion without resorting to the membership of SAT in

DTIME[2O(n)] (which is the same for TMs and RAMs), obtaining essentially the same

kind of bound. Analogous results hold for general languages in NP in place of SAT .

17



Finally, a remark on the nature of the recursion in Theorem 4.2: It is natural to

wonder whether this equivalent to the brute-force simulation of a machine with “limited

nondeterminism” in the sense of [KF80, BG93]. That is, perhaps L is accepted by

a polynomial-time NTM that makes at most t(n)/n or so nondeterministic moves on

inputs of length n; this would be polylog(n) or nε-limited nondeterminism in the cases

of Corollaries 4.3 and 4.4. The answer appears to be no, owing to the fact that “no”

answers to queries z /∈ L are relied upon in the simulation. We suspect that some

restricted notion of “search reducing to decision by positive queries alone,” analogous

to the notion of positive Turing reducibility (see [Sel82, Sch85a]), is needed for such a

connection to limited nondeterminism. The relativized search-to-decision reduction used

in the main theorem of the next section is positive in the appropriate sense.

5 Further Results and Connections to Other Work

The study of the relationship between search problems and decision problems is com-

plicated by the fact that to a given language A one can associate many different search

problems, depending on the choice of witness predicate R for A. The desire to find a

property of decision problems alone that facilitates search led to several notions of helping

proposed by Schöning [Sch85b] and Ko [Ko87]. We extend their definitions from polyno-

mial time to arbitrary time bounds t(n) under our oracle convention. An oracle TM M is

robust if for every oracle B, M with oracle B halts for all inputs, and L(MB) = L(M∅).

In other words, the language accepted by MB is the same for all oracles B.

Definition 5.1. A language B 1-sided-helps a language A in time O(t(n)) if there exist

a robust oracle TM M such that L(M (·)) = A and a constant c ≥ 1 such that for all

strings x ∈ A, MB(x) runs in time ct(|x|).
The language A is a self-1-helper in time O(t(n)) if A 1-sided helps A itself in time

O(t(n)).

The point is that although the oracle B doesn’t affect the language accepted by M , it does

enable strings in A to be verified faster than might otherwise be the case. The robustness

requirement rules out the oracle machine that simply queries its input x to the oracle and

similar trivialities. We write O(t(n)) rather than just t(n) because linear speed-up does

not hold for oracle machines. For polynomial time bounds, both Definition 4.1 and the

notion of self-1-helping entail A ∈ NP, and we restrict attention to NP below. Balcázar

[Bal90] proved that a language A is a self-1-helper (in polynomial time) if and only if

search reduces to decision for A (in polynomial time). We observe first that Balcázar’s

proof carries over to any reasonable time bound t(n).
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Proposition 5.1 Let A ∈ NP. Search reduces to decision for A in time O(t(n)) if and

only if A is a self-1-helper in time O(t(n)).

Proof. (=⇒): Suppose search reduces to decision for A in time t(n). By definition,

there is a witness predicate R for A and a t(n)-time bounded deterministic oracle TM

M0 such that for all inputs x, if x ∈ A then MA
0 (x) outputs some y such that fR(x) 7→ y,

and if x 6∈ A then MA
0 (x) = 0. Define the robust TM M as follows. On input x, M

simulates M0(x) for t(|x|) steps. If a witness y is produced, M evaluates R(x, y) and

accepts x if R(x, y) holds; otherwise, M performs a brute-force search for a witness y.

Clearly L(MB) = A for all oracles B; moreover, for all x ∈ A, MA accepts x in time at

most 2t(n). It follows that A is a self-1-helper in time O(t(n)).

(⇐=): Suppose A is a self-1-helper in time t(n); let M be the robust TM such that

L(M,B) = A for all oracles B. Define the predicate R(x, y) ≡ “y is the sequence of oracle

answers that causes M to accept x in time t(n).” Clearly R is a witness predicate for A

and R ∈ DTIME[t(n)]. Now let M0 be a machine that on any input x simulates MA(x)

for t(|x|) steps, and records the oracle responses as a string y. If MA halts and accepts

within t(|x|) steps, then M0 outputs y; otherwise, M0 outputs 0. Since the running time

of M0(x) is bounded by 2t(n), we conclude that search reduces to decision for A in time

2t(n).

