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Abstract—We build a model for the kind of decision making
involved in games of strategy such as chess, making it abstract
enough to remove essentially all game-specific contingency, and
compare it to known psychometric models of test taking, item
response, and performance assessment. Decisions are modeled in
terms of fallible agents Z faced with possible actions ai whose
utilities ui = u(ai) are not fully apparent. The three main goals of
the model are prediction, meaning to infer probabilities pi for Z to
choose ai; intrinsic rating, meaning to assess the skill of a person’s
actual choices ait over various test items t; and simulation of the
distribution of choices by an agent with a specified skill set. We
describe and train the model on large data from chess tournament
games of different ranks of players, and exemplify its accuracy
by applying it to give intrinsic ratings for world championship
matches.

Keywords. Computer games, chess, decision making, prob-
abilistic inference, machine learning, statistics, fitting methods,
maximum likelihood, psychometrics.

I. INTRODUCTION

In most applications of rational-choice theory to human
decision making, the true or expected values and costs of
actions are presumed to be known or knowable to the actors.
The goal may be to find the set of choices that maximize
(expected) utility values of benefits minus costs, or to resolve
competing desires between actors. Alternately, the actors may
express preferences that are taken as givens, and the goal is to
determine a group preference. In bounded rationality, however,
the true values are unknown, or may be too complex to obtain
within a feasible timespan, and preferences may be based on
fallacious perceived values.

We work in a bounded-rationality setting where “true val-
ues” are still defined, either by design, hindsight, or reasonable
authority. This enables further goals of assessing an actor’s
past performance once the values come to light, and predicting
future performance based on the track record of finding optimal
actions.

Test-taking is a prominent setting of this kind. The values
of answer choices to questions are known by design. Often
the values are binary (one choice correct, the rest wrong),
but prescription of partial credits may lend an informative
numerical value and ranking to every possible choice. The
test taker—at least an honest one—does not know the values,
and is graded on ability to find the best answers. Another is
game-play, where either the results of moves are generally
too complex to determine fully (as in chess) or may also
depend on unknown chance allotments (as in bridge and

poker). Where authoritative values of decision choices are un-
obtainable, owing to complexity or dependence on particulars
of the opponents (such as bluffing in poker), the results of
the actions—who wins the game or hand and by how much—
furnish natural performance metrics.

The modeling in the paper marries the test-taking and
game-playing settings. The marriage is consummated and
evaluated using large-scale data from chess competitions of
many kinds and levels, but the main elements are not specific
to chess. The elements are sets of decision events specified by
available options and their authoritative values unknown to the
actor, and internal parameters of the actor. Recent advances in
computer chess playing programs enable one to obtain reliable
values for the move options in chess positions on a large
scale. Values given by the computer at different search depths,
and other features in the data, may also enable measures of
“difficulty” or “challenge” without requiring reference to chess
notions such as attack, sacrifice, initiative, traps, and the like.

An old example of this marriage is a feature commonly
called “Solitaire Chess” in newspapers or magazines1: The
writer prescribes point values for various moves in the po-
sitions faced by the successful player in a recorded game,
often but not always giving top value to the move that was
played. The reader plays through the game (without peeking
ahead), and in each indicated position selects the move he/she
would play. Then the reader reveals the played move and points
scoring and continues until the next position. At the end the
reader’s points total is scored on a scale determined by the
preparer, for instance 150 points for “grandmaster,” 120 for
“master,” 100 for “expert” and so on. This could be done with
any set of chess positions used as a test, but having them come
from one side in one game increases the popular element of
“being in the game” and executing strategies across positions.
The technical results of this and previous papers [1], [2] can
be viewed as furnishing scientific scoring based on actual
games played by grandmasters, masters, experts and so on,
for evaluating moves made under real competition rather than
“solitaire” or in simulations.

From the side of test-taking and related item-response
theories [3], [4], [5], our work is an extension of Rasch
modeling [6], [7], [8], [9] for polytomous items [10], [11], [12],
[13], with similar mathematical ingredients (cf. [14], [15]).
Rasch modeling has two main kinds of parameters, person
and item parameters. These are often abstracted into the single

1Bruce Pandolfini, famously played by Ben Kingsley in the movie “Search-
ing for Bobby Fischer,” has written this for the US Chess Life magazine for
many years.



parameters of actor location (or “ability”) and item difficulty.
It is desirable and standard to map them onto the same scale
in such a way that location > difficulty is equivalent to the
actor having a greater than even chance of getting the right
answer, or scoring a prescribed norm in an item with partial
credit. For instance, the familiar 0.0–4.0 F-through-A grading
scale may be employed to say that a question has exactly B-
level difficulty if half of the B-level students get it right. The
formulas in Rasch modeling enable predicting distributions of
responses to items based on differences in these parameters.2

