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Abstract

We prove that if strong pseudorandom number genera-
torsexist, then the class of languagesthat have polynomial -
sized circuits (P/poly) is not measurable within exponential
time, in terms of the resource-bounded measure theory of
Lutz. We prove our result by showingthat if P/poly hasmea-
sure zero in exponential time, then there is a natural proof
against P/paly, in the terminology of Razborov and Rudich
[25]. We also provide a partial converse of thisresult.

1 Introduction

The theory of resource-bounded measure, initiated by
Lutz [13], providesa useful framework that links many cen-
tral problemsin complexity theory. Given ameasure defined
on alarge complexity class, such as EXP = DTIM E[2”O(1)],
and asubclass ¢ such as P, NP, or PSPACE, onetriesto de-
termine whether ¢ has measure zero, has measure one, or
perhapsis not measurable at all.

For example, P has measure zero in EXP. Infact, for any
fixed ¢ > 0, DTIME[2""] has measure zero in EXP. Theclass
of P-bi-immune sets in EXP has measure one [19]. Lutz
[13, 15] has advanced the hypothesisthat NP does not have
mesasure zero, which implies NP # P. Indeed, the hypoth-
esisimplies that NP has P-bi-immune sets, and that for ev-
ery ¢ > 0, there are languages in NP that require determin-
istic timemore than 2™. Lutz and Mayordomo [17] showed
another plausibleimplication: there would be NP-complete
sets under Turing (Cook) reductions that are not complete
under many-one (Karp) reductions. In view of this, itisim-
portant to seek techniquesfor provingthat certain subclasses
do not have measure zero, or are non-measurable. This pa-
per provides a new technique of this kind, using the theory
of pseudorandom generators (PSRGS).

The meaning of a class C having measure zero in EXP
is, roughly speaking, that there is a single exponential time
deterministic Turing Machine M that can “predict” every
language in C N EXP reasonably well. This M embodies a
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strong and quantitative form of diagonalization. A prime
motivation of the theory isthat the notion of measure should
connect to quantitative notions of cryptographic hardness
and randomness and information content that are important
in other areas of complexity. Lutz and Mayordomo [16]
showed that, for any fixed c, the class of languages that “ ap-
pear random” to all 2" time-bounded machines has mea-
sure one in EXP. Lutz [15] showed a measure-one class
in which every member is a pseudorandom source for BPP,
and Allender and Strauss [1] extended thisfor measures on
DTIME[27], for every € > 0. Related work is[14, 18, 11,
12, 20, 31]. Our main theorem relates a measure question
directly to PSRGs and the class P/poly of languages having
polynomial-sized circuits:

Theorem 1 If strong PSRGs exist, then P/poly is not mea-
surablein EXP.

Here strong means that there exists some € > 0 such that the
PSRG is secure against 2" -sized circuits. There are PSRGs
based on the discrete logarithm problem that are widely be-
lieved to be strong, indeed with € approaching 1/2.

We first prove that if strong PSRGs exist, then for any
fixed exponentid time deterministic TM M, thereisalarge
collection of “pseudorandom” languages in P/poly that can-
not be predicted by M. For the non-measurability, we show
that if P/poly # EXP, as implied by the existence of strong
PSRGs, then P/poly cannot have measure one in EXP. Our
proof of this shows that NP and many other classes cannot
have measure one in EXP unless they equal EXP. Thisan-
swers a question | eft open by Lutz for NP in [15].

What is interesting about Theorem 1 is that ordinarily
P/poly is considered a “feasible” class, intuitively smaller
than a “hard” class like NP. What our result redly brings
out is the quantitative role of nonuniformity. We treat this
issue and the question of security of PSRGs against uniform
adversaries in Section 4.

Razborov and Rudich [25] introduced the notion of “ nat-
ura proofs,” and showed that if there is a proof that is
“Plpoly natural against P/poly,” then strong PSRGs do not
exist. We prove Theorem 1 by showing that a machine M
witnessing measure-zero for P/polyn EXPyiedssuch anat-
ura proof, infact one of exponentially greater sizethan what



sufficesfor their theorem. The second half of thispaper takes
acloser look at the nature of statistical tests, and at the spe-
cific size and strength of natural proofs in the Razborov-
Rudich framework. We show a partia converse to theo-
rem 1: if there is a D-natural proof of sufficient density
and strength against a class C, then ¢ has measure zero in
nonuniform-D.

Weal so prove unconditionally that nonuniformACP plus
parity does not have measure zero under either of the mea-
sures defined by Allender and Strauss [1]. Our results give
strong reasonsto investigatefurther both the measure theory
and the natural -proofstheory, promising progress on impor-
tant problemsin complexity.

2 Preiminaries

The notationand conventionswe use are essentially stan-
dard. All languagesand functions are assumed to be defined
over thefinite alphabet < = {0,1}. The empty string is de-
noted by A. We denoteby F, the set of all Boolean functions
innvariables. A Boolean function f, € F, can bethought of
as abinary string of length 2" that represents the truth table
of f,. For readability we often write N for 2". We identify
alanguage A with its characteristic sequence x a, and regard
the latter also as a member of the set {0,1}% of infinite bi-
nary strings. For al n> 0 we also identify A=" withthe seg-
ment Uy, of xa of length 2" that represents the membership or
nonmembership in A of al strings of length n, and likewise
identify AS" with uguy - - -uUn. Note that each up belongs to
Fn. Then the cylinder Cy, = {z€ {0,1}®: wC z} contains
A and al languages that agree with A on the membership of
strings up to the last one indexed by w, under the standard
ordering of >*.