The above equivalence extends our results in the last section to the notion of self-1-

helping. In particular, Theorem 4.2 can now be restated as:

Theorem 5.2 Let A ∈ NP. If A is a self-1-helper in quasilinear time, then A ∈
DTIME[2polylogn].

We can, however, prove a more general theorem in terms of 1-sided-helping, with-

out the “self-” restriction. For some notation, let P1-help(C) and DQL1-help(C) denote,

respectively, the classes of languages A such that there is a language B ∈ C which 1-

sided-helps A in polynomial time, respectively, in quasilinear time. Ko proved that for

any complexity class C that contains an NP-hard language, NP = P1-help(C) [Ko87]. In

the quasilinear case, however, we observe that only one direction of Ko’s result is likely

to carry over.

Theorem 5.3 (a) For all complexity classes C, DQL1-help(C) ⊆ NQL.

(b) If NQL ⊆ DQL1-help(NQL) then NP ⊆ DTIME[2polylogn].

Proof.
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(a) Let L ∈ DQL1-help(A) for some language A. Let M be the robust TM such that

L(M,B) = L for all oracles B, and such that MA accepts L in time q(n), where q(n)

denotes a quasilinear time bound. To show that L ∈ NQL, we build a nondeterministic

TM N that behaves as follows. On input x, N simulates M for exactly q(|x|) steps;

whenever M makes a query to the oracle, N guesses the oracle response and continues

its simulation. N accepts x if and only if M accepts x within q(|x|) steps. If x ∈ L, then

the path in which all oracle responses are guessed correctly is an accepting computation

of N . If x 6∈ L, it follows from the robustness of M that no computation path of N

accepts x (in any number of steps, much less in q(|x|) steps). Thus we have L(N) = L.

(b) Suppose SAT ∈ DQL1-help(NQL). Then there exists some A ∈ NQL that helps

SAT via a robust OTM M in quasilinear time. Since A ≤ql
m SAT , M can be replaced by

a robust OTM M ′ that makes SAT 1-help itself in quasilinear time. The conclusion now

follows via Theorem 5.2.

Next we consider the subject of bounded-query classes studied in [Bei87b, Bei87a,

AG88, BGH89, ABG90, Bei91, BGGO93]. In particular, a language L is defined to be P-

superterse [Bei87a, ABG90] if for all k and all oracles B, the function mapping a k-tuple

of strings x1, . . . , xk to the k-tuple of answers L(x1), . . . , L(xk) cannot be computed in

polynomial time while making at most k−1 queries to B. Beigel, Kummer, and Stephan

[BKS93] proved that SAT is P-superterse iff P 6= NP. Their proof relativizes in this way:

for any oracle A such that PA 6= NPA, the language SATA (or KA as below) is such

that for all k and languages B, every polynomial-time machine that solves k instances of

SATA with oracle 0A∪1B must make at least k queries to the B half of the oracle. Since

superterseness is another way of saying intuitively that the language L packs information

so tightly that no oracle can save on queries, one might suspect that it is closely related

to our notion of search-to-decision requiring n2-many query bits. However, this seems

not to be so:

Theorem 5.4 There exists an oracle A such that PA 6= NPA, and search reduces to

decision in quasilinear time for SATA.

This also gives a sense in which the quasi-polynomial upper bound for NP in Theorem 4.2

appears to be optimal. Our oracle construction is related to those of Kintala and Fischer

[KF80] for polynomial-time NTMs allowed to make O(logk n) nondeterministic moves, for

some k > 0. First we observe that a lemma of Selman [Sel79] carries over for quasilinear

time reductions.

Lemma 5.5 If L1 and L2 are such that L1 ≡qlm L2 and search reduces to decision in

quasilinear time for L1, then search reduces to decision in quasilinear time for L2.
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Proof. Let g1 and g2 be QL functions such that L1 ≤ql
m L2 via g1 and L2 ≤ql

m L1 via g2.

Suppose L1 helps itself via a robust OTM M1 in quasilinear time q(n). Then define M2

to be a machine that on any input x simulates M1 on input g2(x), but when M1 makes

a query z, M2 makes the query g1(z). Then M2 is still a robust OTM, and M2 with

oracle L2 on input x has the same computation as M1 with oracle L1 on input g2(x). By

the lemmas in Section 2, M2 with oracle L2 still runs in quasilinear time. Thus L2 is a

self-1-helper in quasilinear time, and the conclusion follows via Proposition 5.1.