Our basic model has two person parameters called s for
sensitivity and c for consistency. It employs a function E(s, c),
determined by regression from training data, mapping them to
the standard Elo rating scale for chess players. The numbers
on this scale have only relative significance but have arguably
remained stable ever since its formal adoption in 1971 by the
World Chess Federation (FIDE). The threshold for “master” is
almost universally regarded as 2200 on this scale, with 2500
serving as a rating threshold for initial award of the title of
Grandmaster, and 2000 called “Expert” in the Unites States.
The current world champion, Viswanathan Anand, sports a
rating of 2783, while top-ranked Magnus Carlsen’s 2872 is
21 points higher than the previous record of 2851 by former
world champion Garry Kasparov. Computer programs running
on consumer-level personal computers are, however, reliably
estimated to reach into the 3200s, high enough that no human
player has been backed to challenge a computer on even terms
since then-world champion Vladimir Kramnik (currently 2801)
lost a match in December 2006 to the Deep Fritz 10 program
running on a quad-core PC. This fact has raised the ugly
eventuality of human cheating with computers during games,
but also furnishes the reliable values for available move options
that constitute the only chess-dependent input to the model.

Our main departure from Rasch modeling is that these
“hindsight utility values” are used to infer probabilities for
each available response, without recourse to a measure of
difficulty on the same rating scale. That is, we have no
prior notion of “a position of Grandmaster-level difficulty,”
or “expert difficulty,” or “beginning difficulty” per-se. Chess
problems, such as White to checkmate in two moves or Black
to move and win, are commonly rated for difficulty of solution,
but the criteria for this do not extend to the vast majority of
positions faced in games, let alone their reference to chess-
specific notions (such as “sacrifices are harder to see”). Instead
we aim to infer difficulty from the expected loss of utility
from that of the optimal move, and separately from other
features of the computer-analysis data itself. Hence we propose
a separate name for our paradigm: “Converting Utilities Into
Probabilities.”

The next sections attempt to formulate this paradigm ab-
stractly, with minimal reference to chess. The main departure
from skill rating in games [16], [17], [18], [19] is that the game
result has no primary significance. A player may win a poorly
played game through an opponent’s blunder, or play heroically

2For a recent amusing blog post arguing identity between the
Rasch and Elo chess rating formulas, see Christopher Long, “Base-
ball, Chess, Psychology and Pychometrics: Everyone Uses the Same
Damn Rating System,” 14 March 2013 entry on “The Angry Statis-
tician” weblog, http://angrystatistician.blogspot.com/2013/03/baseball-chess-
psychology-and.html

to save a draw which brings only a half-point reward. Shift-
ing the scoring to individual move-decisions factors out the
opponent’s quality, and also multiplies the sample size by a
large factor. A chess player may contest only 50 professional
games in a given year, but these games may furnish 1,500
significant move decisions, even after discounting opening
moves regarded as “book knowledge” and positions where one
side has so large an advantage that accuracy hardly matters.
The upshot is to create a statistically robust formulation of
“Intrinsic Performance Ratings” expressed on the standard Elo
scale [1], [2].

This paper aims to abstract this kind of decision-based
assessment, identifying general features not dependent on
chess. This will promote outside applications, such as intrinsic
scoring of grades on tests with less reliance on either prior
notions of difficulty or posterior “curving” after results are
in. We do not achieve this here, but we demonstrate the
richness and efficacy of our modeling paradigm. We show how
it embraces both values and preference ranks, lends itself to
multiple statistical fitting techniques that act as checks on each
other, and gives consistent and intelligible results in the chess
domain.

II. CONVERTING UTILITIES INTO PROBABILITIES

We are given a set T of decision events t, such as game
turns in a chess game. Each event is specified by a list of some
number ` of available options a1, . . . , a` known to the actor,
and a list of values Ut = (u1, . . . , u`) of these actions that
are not conveyed to the actor. The actor’s skill at the game
can informally be regarded as the degree to which he or she
(or it—we can model fallible software agents the same way)
perceives the authoritative values from situational information
It (such as a chess position, or study notes for a test), and
thereby selects the best option. That is to say, for any item t:

(a) Both the actor Z and the model are given a description
of t and the options a1, . . . , a`.

(b) The actor draws on experience and situational infor-
mation It but does not know the values Ut.

(c) The model is given Ut, but does not use any
application-specific information It.

(d) The model is either given values of the parameters
~z = z1, z2, . . . defining proclivities of the actor Z, or
has inferred such values from training data.