Unless specified otherwise, al Boolean circuitsare over
the basis {A,V,—}. P/poly denotes the class of languages
that have polynomial-sized circuit families. QP stands for
DTIME[2POY199M - which is often called quasipolynomial
time. QP/gpoly stands for the class of languages that have
guasi polynomial-sized circuit families. Thisis anal ogousto
P/poly but for quasipolynomia bounds. ACP denotes the
class of languages that have polynomial size, constant depth
circuit families, and AC?[] denotes the class of languages
that have polynomia size, constant depth circuit families
over thebasis{A,V,—,®}, where ® denotes parity. All log-
arithmsin this paper are to the base 2.

A PSRGisformally asequence { G}, whereeach G isa
functionfrom {0, 1}"to {0, 1}(™, and ¢(n) > n. Intuitively,
Gp “stretches’ asequence of ntruly random bitsinto alonger
sequence of bitsthat appear random to resource-bounded ad-
versaries.,

Definition 1 Given a PSRG G = {G} and a circuit C with
£(n)-many input gates, say that the biasachieved by C isthe

quantity

Pr[Cly)=1-

ye{0,1}4m [C(Gn(x)) =1]]|.

Pr
x€{0,1}"

Smilarly, we define the bias achieved at length n by a fixed
probabilistic Turing machine M in place of C. The hardness
of G at n, denoted by H(Gp), isthelargest integer S(n) such
that every £(n)-input circuit C of size at most S(n) achieves
biasat most 1/S(n). Then we say:

(@) G hashardness at least h(-) against nonuniform ad-
versaries if for all but finitely many n, H(Gy) > h(n).

(b) G ish(-)-hard against uniform adversaries if for ev-
ery h(n)-timebounded probabilisticTM, M, and all but
finitely many n, M achieves biasat most 1/h(n) on Gy,.

A well-known “robustness’ theorem (see [5, 9]) states
that solongas/(n) = n®Y, H(Gy) isinvariant up to constant
factors. As Razborov and Rudich do, we work with PSRGs
that stretch n bitsto 2n bits. We use “secure against” inter-
changeably with “hard against.”

2.1 Resource-bounded measure

The resource-bounded measure theory of Lutz [13, 15]
isdeveloped along the lines of classica measure theory (see
[22, 6,23]). Languages areregarded as pointsinthetopol og-
ical spacewhose basic open setsarethe cylindersC,y, onefor
eachw € {0, 1}*, and complexity classes are point sets. The
genera form of Lutz's theory, expounded recently by May-
ordomo [20], defines conditionsfor aclass ¢ to be measur-
able by afunction class A, and to have measure e, written
Ha(C) = e, where0 < e< 1. Sinceall complexity classeswe
discuss are closed under finite variations, and by a form of
the Kolmogorov zero-one law proved in [20] have measure
zero or one, we need only discuss conditionsfor classes to
have measure zero. References [13, 15, 20] show that these
measurability conditions can be defined in terms of martin-
gales of the kind studied earlier by Schnorr [28, 29, 30]. A
martingaleisafunctiond from {0, 1}* into the nonnegative
realsthat satisfies the following “ exact average law”: for all
we {0,1}*%
d(wO0) —; d(wl) . 1)
Let D stand for the nonnegative dyadic rationals; i.e., those
numbers of theformn/2" for integersn,r > 0.

d(W) =

Definition 2 (compare[13,20]) Let A be a complexity
class of functions. A class ¢ of languagesis A-measurable
and has A-measure zero, written pa(C) = 0, if thereisa
martingaled : {0,1}* — ID computablein A that succeeds
on C, inthe sense that ¢ C S”[d] where

S*ld]={A: \L'icrrAd(W) = 4oo}.



Put another way, the success class S*[d] is the class of lan-
guages A that satisfy

(VK > 0)(AN > 0)(Yw = A)w| > N = d(w) > K]. (2)

Intuitively, themartingaled isa"“ betting strategy” that starts
with a capital sum d(A) > 0 and makes infinite profit along
the characteristic stringsof every A € S*[d]. The purpose of
the theory is to anayze the complexity required for a mar-
tingaleto succeed on every language in certain subclasses C
of agiven class D. This provides a tool for anayzing the
internal structure of D.

If D is defined by a collection R of resource bounds
that is closed under squaring, then Lutz defines A(D) to
be the class of martingales computable within the bound
r(logN) for somefunctionr(N) € K. For any class C, Lutz
writes u(C|D) = 0, read “ C has measure zero within D,” if
Ha(py(C N D) = 0. Two instances of particular importance
are

D =E,
D = EXP,

A=P,
A= QP.

If u(C|D) = 0, then CN D isintuitively “small” as a
subclass of D. The classical time-hierarchy theorems carry
over to measure; in particular, P and QP have measure zero
in E, and E itsdlf, indeed DTIME[2™] for any fixed ¢, has
measure zero in EXP. Itisshownin [13, 15, 1] that classes
of measure zero behave very much like null-setsin classi-
ca measure theory. The complement (in D) of a measure-
zero subclass C has A(D) measure 1 (this is a definition
in[13, 15] and a theorem in [20]). Finite unions, and aso
“A(D)-bounded” countable unions, of measure-zero classes
have measure zero.

