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Abstract

We defineprobabilistic martingaledased on randomized approximation
schemes, and show that the resulting notioprobabilistic measuréas sev-
eral desirable robustness properties. Probabilistic martingales can simulate
the “betting games” of [BMR 98], and can cover the same class that a “nat-
ural proof” diagonalizes against, as implicitly already shown in [RSC95].
The notion would become a full-fledged measure on bounded-error com-
plexity classes such @PP and BPE if it could be shown to satisfy the
“measure conservation” axiom of [Lut92] for these classes. We give a suffi-
cient condition in terms of simulation by “decisive” probabilistic martingales
that implies not only measure conservation, but also a much tighter bounded
error probabilistic time hierarchy than is currently known. In particular it
implies BPTIME[O(n)] # BPP, which would stand in contrast to recent
claims of an oraclel giving BPTIME#[O(n)] = BPP. This paper also
makes new contributions to the problem of defining measur and other
sub-exponential classes. Probabilistic martingales are demonstrably stronger
than deterministic martingales in the sub-exponential case.

1 Introduction

Lutz’'s theory of resource-bounded measure [Lut92] is commonly basethaim-
galesdefined on strings. A martingale can be understood as a gambling strategy
for betting on a sequence of events—in this case, the events are membership and
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non-membership of strings in a certain language. If the strategy yields unbounded
profit on alanguagé, thenitis said t@over A, and the class of languages covered
has measure zeilia a corresponding appropriate sense.

It is natural to ask whether gambling strategies can be improved, in the sense
of covering more languages, if the gambler is allowed to randomize his bets. Ran-
domized playing strategies are crucial in areas such as game theory, and proba-
bilistic computation is believed or known to be more powerful than deterministic
computation in various computational settings. Is this so in the setting of resource-
bounded measure? We defim®babilistic martingalegprecisely in order to study
this, basing them on the important prior notion diufly polynomial randomized
approximation schem@PRAS) [KL83, JVV86, JS89].

Probabilistic martingales have already appeared implicitly in recent work. For
every “natural proofll (see [RR97]) of sufficient density, there is a probabilistic
martingaled of equivalent complexity that covers the class of languagesIihat
is useful against [RSC95]. The “betting games” of Buhrman et al. [BI9&
can be simulated by probabilistic martingales of equivalent time complexity, as
essentially shown by Section 5 of that paper. Hence in particular, probabilistic
martingales 029 time complexity (which equals polynomial time in Lutz’s
notation with NV = 2™ as the input length) can cover the class of languages that
are polynomial-time Turing-complete f&XP. This class is not known to be
covered by anjl”o(l)-time deterministic martingale—and if so, thBRP = EXP
[AS94, BFT95]. The ultimate point of our work here, however, is that probabilistic
martingales provide a new way to study general randomized computation.

For the study of sub-exponential time bounds, we lay groundwork by offering a
new extension of Lutz’'s measure theory to classes b&lo®@ur extension is based
on “lex-limited betting games” as defined in [BMR8]. For measure oR it is
weaker than some other notions that have been proposed in [AS94, AS95, Str97,
CSS97], but it satisfies all of Lutz's measure axioms (except for some “fine print”
about infinite unions), and carries over desirable results and properties of Lutz’s
theory fromE andEXP down to classes below. It also still suffices for the main
result of [AS94].

We prove that a class is covered by a probabilistic martingale of time com-
plexity T'(n) if and only if (unrelativized)C has DTIME![T(n)] measure zero
relative to a random oracld. Hence in particular th&XP-complete sets have
E4-measure zero (gi-measure zero relative td in Lutz's terms), for a random
A. Our theorem is roughly analogous to the theorem BRalP equals the class of
languages that belong @ for a randomA [BG81a, Amb86]. Hence we regard
our notion as the best candidate for defining a measure on bounded-error classes



such asBPP, BPE, and BPEXP. The latter two classes are defined from the
general definition:

Definition 1.1. A languageL belongs tBBPTIME[t(n)] if there is a probabilistic
Turing machine)M running in timet(n) such that for all inputs:, Pr[M(z) #
L(z)] < 1/3.

If ¢t belongs to a family of time bounds that is closed under multiplicatiom by
then standard “repeated trials” amplification can be used to reduce the error proba-
bility 1/3 below1/2™ on inputs of lengtm. Hence the definitions d3PP, BPE,
and BPEXP are robust, but whether the error probability can be reduced in the
resulting definition oBPTIME[O(n*)] for fixed & is pertinent to open problems
in this paper.