The model’s task is to infer probabilities P (~z) =
(p1, . . . , p`) for the actor Z to choose the respective options
for the decision event t. We may suppose that the labeling
of moves is in nonincreasing order of the utilities given to
the model, i.e., such that u1 ≥ u2 ≥ · · · ≥ u`. We may
also suppose that the number ` is the same for all turns t,
by padding turns with r < ` stated options to have ` − r
phantom options, each with “negatively infinite” utility value.
Henceforth we speak of the formal identification of the actor
Z with the probabilistic behavior mapping P (~z) as defining
a fallible computational agent, along lines of [20], [21], [22],
[23], [24].

In a simple rational-choice situation with perfect infor-
mation about utility, and ignoring for now the possibility of



two or more actions with equal best value, we would project
pi = 1 for the action ai with highest ui, and pj = 0 for all
other actions. In real-world situations of bounded rationality,
however, we may expect to see substantial probability on a
variety of reasonable options, and also on poor but deceptively
attractive options. Can we model this so that over sufficiently
many turns t at which an action must be chosen, and given
parameters z quantifying the ability of Z to perceive the
stipulated values ui, we can make accurate projections of
aggregate statistics? Here are three such statistics:

(a) Best-Choice frequency (BC). On a multiple-choice
test, this is the score without partial credit, expressed
as a percentage. In chess it is the frequency of move
agreements with the computer; it is called MM in [1].

(b) Aggregate Error (AE). On an exam with partial credit,
this is the total number of points lost. In chess it is the
sum, over all moves (where the computer judges the
player chose an inferior move), of the difference in
value between the optimal move and the chosen one.
Chess programs standardly give these values in units
of centipawns—figuratively hundredths of a pawn,
whereupon AE represents the total number of pawns
“lost” by the players in the set of positions t. Where
there is no confusion we also use AE for the per-move
average error.

(c) Ordinal Ranks (OR). Besides the BC frequency f1,
these give the frequency f2 of choosing the second-
best option, f3 for third-best, f4 for fourth-best, and so
on. Of course there may be no parity between second-
best choices: some may be “close” while others are
large errors. Projections of OR may take the difference
in value into account, so that it is permissible to mix
these kinds of data points. Likewise permissible is to
assume all turns have the same number ` of options,
padding those having fewer with “dummy options”
having large negative values, which will translate to
essentially-zero probability in projections.

Note that OR entails indexing choices by their values: u1 ≥
u2 ≥ · · · ≥ u`. Also note that the projected probabilities pt,i
over t ∈ T alone suffice to generate projected values for these
statistics, namely

b̂c =
1

T

∑
t

pt,1 (1)

âe =
1

T

∑
t

pt,k(u1 − uk) (2)

f̂k =
1

T

∑
t

pt,k. (3)

To sum up, the paradigm is to have a function P of the
personal parameters ~z and the utility values ut,i. The personal
parameters are assumed to be the same for all t in a given
test-set T . The output P (~z, {ut,i }) is a matrix (pt,i) giving
for each decision event t the probabilities for choosing each
of the options. A particular function P denotes an application-
specific model within the paradigm.

Several reasonable axioms employed specifically in the
chess modeling simplify and constrain the permissible func-
tions P .

A. Axioms and Confidence Intervals

The first two axiomatic properties can be considered desir-
able, but the third has some questionalbel entailments.

(i) Independence. For all t, the generated values
(pt,1, . . . , pt,`) depend only on (ut,1, . . . , ut,`) and ~z.

(ii) Extensionality of utility. For all t and Z, ut,i =
ut,j =⇒ pt,i = pt,j .

(iii) Monotonicity. For all t and i, if ut,i is replaced by a
greater value u′, then for all Z, p′t,i ≥ pt,i.

Note that (iii) is different from saying that always pt,1 ≥
pt,2 ≥ · · · ≥ pt,`, though that follows from (ii) and (iii)
as-stated. The reason for doubting (iii) is the application to
Z of all skill levels—it says that improving the hindsight
quality of an answer makes it no less attractive, which runs
counter to the idea in chess that “weaker players prefer weaker
moves.” One reason independence is desirable is that it yields
inherent standard deviations and hence confidence intervals for
projections of these statistics, in particular:

σ2
BC =

T∑
t=1

pt,1(1− pt,1) (4)

σ2
AE =

1

T

T∑
t=1

∑
i≥2

pt,i(1− pt,i)(ut,1 − ut,i). (5)

One way of attempting to cope with having less than full
independence is to regard the effective sample size |T | as
having shrunk, and hence to widen the inferred error bars by
a corresponding factor. Empirical runs in the chess application
[2] have suggested a 1.15 multiplier for σBC and a 1.4
multiplier for σAE . These factors also represent allowance for
modeling error.