2.2 Natural Proofs

The technical concept a the heart of the paper by
Razborov and Rudich [25] isthefollowing. Define a combi-
natorial property to be asequence N = [My];;_,, where each
My is asubset of the set F, of al n-variable Boolean func-
tions. A language Aisdrawn fromI1 if for al n, the Boolean
function given by A=" belongsto My,. The property N diag-
onalizes over a class C of languages, or “is useful against”
C1, if no language drawn from N belongsto C. When C is
closed under finite variations, thisis equivaent to diagonal-
izingi.o. against C:

(VBe C)(3*n) B=" ¢ MNp. (3)

We remark that al of the natural properties constructed in
[25] satisfy the stronger condition

(VBe C)(V°n) B=" ¢ Mp, 4
1Since ¢ may bean uncountableclasslike P/poly, thisis not necessarily

a“diagonalization” in the classical sense—hencethe term “useful” in[25].
But we prefer to retain it.

which was adopted in [26]. We call this diagonalizing a.e.
against C.

The complexity of N is the complexity of the decision
problem: given a Boolean function f, € F,, is fy € M,? Fi-
nally, define the density of My, by p(Mp) = ”';—N”” The prop-
erty islarge if there exists a polynomia p such that for al
but finitely many n,

1
p(N)

Put another way, the Boolean functions in M, have non-
negligibledensity in the space of all Boolean functions.

p(Mn) > )

Definition 3 (cf. [25]) Let ¢ and D be complexity classes
of languages. A combinatorial property I is D-natural
against C if I islarge, belongsto 9, and diagonalizesover
C.

Razborov and Rudich show that several important sepa-
ration results in complexity theory use techniques that con-
struct natural properties. Their main theorem pointsout lim-
itations of such techniques. The following improvement
of their theorem from polynomial to quasipolynomial size
boundsfor © was noted by Razborov [24]:

Theorem 2 If there exists a combinatorial property that is
QP/gpoly-natural against P/poly, then PSRGs of exponen-
tial hardness against nonuniformadversaries do not exist.

(Remarks: In their conference version [25], Razborov and
Rudich used the“i.o.” definitionof natural proof, which suf-
fices for Theorem 2. All of their examples, however, satisfy
thestronger “a.e.” definition, and they have adoptedit in the
later version [26]. In Appendix 1, we sketch the additions
needed for Theorem 2 that do not appear in [24, 25, 26], and
givedetailsof theproof in[25] for | ater referenceinthe proof
of Theorem 17.)

By a proof analogous to that of Theorem 2, and exploit-
ing thefact that thereis a pseudorandom generator, based on
the parity function, that is of exponentia hardness against
ACP [21], Razborov and Rudich show:

Theorem 3 There does not exist a combinatorial property
that is gACP-natural against AC%[@], where gAC® denotes
the class of languages accepted by a quasipolynomial size
circuit family of constant depth.

3 Main Resaults

To prove our main theorem, we show that if
M(P/poly|EXP) = 0, then one can build a natura prop-
erty that diagonaizes over P/poly. Our first lemma follows
by an elementary counting argument, using the fact that

Yveqory d(uv) = 2°-d(u).



Lemma4 Let d be a martingale. For any string u and any

LeN,beR,
1
>0 — ).
> (55)

Our key lemma has the idea that given a martingale d
that succeeds on P/poly, we can build a combinatorial prop-
erty that captures those Boolean functionson {0,1}" along
which d makes too little income to succeed. This property
then diagonalizesi.o. against the success class of themartin-
gale, which contains P/poly. Since Mp(1+ 1/n?) converges,
we can say that a return on capital of 1/n?, let done losing
money along abranch, is“toolittleincome” for d. Lemma4
will guarantee that the density of these poor branches is at
least 1/n? = 1/(log?N), a notably greater density than that
caled “large’ in Equation (5).

{ve {0,1}*: d(uv) < <1+ t_l)) d(u)}

Lemma5 If a QP martingale d succeeds on P/poly N EXP
then for every polynomial g, there exist infinitely many nand
circuitsC; of sizeat most g(i), for 0 < i < n, such that for all
circuits Cy of size at most q(n),

1
d(up...un) > <1—|— ﬁ) d(up. . .Un—1),

where u; isthe 2'-bit binary characterigtic string” that in-
dicates the membership in L(C;) of {0, 1}'.

Proof. Suppose not. Then there isa polynomia g and con-
stant ng € N such that for &l n > ng, for every sequence
of circuits C; of size at most (i), for 0 < i < n, there ex-
istsacircuit Cy of size at most g(n) such that d(ug. ..un) <
(1+ n—lz) d(Ug...un—1), Wwherethe u;’s have the same mean-
ing as in the statement of the lemma.

We will build a language L as follows: for strings of
length less than ng, membership in L will be an arbitrary
but fixed sequence. Let o = d(up...up,—1). Clearly a <
0. For n > ng, we define L=" inductively. Let ug,...,Un_1
be the result of the recursively applying the construction to
obtain L<"; that is, uj = L=!. By assumption, there exists
a circuit C, of size a most g(n) such that d(up...un) <
(1+ n—lz) d(Up. . .Up_1). Set up = L(C*)=", where C* isthe
lexicographicaly first Cy, that satisfies thisinequality (under
some fixed encoding of circuits of size at most g(n)).

Clearly L € P/poly, since it can be accepted by the cir-
cuitfamily [Cn]_. That L € EXPisimmediatefromthefact
that finding the lexicographically first C,, takestime at most
20 +P(" wherethe runningtimeto computethemartingae
d determines p(n). Finaly,
limd(L=") < a [](1+1/n?) < oo,

n—oo

so d does not succeed on L, a contradiction. O

The remaining technical problem is to weave together
the constructionsin Lemma 5 for all polynomial bounds g.
We do not know of a uniform way to choose the circuits
Co,Cy, ...,Cq_1 promised by Lemma 5 over al g and the
infinitely-many nfor each g, and thisiswhere nonuniformity
entersinto our results.