Proof. (of Theorem 5.4). Let {Qi}i∈N be an enumeration of nondeterministic quasilin-

ear time Turing machines. Then for any oracle X, the following standard language is

complete for NQLX under ≤ql
m reductions:

KX = { 〈x, i, y〉 : Qi with oracle X accepts x within |y| steps }.

For convenience, we modify KX into another NQL-complete language padKX such that

the lengths of all strings in padKX are powers of 2:

padKX = { 〈x, i, y, 0r〉 : r < |〈x, i, y〉|, |〈x, i, y, 0r〉| is a power of 2, and 〈x, i, y〉 ∈ KX }.

It is clear that KX reduces to padKX in linear time, so that padKX is NQLX-complete.

Now define a function e such that for all integers n, if n + dlog2 ne is even, then e(n) =

n + dlog2 ne, else e(n) = n − 1 + dlog2 ne. In other words, for all n, e(n) is the largest

even integer smaller than or equal to n+ dlog2 ne.
The following language is in NPX for all oracles X.

LX = { 0n : n is odd and Σn ∩X 6= ∅ }.

We will construct an oracle A such that the following conditions are satisfied.

(i) LA ∈ NPA − PA, and

(ii) for all u ∈ Σ∗, u ∈ padKA iff u is a prefix of a string v ∈ A such that |v| = e(|u|).

The oracle A is constructed in stages. At stage n, we decide the membership of

all strings of length n. Also at stage n, some strings of length > n may be reserved

for ∼A, and some strings may be added to A. If nothing is done at stage n, then all

strings of length n belong to ∼A. No decisions on membership are ever changed, and no

requirements are “injured.”

Now let {Mi}i∈N be an enumeration of deterministic polynomial-time oracle TMs,

each Mi with polynomial running time pi. An index i will be canceled if and when we

ensure that MA
i does not recognize LA. As usual, A(n) denotes the strings in A prior to

stage n. Let A(0) = ∅. In keeping with the definition of padKA, we focus on lengths `

that are a power of 2.
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Stage n = 2m: If there does not exist a power-of-2 ` such that n = e(`), then do

nothing and go to the next stage. Else, for every string z ∈ Σn that has not been

reserved for ∼A at an earlier stage, determine the unique string x of length ` that is a

prefix of z. Add z to A if and only if x is in padKA(n).

Stage n = 2m + 1: If there exists a string of length ≥ n that has been reserved for

∼A at some previous stage, do nothing and go to stage n + 1. Else, let i be the least

uncanceled index. If there exists a power-of-2 ` such that n+ 1 = e(`) and pi(n) < 2log2 `,

then i can be canceled at this stage; if not, do nothing and go to stage n + 1. In the

course of canceling i, run M
A(n)
i (0n), and reserve for ∼A all strings of length greater than

or equal to n that are queried during this computation. Then if M
A(n)
i (0n) rejects, add

some unreserved string of length n to A. Finally cancel i and go to stage n + 1. This

ends the construction. We now prove that A satisfies conditions (i) and (ii).

Claim 5.6 LA ∈ NPA − PA.

Proof. It suffices to prove that every index i is eventually canceled. Suppose not; then

there is a least uncanceled index i. Let n0 be a stage by which all indices less than

i have been canceled. At all odd stages n > n0, index i is the only one that can be

acted upon, so it suffices to show that the conditions for canceling i hold infinitely often.

For all sufficiently large n, pi(n) < 2log2 n, and for infinitely many odd n, there exists a

power-of-2 `n such that n+ 1 = e(`n). Hence for infinitely many odd n,

pi(n) < 2(log2[`+log2 `]) < 2log2 `+log2(log2 `) < 22 log2 `.

Since no action at even stages reserves any string for ∼A, there must be some odd stage

after n0 when i is canceled.

Next, we demonstrate that the oracle construction satisfies condition (ii).

Claim 5.7 For all strings x,

x ∈ padKA ⇐⇒ (∃z) [z ∈ Σe(|x|) ∩ A and x is a prefix of z].

Proof. It suffices to show that for all powers-of-2 ` and all strings x ∈ Σ`, there exists a

string v ∈ Σlog2 ` such that xv is never reserved for ∼A. Then the construction at stage

e(`) ensures the claim.