III. TRAINING DATA AND FITTING METRICS

Every piece of training data is an item

I = (u1, . . . , u`; i; e)

where i is the index of the option that was chosen, and e gives
supplementary information about the person or agent who
made the choice. In examinations, e may be prior information
about past grades or test results, or alternatively may be
posterior information such as the overall score on the exam
itself. In chess, e can be the Elo rating of the player making the
move, either before or after the games by that player included
in the training set. We index an item and its components by
the turn t, and sometimes write just t in place of I , calling the
item a tuple.

In this paper we postulate a mapping E(Z) from the agent
space to the values e that come with the training data. This
mapping need not be invertible—indeed when two or more
scalar parameters comprise ~z this is not expected. Its main



point is that when regressing on a subset of items whose values
e are all equal (or close to equal) to obtain z, comparing E(z)
and e acts as a check on the results. They need not be equal—
perhaps E itself has been fitted by a final linear regression
against e and the particular e is an outlier in this fit—but lack
of closeness is a reason to doubt the method used to fit z.

When the estimation method does not guarantee that the
projected means agree with the sample means, for BC and AE
in particular, then the difference from the sample becomes a
measure of goodness (or rather badness) of fit. We express
the deviations from the sample means as multiples of the
inherently projected standard deviations, that is as multiples
of σBC and σAE . Technically this assumes independence of
turns, but this assumption is not a strong consideration because
we are not using them to infer z-scores for hypothesis tests.
They are mainly a convenient choice of units when comparing
results between training sets of different sizes.

Our main independent metric for goodness of fit involves
the projected ordinal frequencies f̂k for 1 ≤ k ≤ ` and the
sample values fk. The ordinal rank fit (ORF) is given by∑̀

k=1

(f̂k − fk)2.

In tables, the frequencies are expressed as percentages—
equivalently, the ORF score is multiplied by 10,000. We do
not weight ORF by the number of items with i = k (i.e.,
by fk itself), but we consider a fitting method that tries to
minimize this score.

The metrics and training and fitting methods all extend
naturally when items It for different turns t are given different
weights wt. The weight wt may represent some measure of the
value or difficulty of the decision. Our experiments in the basic
model reported here use unit weights.

IV. FITTING METHODS

In all cases we are given training data consisting of items.
Since the data are fixed, we can regard the probabilities pt,j
as functions of Z alone.

A. MLE and Bayes

Maximum Likelihood Estimation fits ~z to maximize the
probability of the selected options it in the training data. By
independence this means to maximize∏

t

pt,it ,

which is equivalent to minimizing the log-sum∑
t

ln(1/pt,it).

We write zML for some value of Z that minimizes this logsum,
and call P (zML) the max-likelihood probabilities. Bayesian
methods likewise apply, and were introduced for chess by
Haworth [25], [26].

For completeness, we derive the result that Bayesian it-
eration approaches the ML estimator in this setting. Let A(z)
denote the event that the agent in the training data with chosen

options~i = i1, i2, . . . arises from Z = z. By Bayes’ Theorem,
assuming the space Z is finite,

Pr(A(z) | ~i) =
Pr(~i | A(z))Pr(A(z))

Pr(~i)

=
Pr(~i | A(z))Pr(A(z))∑
z Pr(A(z))Pr(

~i | A(z))

=

∏
t Pr(it | A(z))Pr(A(z))∑

z Pr(A(z))
∏
t Pr(it | A(z))

=

∏
t pt,it(z)Pr(A(z))∑

z

∏
t pt,it(z)Pr(A(z))

.

The standard “know-nothing prior” assumption Pr(A(z)) =
1/|Z| lets us simplify this even further to

Pr(A(z) | ~i) =
∏
t pt,it(z)∑

z

∏
t pt,it(z)

.

Note that the global independence assumption not only creates
a simple product over t but also makes the value independent
of the order of presentation of the data for each t. Thus the
Bayesian probability of Z = z is just the normalized likelihood
function.

Write Nz for
∏
t pt,it(z). Upon iterating the data d times,

we get

Pr(A(z) | ~id) = Nd
z∑

z N
d
z

.

Because ad = o(bd) whenever a < b and the vector of values
Nz is finite, the right-hand side as d→∞ converges pointwise
to the Dirac delta function for the value z maximizing Nz ,
which is just z = zML as before. (This also holds true under
any fixed prior A(z).)

Thus the peaks of the Bayesian probability curves approach
the ML estimators. Large homogeneous training sets can be
expected to behave like d-fold iterations of a smaller training
set. Note that in both cases, only the probabilities of the
selected options at,it are involved in the formulas. The ordinal
information in it is not used. At least in this formulation, it
seems that the MLE and Bayesian approaches are not using
all available information.