Lemma6 If u(P/poly|EXP) = 0, then there is a QP/poly-
natural property against P/poly.

Proof. For each k, let Ty be the infinite set of numbers n
promised by Lemma 5 for the bound g(n) = nk. Set T :=
UxTk. For all n e T, take the largest number k < n such
that n € Ty, take the lexicographicaly first Cy, . . .,Cp—1 that
worksin Lemma 5, and define U, to be the concatenation
of the correspondinguy, . . ., Uy—1. For n¢ T, make some ar-
bitrary choice such asUp_; = 02'~1. Finaly, for all n define

My:i= {fn 1d(Up-1fn) < (1—1— %) d(Un_l)} :

Now, by Lemma 4, the property M = {[My} is large;
in fact, it has density 1/ poly(n), not just 1/ poly(2"). By
the computability of the martingale d, N, can be recog-
nized in quasi-polynomial timein2", giventheU,,_,’sas ad-
vice. Equivaently, thereisafamily of circuitsof size quasi-
polynomial in 2" that recognizes My. Let L be an arbitrary
languagein P/poly, and let nk beabound onthesizeof afam-
ily of circuitsto recognize L. Clearly, foral ne Ty, L=" ¢
Mp. Therefore, property N diagonalizesi.o. over P/poly.

O

Theorem 7 If p(P/poly|EXP) = 0, then for every family of
pseudorandom generators G = {G : {0,1}* — {0,1}%}
computablein P/poly, for every € > 0, for sufficiently large
values of k, H(Gy) < 2.

This follows from the above three lemmas and Theorem 2.
From the known equivalence of strong PSRGs and strong
one-way functions (see[10, 8, 9, 25]), we aso have:

Corollary 8 If for somey > 0 there exists a one-way func-
tion of security 2", then P/poly does not have measure zero
in EXP. O

3.1 Non-measurability of P/poly

We strengthen the conclusion of our main result from
“not measure zero” to “not measurable at all,” after observ-
ing that Lutz's measures are invariant under “affine tranda-
tions.”

Lemma9 Let C bea proper subclassof EXP thatisclosed
under symmetric difference. Then ¢ does not have measure
onein EXP.



Proof. Suppose C does have measure one in EXP, that is,
EXP\ C has measure zero in EXP. Let d be a martingale
that succeeds on EXP\ C.

Let Ac EXP\ C. DefineCa= {LAA|L€& C}. Weclam
that if EXP\ C has measure zero, then so does Ca. To see
this, first notethat Ca C EXP\ C since € and EXPare closed
under symmetric difference. Now define a QP martingaled’
that, on input w, outputs d(w® v), where v is the prefix of
Xa of length |w|, and where @ denotes bitwise exclusive-or.
Since A € EXP, it iseasy for d’' to compute xa. Finaly ob-
servethat forevery L € C, LA Abelongsto Ca, sod succeeds
onLAA, and thusd’ succeedson L. O

Sincethe existence of asecure PSRGimplieseEXP & P/poly,
Lemma 9 implies:

Theorem 10 If there exists a PSRG of hardness 2", for
some constant y > O, then P/poly is not measurablein EXP.

Proposition 11 Let C be a proper subclass of EXP that is
closed under finite union and intersection. Then ¢ does not
have measure one in EXP.

Proof. If C hasmeasure onein EXP, then so doesco-(, and
hence Cnco-C. If C isclosed under finite union and inter-
section, soisco-C. Therefore, €N co-C isclosed under sym-
metric difference, and Lemma 9 does the rest. O

Corollary 12 Let ¢ denote any of NP, coNP, =P, NP,
P/poly, nonuniform NC, BPP, PP, or PSPACE. Then
M(CIEXP) =1 <— C =EXP < Cnco-C = EXP. In
particular, NP has measure onein EXP iff NP = EXP.

3.2 Measureof AC%[3]

Allender and Strauss [1] have defined measures on the
class D = P, imposing a restriction on the corresponding
martingale class that becomes vacuous for © = E or D =
EXP, and that can be described asfollows: Rather than give
the Turing machines M computing martingale val ues d(w)
the string w as input, give them N = |w] in binary notation
on their input tape, and let them query individua bits of w.
(Then M isformally the same as the machines used to define
the PCP classesin [4, 3].) Measure time boundsin terms of
n= [log, N] = |N] rather than N. Then thefunction dg) be-
longsto '(P) as defined in [1] if M runsin time n®%, and
if every node N in the directed “ dependency graph,” defined
to have an edge (m, N) if M oninput N queries bit mof some
w, has n®Y predecessors. They write u(C|P) = 0if thereis
al (P) martingalethat succeedson CNP.

Allender and Straussnote that their measure isrobust un-
der either one of the following rel axations, but that relaxing
both yields a different measure: allowing d(w) > (d(w0) +
d(wl))/2in place of (1), and using the “limsup” condition

of success in place of (2). We write po(C|P) = 0 to signify
that C is one of the strictly-larger family of null classes in
their second measure. They show that the class of sparse sets
in Pisnull inthe latter but not the former, and in particul ar
that (P-uniform) AC? is not I'(P)-measurable. But whether
H2(ACP|P) = Oiis open. We show:

Theorem 13 Nonuniform AC°[&] does not have p, mea-
sure zero.