We first note that the restriction of e to powers of 2 is a one-to-one function, as

follows because log2 ` is an integer. By construction, strings of length e(`) can be added

to A only at stage e(`). Suppose i is the last index that was canceled before stage e(`)

of the construction, and let ni be the stage at which i was canceled. Then there is a
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unique power-of-2 `i such that e(`i) = ni + 1, and also `i ≤ `. Since ni was the last

canceling stage, and ni < e(`), any string of length e(`) that was reserved for ∼A before

step e(`) was reserved at stage ni. From the fact that i was canceled, pi(ni) < 2log2 li .

Hence the number of strings of length e(`) that were reserved for ∼A at stage ni is at

most pi(ni), because no other indices were canceled between stages ni and e(`). Then

pi(ni) < 2log2 `i ≤ 2log2 `. Since there are 2log2 `-many strings v such that xv ∈ Σe(`), at

least one such string is never reserved for ∼A. This proves the claim.

It remains to show that search reduces to decision for KA in quasilinear time. We

first consider the following language in NQLA:

prefixKA = { 〈x, v〉 : (∃u ∈ A) [|u| = e(|x|) and xv is a prefix of u }.

By the construction of A, it follows that padKA reduces in linear time to prefixKA, and

since padKA is NQLA-complete, prefixKA is also NQLA-complete. Since witnesses to

membership of a string x in prefixKA are of length |x| + log2 |x|, the total number of

steps performed by the standard prefix search algorithm is bounded by

O(|n|+ (|n|+ 1) + (|n|+ 2) + · · ·+ (|n|+ log2 |n|)) = O(n log2 n).

The theorem now follows by Lemma 5.5, since prefixKA ≡ql
m padKA ≡ql

m SATA.

It suffices to take e(n) to be any function that has a higher order of growth than

n log n. However, this leaves open the question of whether P = NP can be shown to

follow if SAT helps itself in time O(n log n). This aside, Theorem 5.4 really does pertain

to quasilinear time, not just to linear time or time O(n log n).

6 Conclusions and Further Research

One large source of interest is that we have identified a new hypothesis to the effect that

NP-complete sets, and SAT in particular, not only lie outside P, but also pack their

hardness very tightly. Our hypothesis is the last on the following list:

(a) SAT has power index 1 [SH86].

(b) SAT is P-superterse [Bei87a].

(c) The search function for SAT does not belong to PFNP[o(n)] [Kre88].
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(d) NP does not have p-measure zero in exponential time [Lut93]

(e) The search function for SAT requires Ω(n2) query bits to compute in polynomial

time, with any oracle set (or at least any oracle set in NQL).

It would be interesting to seek closer relationships among these hypotheses. We have

given some oracle evidence that (e) is a stronger assertion than (b), and we have shown

that (a) implies (e). Krentel showed that the search functions for SAT and the NP-

complete MaxClique problem do not belong to PFNP[O(logn)] unless P = NP. There

has been considerable interest in whether these functions can be shown to be outside

PFNP[o(n)] or even PFNP[O(log2 n)] unless P = NP. Theorem 4.2 provides a viewpoint on

this question: if the largest clique can be found in PFNP using at most n polylog n query

bits, then NP ⊆ DTIME[2polylogn], and n1+ε query bits would place MaxClique into

DTIME[2n
ε
]. The closest impact of (e) may be in relation to (d). By results of Juedes

and Lutz [JL93], (d) implies that there exists ε > 0 such that SAT does not have power

index ε, hence that search does not reduce to decision for SAT in time O(n1+ε). We

believe there should be deeper connections.

Another important question concerns the existence of “QL one-way” functions. Do

there exist length-preserving 1-1 functions f which are computable in qlin time but not

invertible in qlin time? Homer and Wang [HW89] construct, for any k ≥ 1, functions

computable in quadratic time which are not invertible in time O(nk), but their methods

seem not to apply for qlin time or length-preserving functions. If DQL 6= UQL, then QL

one-way functions exist, but unlike the polynomial case (assuming P 6= UP), the converse

is not known to hold. It may even be possible to construct an oracle A such that QLA

one-way functions exist, and yet DQLA = NQLA. We look toward further research which

might show that length-preserving functions with certain “pseudorandom” properties

cannot be inverted in qlin time, unless unlikely collapses of complexity classes occur.
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