We move on to simple frequentist approaches. We define
d(x, y) to be (the square of) a distance function, not necessarily
supposing d(x, y) = (x − y)2 for use with least-squares
estimation. Since there is no notion of “same outcome,” the
issue becomes how best to preserve the intuition of building
frequencies for the outcomes. One idea is to impose a per-
centile grid on them.

B. Percentile Fitting

The “Percentile Fitting” method of [1] attempts to avoid
these choices and weighting issues. The method is to minimize
a distance integral of the form∫ q=1

q=0

d(q, fq(z))



where fq(z) is the hit score for percentile q defined as follows.
The hit score is the average of the hit scores for each tuple t,
so suppressing t we need only define fq(z) for one vector of
projected probabilities P (z) = (p1(z), p2(z), . . . , p`(z)). Here
is where the fixed ordering of outcomes is used. Let i = it be
the selected outcome for that tuple. Define

p =

i−1∑
j=1

pj(z); r = p+ pi(z),

fq(z) =


1 if q ≥ r
q−p
r−p if p ≤ q ≤ r
0 if q ≤ p.

Here is the frequentist intuition. Consider any fixed value
of q, say q = 0.60, and consider any projected tuple
(p1(z), p2(z), . . . , p`(z)). The parameter(s) z represent a way
of stretching or compressing sub-intervals of width pk(z) in the
unit interval. Let us suppose first that q is exactly at the upper
end of interval pk, meaning that p1(z)+p2(z)+· · ·+pk(z) = q.
Then we interpret z as representing the assertion that the
probability of one of the first k options being chosen is exactly
q. That is to say, if i ≤ k then we call the tuple a “hit,” else it
is a “miss.” So this particular z is asserting that the probability
of a hit is q, and that is the z that we wish to find.

If q sits midway inside interval pk, then we must consider
how to score z in the case i = k. To interpolate correctly, let b
be the ratio of the real-number distance of q from the left end
of the interval to its width pk. Then score this case as b of a
hit. Thus z and q represent the assertion that the expected hit
score for the tuple at percentile q is none other than q itself.

For each z and q, this prescription defines a criterion for
scoring a hit for each tuple, and asserts that this expectation
is q. Since the expectation is the same for each tuple, we have
intuitively achieved the effect of the simple-frequency case,
and can aggregate over the tuples. The frequency function
fq(z) defined above tabulates the actual hit scores from the
data. The degree of fit given by z for percentile q is then
quantified as the distance between q itself and fq(z).

Treating q itself as a continuous parameter leads to mini-
mizing the above integral. The one arbitrary choice we see is
whether this should be weighted in terms of q. Minimizing∫ q=1

q=0

H(q)d(q, fq(z))

instead is natural because having H(0) = H(1) = 0 reinforces
the idea that the hit percentage projections are automatically
correct at the endpoints q = 0 and q = 1. Apart from this, our
intuitive point of using percentiles is that they skirt issues of
skedasticity. We abbreviate this method as PF.

C. Fitting to Equate Means for BC and AE

The projected probabilities also yield a projected utility
u(z) =

∑
j ujpj(z). This can readily be summed or averaged

over all tuples. Thus one can also fit z by equating the
projected u(z) with the actual utility u achieved in the training
data. This is affinely related to minimizing the AE metric
defined above.

In cases where the objective is to see how often the agent
makes the optimal choice, as well as modeling its average
(falloff in) utility (from optimal), one can write two equations
in the parameters Z. When Z comprises just two parameters,
one can fit by solving two equations in two unknowns, equating
u = u(z) and the first-choice hit frequency h1 = |{ t : it =
1 }|/T with the average of pt,1(z). This hybrid fitting method
bypasses all of the above options, and hence acts as a helpful
check on them. We abbreviate this FF for “first-choice and
falloff.” FF is the method chosen for computing IPRs below.

D. Fitting the Ordinal Ranks

We can fit to minimize the ORF statistic, or alternatively
its frequency-weighted version

∑
k fk(fk−f̂k)2. For data such

as ours where about half the “mass” is on index 1—that is,
when the best answer or trade or chess move is found at least
half the time (at least when items have unit weights)—the
latter policy is a compromise on simply solving to make the
BC projection agree with the sample mean. The compromise
policy avoids overfitting, and avoids heteroskedasticity issues
with ORF itself. Minimizing ORF emphasizes the importance
of getting accurate projections for the “tail” of the distribution
of choices: bad mistakes on exams or “blunders” at chess.