Proof Sketch. The main idea is that owing to the
dependency-set restriction in defining M»(P), the hy-
pothesis po(ACP[@]) = O yields a gACP-natural property
against AC%[@]. To handle the fact that the notion of u,
measure is defined using limsup rather than the limit, we
use the following stronger versions of Lemmas 4 and 5.
Theorem 3 then yields a contradiction. O

Lemma 14 Letd beamartingale. For any string u and any
£ €N, b e R, the quantity

Lemma15 If a [(P) martingale d succeeds on AC[@)],
then for every polynomial g and constant h, there exist in-
finitely many n and {A,V,—,®}-circuitsC; of size at most
q(i) and depth at most h, for 0 < i < n, such that for all
{A,V,—,@}-circuits C, of size at most g(n) and depth at
most h,

b

{ve {0,1}*: (YwC v)d(uw) < <1+ 1) d(u)}

isat least 2//(b+1).

(FUC un) [d(uo. LUy > <1+ %) d(up. . .un_l)] ,

where u; is the 2'-bit binary characterigtic string” that in-
dicates the membership in L(C;) of {0, 1}'.

We have not been ableto strengthen thistheorem to read:
ACP[@] does not have measure zero in P, that is, no I»(P)
martingale succeeds on AC°[@] N P. What we have is that
no I,(P) martingale can succeed on al of (nonuniform)
ACP[@]. Another open question concerning the measure of
ACP[@] is whether the converse to our main theorem, ob-
tained below in Theorem 18 carries over to this case. The
obstacleisthat AC®[] is known to beincapable of comput-
ing“majority,” whichisimportantin convertingtherandom-
ized betting strategy into a nonuniform martingae.

4 TheUniform Case and Honest Martingales

The next interesting question is whether Theorem 7 can
be made to work under the hypothesis that for some y >
0 there is a one-way function of security 2 against uni-
form adversaries. The main problem is that the natura



property we construct in Proposition 6 is honuniform, and
this nonuniformity carries over to the statistical test con-
structed in the theorem of Razborov and Rudich, drawing
on [7]. That is, the property belongs to QP/poly. We have
not been able to obtain a QP-natural property under the hy-
pothesis p(P/poly|EXP) = 0—the sticking point is that we
have not been able to enforce any “consistency” among the
characteristic prefixes ug, . . ., u,—1 obtained in applications
of Lemma 5to build the Ny that are interleaved in the proof
of Lemma 6.

Interest in this problem led us to define the following
“prefix-invariance’ restriction on martingales, which aso
comes up naturally in the next section. We begin by formal-
izing the associated concept of a betting strategy.

Definition 4 A betting strategy is any function b(-) from

{0,1}* to the closed interval [—1...+ 1]. The martingale

dp, derived from b is defined by dy(A) = 1, and for all w €

t{)?, g Go(WL) = dp(W)(L+ b(W)), dp(WO) = c(w)(1
w)).

For al w, let x,, stand for the stringindexed by thebitcin
wc, and let ny, bethelength of Xy; i.e., nw = [log,(|w|+1)].
Intuitively, b(w) is the signed proportion of current capita
bet on the event that x,, belongsto a given language L. A
negative value of b(w) indicates a bet that X, ¢ L. Given a
martingaled, one can regard the function bg(w) := (d(wl)—
d(w))/d(w) as the associated betting strategy. Henceforth
we take “betting strategy” as the fundamental concept, and
“martingal€’ as the derived one.

Definition 5 A martingaled : {0,1}* — R ishonestifitis
derived from a betting strategy b : {0,1}* — IR, such that
for all we {0, 1}*, the computation of b(w) dependsonly on
those parts of w that index strings of length ny,.

With afew exceptions, most of themartingalesimplicitly
congtructed by Lutz et a. are honest, and this condition de-
serves further investigation. For honest martingales we note
the following stronger form of Lemma 5:

Lemma16 If an honest QP martingale d succeeds on
P/poly N EXP then for every polynomial g, there exist in-
finitely many n such that for all circuits C,, of size at most
q(n), and all characteristic prefix strings w € {0, 1321
d(wup) > (1+ n—lz) d(w), where up, is the binary character-
istic string of length 2" that represents the strings accepted
and rejected by C,,.

Theorem 17 If a honest QP-martingale succeeds on
P/polyn EXP, then for all y > 0, pseudorandomgenerators
(and one-way functions) of security 2K against uniform
adversaries do not exist.

Proof Sketch. Given ahonest QP-computable martingaed,
for all n, let wy, be some characteristic prefix of lengthN — 1
such that d(wy) > 0. For al n, define

My= {u e {0, 13N d(whu) < <1+ n—lz) d(wn)}.

The corresponding property M = {IM,} is large and be-
longs to QP. By Lemma 16, and with the step of fixing
“Ug, .. .,Un—_1" inthe proof of Lemma 6 now rendered unnec-
essary, it followsthat N diagonalizesi.o. over P/poly. From
the details of the proof due to Razborov and Rudich [25],
which we have supplied in Appendix 1, it can be verified
that the statistical test constructed from N by Razborov and
Rudich is computable by a probabilistic Turing machine in
time less than 2K, 0

Theorem 17 strengthens Theorem 7 as well as the main
theorem of Razborov and Rudich: if there is a uniform P-
natural or even QP-natural proof against P/poly N EXP, not
against al of P/poly, then there are no PSRGs of hardness
2" against uniform adversaries. This leads to a sensitive
and interesting point about the interplay between uniformity
and nonuniformity. A QP/gpoly martingaleis a martingale
computed by circuits of quasipolynomial size; we aso con-
sider nonuniform martingales in the next section. The QP
and QP/gpoly bounds, and the security bound, are tacit be-
low:

(1) A nonuniform martingale that succeeds on P/poly
yields anonuniform natural proof against P/poly.