V. SOME THEORETICAL CONSIDERATIONS

In case the parameter space for Z allows a dense set of
probability vectors, the simple case of repeated data (or equal
utility vectors) allows exact fitting, and gives the same optimal
z under any method.

Theorem 5.1: Percentile Fitting agrees with Maximum
Likelihood for homogeneous data and free parameterization
of probabilities.

Proof: Take f1, . . . , f` to be the frequencies from the data.
The logsum minimand for MLE then becomes

e(z) = f1 ln(1/p1(z)) + f2 ln(1/p2(z)) + · · · f` ln(1/p`(z)).

This is known to be minimized by setting pj(z) = fj for
each j, in accordance with the basic frequency idea, and the
freedom assumption on z allows this to be realized. It remains
to show that PF achieves the same minimum z.

For this z, let q be any percentile. If q falls on the endpoint
r of any interval pk = pk(z), then as r = p1 + p2 + · · · pk =
f1 + f2 + · · · fk, the training data gives fq(z) = r = q. Since
other values of q occupy the same medial position in the same
interval over all of the equal tuples, the interpolation gives
fq(z) = q for all q, so the PF minimand is zero.

Also h1 = f1 = p1(z) and u =
∑
j ujfj =

∑
j ujpj(z) =

u(z), so the FF equations hold.

A. Differences Among MLE/Bayes and PF

Now we give an example showing that this equivalence can
be disturbed by constraining the parameters. Indeed it seems
to be the simplest example that can possibly show a differ-
ence. Let each tuple have outcomes m1,m2,m3, and let the
probabilities be given by p1(z) = p2(z) = z, p3(z) = 1− 2z,
with one numerical parameter z ∈ [0, 1]. Consider training



data with t = 2 equal tuples, in which m1 and m3 are chosen
once each. The ML maximand is z(1− 2z) and is maximized
at z = 1/4.

Percentile fitting gives a different answer, however. The PF
minimand is a three-piece integral. The first piece integrates
d(q, 12

q
z ) from q = 0 to q = z. The second piece integrates

d(q, 12 ) from q = z to q = 2z. The third piece integrates
d(q, 12 + 1

2
q−2z
1−2z ) from q = 2z to q = 1. For d(x, y) = (x −

y)2, symbolic computation with MathematicaTM shows this is
minimized for z = 3/10, not z = 1/4.

VI. APPLICATION MODEL AND EXPERIMENTAL DOMAIN

Chess has been a popular experimental domain for many
studies aspiring to have more general significance. Here are
several reasons pertaining in particular to the prior work [27],
[28], [1]:

1) Chess games and results are public—there are no copy-
right or privacy considerations.

2) The decisions are taken under conditions of actual com-
petition, not simulations.

3) The human subjects have similar training and back-
grounds, and the games have no systematic or substantial
outside influences (put another way, the modeling can be
free of “nuisance terms”).

4) There is a well-defined skill metric, namely the chess Elo
rating system.

5) The utility values are assigned by a recognized human-
neutral authority, namely the champion chess program
Rybka 3 [29].

6) The data sets are unique—comprising all games recorded
between players with ratings e near the same Elo century
mark in official chess events under “standard individual
tournament conditions” in a specified time period. There
is no arbitrariness of choosing data from certain kinds of
exams or kinds of financial markets.

7) The data sets and statistical analyzing code are freely
available by request, though they are not (yet) public.

8) The training sets each contain over 5,000 data points,
some over 20,000.

To reprise some details from [1], [2], the defining equation
of the particular model used there and here is the following,
which relates the probability pi of the i-th alternative move to
p0 for the best move and its difference in value:

log(1/pi)

log(1/p0)
= e−(

δ
s )
c

, where δi =

∫ v0

vi

1

1 + |z|
dz. (6)

Here when the value v0 of the best move and vi of the i-
th move have the same sign, the integral giving the scaled
difference simplifies to | log(1+v0)−log(1+vi)|. This employs
the empirically-determined logarithmic scaling law.

The skill parameters are called s for “sensitivity” and c
for “consistency” because s when small can enlarge small
differences in value, while c when large sharply cuts down
the probability of poor moves. The equation solved directly
for pi becomes

pi = pα0 where α = e−(
δ
s )
c

. (7)

The constraint
∑
i pi = 1 thus determines all values. By fitting

these derived probabilities to actual frequencies of move choice
in training data, we can find values of s and c corresponding
to the training set.

Once we have s and c, these equations give us projected
probabilities pi,t for every legal move mi in the position at
every relevant game turn t. Per arbitrary choice we omit: game
turns 1–8, turns involved in repetitions of the position, and
turns where the program judges an advantage greater than 300
centipawns for either side. These and some further specific
modeling decisions are given detail and justification in [1].

VII. COMPUTING INTRINSIC PERFORMANCE RATINGS

The training data comprised all recorded games from the
years 2006–2009 in standard individual-play tournaments, in
which both players had current Elo ratings within 10 points of
a century mark, 2200 through 2700. Table I gives the values
of AEe (expected AE) that were obtained by first fitting the
training data for 2006–09, to obtain s, c, then computing the
expectation for the union of the training sets. It was found that
a smaller set S of moves comprising the games of the 2005
and 2007 world championship tournaments and the 2006 and
2008 world championship matches gave identical results to
the fourth decimal place, so S was used as the fixed “Solitaire
Set.”

Elo 2700 2600 2500 2400 2300 2200
AEe .0572 .0624 .0689 .0749 .0843 .0883

TABLE I. ELO-AE CORRESPONDENCE

A simple linear fit then yields the rule to produce the Elo
rating for any (s, c), which we call an “Intrinsic Performance
Rating” (IPR) when the (s, c) are obtained by analyzing the
games of a particular event and player(s).

IPR = 3571− 15413 ·AEe. (8)

This expresses, incidentally, that at least from the vantage of
RYBKA 3 run to reported depth 13, perfect play has a rating
under 3600. This is reasonable when one considers that if a
2800 player such as Kramnik is able to draw one game in fifty,
the Elo rating formula can never give the opponent a higher
rating than that.

The procedure for computing an Intrinsic Performance
Rating (IPR) given a set of games by a particular player in
a chess event is hence the following:

1) Analyze the player’s moves in these games with a strong
chess program such as RYBKA, or a suite of such pro-
grams.

2) Run the parameter regression on these moves to fund the
best-fitting values of the player-location parameters s and
c.

3) Use the inferred (s, c) to generate the expected average-
error for Zs,c on the fixed “Solitaire Set” S.

4) Plug the AEe value from step 3 into the equation (8) to
obtain the IPR.

5) Also estimate the relative width of the error bars for AEe
on S to be the same as the relative error in the AE statistic
projected for the player’s own moves in the given set of
games.



6) Use the same conversion (8) to place the error bars on
the same Elo scale.

The error-analysis methods of Guid and Bratko [30], [31]
neglect the importance of normalizing the AE statistic to a
common reference set S. They compute AE separately for
different players on their respective sets of positions. When
they are facing each other in a match this may be reasonable,
but when they are playing different opponents, one game may
have a significantly higher expectation of error owing to less-
placid nature of its positions. The above procedure handles this
issue by computing separate regressions for (s, c) and (s′, c′)
for the respective players that take the nature of their respective
positions into account, and then compare the projections for
the corresponding agents Zs,c and Zs′,c′ on the same positions
in S. Nor do their methods provide error bars or a trained
translation to the Elo rating scale at all; they themselves only
justify significance of the ranking order they obtain, rather than
an absolute quality scale such as Elo [32].

To illustrate the IPR method, here is a table of IPRs for all
world chess championship matches since 1972.

Match Elo IPR 2σa range diff #moves
Wch 1972 2723 2646 2505–2787 -77 1,367
Fischer 2785 2650 2434–2867 680
Spassky 2660 2643 2459–2827 687
Wch 1974 2685 2662 2541–2778 -23 1,787
Karpov 2700 2652 2480–2824 -48 889
Korchnoi 2670 2667 2505–2829 -3 898
Wch 1978 2695 2708 2613–2802 +13 2,278
Karpov 2725 2722 2596–2848 1,141
Korchnoi 2665 2697 2558–2836 1,137
Wch 1981 2698 2749 2623–2875 +51 1,176
Karpov 2700 2852 2683–3020 587
Korchnoi 2695 2651 2486–2835 589
Wch 1984 2710 2810 2727–2894 +100 2,446
Karpov 2705 2761 2636–2887 1,219
Kasparov 2715 2859 2750–2969 1,227
Wch 1985 2710 2720 2602–2838 +10 1,420
Karpov 2720 2701 2536–2866 712
Kasparov 2700 2734 2564–2905 708
Wch 1986 2723 2841 2732–2951 +118 1,343
Karpov 2705 2807 2657–2957 670
Kasparov 2740 2907 2758–3057 673
Wch 1987 2720 2742 2627–2857 +22 1,490
Karpov 2700 2838 2687–2989 742
Kasparov 2740 2659 2492–2826 748
Wch 1990 2765 2620 2491–2749 -145 1,622
Karpov 2730 2547 2345–2749 812
Kasparov 2800 2674 2507–2841 810
Wch 1993 2730 2683 2537–2829 -47 1,187
Kasparov 2805 2631 2415–2847 593
Short 2655 2734 2538–2931 594
Wch 1995 2760 2702 2499–2905 -58 767
Anand 2725 2617 2313–2921 382
Kasparov 2795 2807 2552–3062 385