(2) A uniform martingale that succeeds on P/poly N EXP
also yields a nonuniform natural proof against P/poly.

(3) An honest uniform martingale that succeeds on
P/poly N EXP yields a uniform natural proof against
P/poly.

(4) A uniform natural proof against P/poly N EXP suffices
to disprovethe existence of PSRGs secure against uni-
form adversaries.

(5) A nonuniform natural proof against P/poly N EXP does
nothing, because one exists—even diagonalizing a.e.
against al r.e. sets. Given an enumeration [M;] of TMs,
define for al n,

Mp={we R : (Vi <nw#L(M;)™"},

Then N € P/poly because for strings of length n, i.e.
for wof length N = 2", we can “hard-wire” the n-many
characteristic sequences of how machines Qq,...,Qn
behave at length n. Also each My, hasdensity 1—n/2N,
which ishuge.



The last point indicates that much care is needed when
using the natural proofs theory to talk about separations
from uniformclasses, whereas the measure theory is already
tailor-made for uniformity. We ask, however, whether the
theories are equivalent in the nonuniform caseg; i.e., whether
every natura proof N yieds a (“randomized” or otherwise
nonuniform) martingale that covers the class that N diago-
nalizes against.

5 Are martingales and natural properties
equivalent?

Say aclass D isniceif it is closed under paralel eval-
uation of polynomialy many functions in D, under finite
composition, and under the operation of finding “majority.”
Clearly P/poly isanice circuit class. Recall n =logN, and
that density 1/2°" equals“large’ in[25].

Theorem 18 Let D beanicenonuniformclass, andlet C be
any class of languages. Then:

() Ifthereisanatural property I € D of density 1/n that
diagonalizesa.e. against C, then there is a martingale
computablein 9D that succeeds on C.

(b) If there is a natural property N € P of density (1 —
1/n'*€) that diagonalizesi.o. against C, then there is
a D-martingal ethat succeeds on C.

(o) If D isuniform, then the martingaleis computed by a
“randomized” D-machinewith negligiblebounded er-
ror.

Proof Sketch. Supposewe have a D-natural property I that
diagonalizes ae. over C, and let A= {A,} denote the a-
gorithm (family of circuits) that decides IN. For every n,
consider the full binary tree T, of depth N = 2" that has 2N
leaves in one-to-one correspondence with the members of
Fn. Let Yn = Ry \ My, and when nisfixed or understood, let
0 = ||Ynll/2\ denote the density of Y.

For each n, the property My, C F, identifies alarge sub-
set of the leaves that are “avoided” by languagesin C. By
the a.e. diagonalization condition, this means that for every
L € ¢, and al but finitely many n, L goes through a branch
in Yy at length n. Thisisthe only property of C that isused
in the proof; the martingale works only with the informa-
tion about Ny, versus Yy,. Given unit capital at theroot of T,
the martingal e we construct will adopt the following simple
strategy: try tomake profit alongthe pathstoall leavesin Yy,
avoidingtheleavesin,. By therestriction on information,
we alow that there may be no way for the martingaleto dis-
tinguish among theleavesin Yy, so thebest it can achieveis
to amass a capital of 2N/||Y;|| = 1/0 at every ledf in Y.

Supposethe martingaleisat an interior nodev of Ty,. Let
Vo={we R, |wdVv0} andV; = {we R, | wI vl} denote
the set of leaves in the subtrees vO and v1, respectively. Let

Po(V) = [MoNYT|/[IVoll, P(v) = [[ViNY]|/[[ V4. I the mar-
tingale could cal culate po(v) and p1(V) exactly, thenit could

set d(v0) = 2d(v) %) and d(v1) = 2d(v) (po’ilpl) .
This would ensure that each leaf in Y ends up with a capi-
tal of 1/0 (as per the “density systems” idea of Lutz [13]).

The problem is that a martingale that runs in time
poly(N) cannot compute the membership in Yy, of dl the
2N |leaves. However, by taking polynomially many random
sampl es at each interior node, arandomized machine M can
(with high probability) estimate the values po(v) and py(V)
toahigh degree of accuracy. Then M can usethese estimates
in lieu of the actua values, and still obey the condition (1)
that defines amartingale. This strategy is continued so long
asthesubtreebel ow v has morethan N2 nodes; when the sub-
tree has atmost N2 nodes, an exhaustive examination of all
leavesisdone and most of the capital isdiverted towardsthe
leavesin Yy, leaving atiny portionfor theleavesin . This
tiny amount is donated to ensure that leaves z € Ny, do not
goto zero, so that the martingal e may eventually succeed on
languagesL € C withzCC . To simplify the description of
M and the cal cul ations bel ow, we assume that if M discovers
that small subtree with N nodes has no |eaves that belongs
to Yp, it chooses some leaf arbitrarily and directs profits to-
ward it. This“wastage” does not matter much to the profits
on leaves that actually do belong to Yy,.