Wch 2000 2810 2918 2794–3043 +108 867
Kasparov 2849 2851 2648–3055 435
Kramnik 2770 2969 2814–3125 432
Wch 2004 2756 2871 2721–3020 +115 726
Kramnik 2770 2945 2764–3126 363
Leko 2741 2785 2533–3037 363
Wch 2006 2778 2802 2672–2933 +24 911
Kramnik 2743 2791 2608–2974 453
Topalov 2813 2832 2655–3009 458
Wch 2008 2778 2679 2468–2890 -99 562
Anand 2783 2723 2419–3026 279
Kramnik 2772 2610 2306–2914 283
Wch 2010 2796 2720 2571–2869 -76 985
Anand 2787 2737 2506–2969 491
Topalov 2805 2703 2512–2894 494
Wch 2012 2759 2963 2808–3117 204 495
Anand 2791 3002 2801–3203 211 249
Gelfand 2727 2920 2681–3159 193 246
Averages 2741 2755 +14 1,261
Move-wtd. 2740 2741 +1
Omni run 2740 2736 2706–2765 -4 21,429

The IPR figures averaged over all the matches come
strikingly close to the average of the players’ ratings. This
is especially true when the average is weighted by the number
of moves in the respective matches. The near-equality is also
witnessed when all the moves of all the matches are thrown
together into one large set, on which a single regression is
performed.

What is significant there is that the world championship
matches are disjoint from the training sets, which comprise
games from tournaments only—round-robin or small Swiss-
system events. These games ranged from the Elo 2200 to
the Elo 2700 levels, by and large below the standards of all
the matches. Thus the model is giving accurate performance
assessment even under extrapolation to higher skill levels. The
accuracy is also much finer than the computed width of the
error bars for the single large run of all the moves.

VIII. CONCLUSIONS AND FUTURE EXTENSIONS

We hope to spur from this a deeper comparative exam-
ination of methods used in psychometric test scoring, and
other application areas such as financial analysis. We also
speculate that the skill assessment methods used in chess
can be carried over to these other domains, even without the
elements of game-play and win-lose-draw results. They apply
to direct evaluation of decision quality instead, but inherit the
interpretive power of the chess Elo rating system. The rigor
and definiteness of the chess model and its data also strengthen
confidence in the mathematical underpinnings of this kind of
modeling.

We infer the difficulty of a game turn via the projected
AE statistic for the turn. One drawback is that this projection
depends on the parameters of the player. In one sense this
is unavoidable, since usually weaker players are projected to
make more errors. The difficulty measure comparing two turns
t1 and t2 would then look at the global differences in the
mappings g1, g2 from (s, c) to the respective AE expectations.

It would be better to find a measure of difficulty that is
intrinsic to the decision event and its utility vector, and obtain a



hoped-for scientific result that this implies observed differences
in the statistic for various (s, c) locations. One approach we
are trying extends the model to incorporate the notion of the
depth or time needed to reach a determination, in a way that
also applies to the utility values themselves, not just the actor’s
effort to perceive them. Chess programs conduct their searches
by iterating to progressively higher depths d. Often a possible
move will “swing” in value considerably up or down as d
increases. This corresponds in test-taking to the idea of a
“tricky” question (not necessarily a “trick question”) that is
designed to make a poor answer seem plausible until the test-
taker reflects further on the question.

To reflect this on the player side, we can augment the
model by creating a third personal parameter d representing
the player’s most typical peak depth of thinking. That there
is a correspondence between program-depth values and mea-
surable depth of thinking (in substantially time-limited play) is
established by Moxley et al. [33]. Hence we expect to improve
the player modeling by using the evaluation of all legal moves
at each depth by the chess program. The larger anticipated
payoff is that the total amount of “swing” among moves in a
given position—simply the variance in values with respect to
depth—may furnish an intrinsic measure of difficulty.

The notion of depth/time should also help determine how
people perform in time-constrained environments. For exam-
ples in multiple-choice questions with partial credit, one may
expect the decision made in time constrained environment
would be worse than the unhurried ability of the responder.
An examinee in a time-constrained environment may need to
trust intuition more than deliberate thinking. We have analyzed
games from fast-chess events to show dropoffs in IPR of
several hundred Elo points, but it would be even better to be
able to predict the dropoff with time curve as a function of
the d parameter. This would shed finer light on issues noted
by Chabris and Hearst [34].
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