Let qo(v) and g1(v) denote, respectively, the estimates
of po(v) and py(V) that are obtained by sampling. Viastan-
dard Chernoff-bound methods, one can show that upon tak-
ing poly(N)-many samples (for asuitably large polynomial),
with probability 1 — exp(—N), the estimates are within an
additive term of & = 1/poly(N) of the true values. The
martingale will then adopt the policy that overestimation
(by upto d) is harmless, but underestimation is dangerous.
More precisely, the martingale will pretend that go(v) and
01(V) underestimate po(v) and p1(Vv), and will therefore use
0o(V) + 6 and g (V) + 0 as safer gpproximationsto the actual
values. It followsthat

d(vo) _ Go(v) +3
d(v) (qo(V) +8) +(q(V) +8)’
d(vl) 01(v)+ 0

(
a0~ (@) +8) + (@) 15
and that d(v0) 4+ d(v1) = 2d(v).

Let m= [2Y/N?], let 11, Ty, .. ., Tm denote the subtrees
of T, a height 2logN that contain N2 leaves each. For
each i, let u; denote the root of Tj, and let p; denote the
probability ||| eaves(ti) N Y]|/N?. Let p; denote the den-
sty ||| eaves(ti) N Y]|/||Y]]; it is easy to see that p; =
STTR T, Thetotal valueof d(-) a height 2logN is ex-
actly 2N-2199N — m, and the strategy works if for each i,
d(u;) = Q(pim). We show:

Claim. For every i, d(u;) > 0.99pimwhp.



For any node u, let Ti(u) denote the parent of u. Wlog. let
i = 1, and focus on the first subtree T, with N2 leaves. Re-
cal that by the simplifying assumption made above, for al
i, pi > 1/N2. The worst case for 14 is the following: at ev-
ery ancestor v of 1,1, the subtree of v containing 1; had an
underestimated probability, and the other subtree of v had
an overestimated probability. To wit: at the first level, p1
is underestimated to be p; — &, and p, is overestimated to
be p2—|- 0; at the second level, %(pﬁ- p2) is underestimated
tobe 3(py+ p2) — 8, and 3(ps + pa) isoverestimated to be
i( P3+ pa) + 0, and so on. When this happens,

p1—0+9d
d(u) > (p1—0+90)+(p2+90+09) -2d(m(uy))
= Zmd(n@ﬁ)
Similarly,
P1+ P2
) 2 2 pat pardo (M)

Continuing in thisfashion logm times, we have

logm
e |1pl

u1)>mJ:| ( ] lp.)+246

Multiplying and dividing the above by (p1+ ...+ pm), and
regrouping the terms,
logm 2t
> m P1 J—I ,{Z:l Pi
o L (5E10) +20

oo (| 2y
mp -
' le (z?il pi) +2!5

Since p; > 1/N? = pforal i,

d(uy)

logm 25
dlu) = mes [ 1= 57757

5 logm
- ™ <1_ p+ 6)

AN
> mp; <1_W> setting & = 1/N*
= mpe /N
> 0.99mpq for N > 100. &

By standard arguments about converting high-
probability algorithmsinto nonuniform agorithms, this can
be shown to give a » martingale that succeeds on C.

If the only information used by the martingaeisthe fact
that for every L in ¢, L=" € {0, 1}N\ N, (i.0/ae), then the
factor of 1/0 = 1/(1— p(My)) isthe best possiblein stage
n. If M is ae. diagondizing, then a density of Q(1/n) =
Q(1/logN) for My, gives afactor of Q(1+ 1/n) in stage n,
which suffices for the martingale to succeed on C.

If M is merely i.o. diagonalizing, then the above factor
seems insufficient. By a modification of the Borel-Cantelli
lemma as applied to martingales [13] (see dso [27]), it can
beshownthat if 3 ,(1—p(My)) converges, then asuccessful
martingal e of equiva ent nonuniform complexity can becon-
structed For example, an i.0.-natural property I of density
1- n1+s for some e > 0 against C would give a nonuniform
martingal e that succeeds on C. O

This partial converse brings out the importance of the
actua density of the natura proof, and whether the diago-
nalizationisi.o. or ae. These are somewhat submerged in
[25, 26], but we notethat all six of their examples diagonal -
ize ae., and the first four have density at least constant or
1—0(1). Thenatural proof involved in the striking formal
independence result of Razborov [24] has density at least
1/2. Hence there are reasons to investigate the effect of dif-
ferent dengities.

A stronger converse question is whether the non-
existence of strong PSRGs implies that P/poly does have
measure zero in EXP. From the non-existence it follows
that given any generator of “pseudorandom” functions on
{0,1}", areatively small statistical test T can distinguish
them from truly random Boolean functions. However,
T need not have the sharp “al-or-nothing” form of the
dtatistical test given by a natura proof, and this lack aso
hampers efforts to apply our proof idea of Theorem 18. In
any case, there can be no smple answer, because there are
oraclesrelative to which EXP is contained in P/poly—these
give no PSRGs but aso P/poly has measure onein EXP!

5.1 Concluding Remarks

One of the origina motivations for this research
was to find a sufficient condition for Lutz's hypothesis
—U(NP|EXP) = 0. We briefly analyze whether Theorem 7
can be made to work with NP in place of P/poly. Our proof
worksby taking ahard PSRG G and a given QP-computable
martingale d, and constructing alanguageL € P/polyn EXP
on which d does not succeed. The languages L involved
are defined by nonuniform sequences of seeds x for the
“iterated generator” fy = Gx(y) defined from G in [25, 7].
These seeds define the circuits C, in our key Lemma 5.
The sdlection of sequences C,, in Lemma 5 is nonuniform,
however. Worse yet, the definition of L uses a predicate
that involves d, which is only known to be computable in
exponential time.

We have shown that thereismuch ground for adeeper in-
vestigation into details of the natural-proofs theory of [25],



in terms of the size of the properties and whether the diago-
nalizationisi.o. or a.e. Thismay have further ramifications
for the connections to formal systems shown by Razborov
[24]. Finaly, theidea of “randomized martingales’ used to
prove Theorem 18, and that of “honest” martingalesthat by-
pass the nonuniformity problem, seem to merit further study
in themselves.
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Appendix 1
Proof sketch of Theorem 2.

(Thisisonly to bridge the gap between the result stated
in[24] and the proof of theweaker result givenin[25].) We
first note the following, which isimplicit in [25].

Lemma19 If a natural property N (of arbitrary complex-
ity) diagonalizes over P/poly, then for every polynomial g,
there exist infinitely many n such that for every circuit C, of
size at most g(n), L(Cn)=", treated as a 2"-hit string, does
not belong to NMy,.

Proof. Suppose to the contrary that for some polynomial q
there existsng > 0 such that for al n > ng, there existsacir-
cuit Cy, of size q(n) such that L(C)=" € Mp. Define alan-
guage L by letting L=" = L(C},)=" for dl n > ny, where C;;
denotes the lexicographicaly first circuit of size p(n) that
satisfies L(C})=" € M. Clearly L € P/poly, yet N does not
diagonalize over L, a contradiction. O

Now for Theorem 2, let a PSRG G and an arbitrary € > 0
be given. The god is to show that for infinitely many k,
H(Gy) < 2. Let the natural property M against P/poly
be such that each IM,, has density 1/2(°9N) and circuit size
20109N)* — 2n° " For any n, set k = n°/€. Using G, one can
build a pseudorandom function generator [7] f as follows:
given a seed x of size k, a (pseudorandom) Boolean func-
tion fyx : {0,1}" — {0, 1} isdefined such that thereisacir-
cuit of size poly(n®/#) = poly(n) that computes fx(y) for all
y € {0, 1}". Using this construction, every infinite sequence
of seedsX = X1, X, ... givesalanguage Ly, and all such lan-
guages have circuit families of afixed polynomial size, say
q(n).

Now by Lemma 19, there are infinitely many n such that
for every seed X, fx ¢ MNn. On the other hand, by the large-
ness of I, it followsthat arandomly chosen f € {0,1}2" be-
longs to My, with probability at least 1/2°("). This shows
that acircuit for My isastatistical test of size 20(n°) = 20(k%)
that distinguishes fy from atruly random Boolean function
f. Theremaining detailsare the same asin [25] drawing on
[7]: Using this statistical test, one can build a statistical test
of the same size that distinguishes (with bias of the same or-
der) the output of Gy from atruly random string of length 2k.
Since e was chosento bearbitrary, theresult follows. For the
sake of completeness, we show how thisconversionisdone.

Claim. Suppose there is a circuit C, of size 200) that
achieves abiasof 2-°("") in distinguishing between f, when

x is chosen randomly from {0, 1}¥ k = n%¢ and arandomly
chosen 2"-bit string. Then there is a circuit Dy of size
200 = 2 that achieves a bias of 279™) = 27K in dis-
tingui shing between G(x) when x is chosen randomly from
{0,1}¥, and arandomly chosen 2k-bit string.

Proof of Claim. Consider the full binary tree T of height
n. Label the internal nodes of T by vq,Vs,...,Von_1 Such
that if v; is achild of v; theni < j. Notethat T has 2"
leaves; we will associate theleaves in one-to-one correspon-
dence with al strings of length n. Denote by T; the union
of subtrees of T consisting of the nodes vy, .. ., v;, together
with al leaves. For aleaf y of T let vi(y) be the root of the
subtree in T; containing y. For al leaves y, define Ggy, to
be the identity function, and let G; , denote the composition
Gy, 0 Gy, ;- Gy, yiy1- Hereh(i,y) denotes the height of
yin T, or the distance between v;(y) and y. To each internal
node v of thetree T, assign a string x, chosen uniformly at
random from {0, 1}¥. Next, define the random collection f;
to be the collection of functions { f; v} described as follows.
Let zbe aleaf of thetree. Define f; «(2) to be the first bit of
Giyz(xvi(z)). Note that fg isjust arandom boolean function
on nvariables, and fon_; isjust fx defined above. We know
that

|Pr[Cn( fo) = 1] — Pr[Cn( fy) = 1]| > 27°).
Therefore, there must exist an index i such that
PY[Co(fi) = 1] — PY[Ch( fip1) = 1]| > 279

At this point, an averaging argument shows that we can fix
all the random strings assigned to the nodes of T except the
children of v;1 while preserving the bias. (This might de-
termine many of the bitsof fy.) Now there are two ways of
assigning stringsto the children of v;1: either assign them
both independently chosen random strings from {0,1}¥, or
assign arandom string u to vj;1 and assign to its two chil-
dren the strings Go(u) and G;(u) respectively. The crucial
observation we makeisthat if these two nodes are assigned
stringsinthefirst way, then theresultingbool eanfunctionin-
duced on the leavesis precisaly f;, and if they are assigned
strings in the second way, then the resulting boolean func-
tion induced on the leavesisprecisaly fj,,. To completethe
proof, wewill buildacircuit Dy, that takesastringin {0, 1}
and computes the resulting boolean function at the leaves
(which one of f; or fj;,) as described, and feeds the result
(f; or fi+1) toCp. Notethat computing f; or f; 1 can bedone
intime 2" poly(n). Therefore, the size of Dy, is bounded by
200")  Now, C,, has an advantage of at least 2-°(") indistin-
guishing between f; and f;; 1, whence it followsthat H(Gy)
is bounded by 20(n) = 20(k%) 0