The nub is whether our candidate for probabilistic measure has the crucial
“measure conservation” property, i.e. whether one can showBR&t doesnot
have ‘BPP-measure zero,” or tha@PE does not have probabilistie-measure
zero, and so on. We give a sufficient condition that is natural and reasonably plausi-
ble, namely that every probabilistic martingdlean be simulated by a probabilistic
martingaled’ (in the sense af’ succeeding on all languages tdatucceeds on and
having a randomized approximation scheme of similar time complexity) such that
every change in the value df is not negligibly close to zero. For deterministic
martingales this is an easy simulation. If this holds for probabilistic martingales,
then measure conservation holds, and they really define a measure.

Since we show thaBPTIME[O(n)] is covered by aéBPP-martingale, and
BPP by a probabilistic quasi-polynomial time martingale, aielE by aBPEXP
martingale (and so on), this would have the following consequence:

BPTIME[O(n)] C BPP C BP[gpoly] C ...
C BPE C BPEXP.

None of these successive inclusions is known to be proper. Indeed, Rettinger and
Verbeek [RV97] claim to have an oraclerelative to whichBPTIMEA[O(n)] =

BPP4 = BPTIME4[gpoly] (hence alsd3PE4 = BPEXP“ by translation),

fixing a flawed result of Fortnow and Sipser [FS89, FS97]. Thus our simulation
problem ties in to the important open question of whether bounded-error proba-
bilistic time enjoys a tight time hierarchy like that of deterministic time. We pro-
pose to turn this question on its head by analyzing the problem for probabilistic
martingales, which is equivalent to a more-general problem about randomized ap-
proximation schemes treated in [CER5]. For instance, it may be useful to seek
and study oracled relative to which some probabilistic martingale has no decisive
simulation, independent of whether the oracle claim of [RV97] holds up.



2 Resource-Bounded Measure

A martingaleis explicitly defined as a functio#ifrom { 0, 1 }* into the nonnegative
reals that satisfies the following “exact average law”: forak { 0,1 }*,

d(w0) + d(wl)

d(w) = f (1)

The interpretation in Lutz’s theory is that a string € { 0,1 }* stands for
an initial segment of a language over an arbitrary alphabets follows: Let
s1, 82, S3, - . . be the standard lexicographic ordering®®f. Then for any language
ACY* writew C Aifforall 4,1 <i < |wl|, s; € Aifftheith bitofwisal. We
also regardv as a function wittdomain{ s1, ..., s}, } and rang€ 0, 1 }, writing
w(s;) for theith bit of w. A martingaled succeeds oa language! if the sequence
of valuesd(w) for w C A is unbounded. Le§°[d] stand for the (possibly empty,
often uncountable) class of languages on whiccceeds.

Definition 2.1 ([Lut92]). Let A be a complexity class of functions. A claSs
of languagesas A-measure zerowritten ua (C) = 0, if there is a martingald
computable imA such thaC C S°°[d]. One also says thatcoversC.

Lutz defined complexity bounds in terms of the length of the arguneentd,
which we denote byV. However, we also work in terms of the largest lengtbf
a string in the domain ofv. For N > 0, n equals|log N |; all we care about is
thatn = ©(log N) and N = 29", Because complexity bounds on languages we
want to analyze will naturally be stated in termsgfwe generally prefer to use
for martingale complexity bounds. The following correspondence is helpful:

Lutz's “p”  ~ NO) = 20 ~ up

Lutzls up2n ~ 2(10g N)O(l) — 2'I’LO(1) ~  UEXP

One effect of the change is that the function classorresponding to a time-
bounded complexity clasP is clear—one simply uses the same time bound for
functions. We carry forward Lutz’s usage of saying that a dfalsas measure zero
inaclasD if up(CND) = 0, andmeasure one i if D\ C has measure zero in
D.

The desire to extend Lutz’s theory to define measures on cldssetow E
runs into well-known technical problems. We will later propose a new definition
that works well across the board for all families of sub-exponential time bounds
that are closed under squaring, and is equivalent to Lutz’s for bounBsaat
above. However, we prefer to introduce probabilistic martingales in the specific
case oft.-measure and defer the more-general results to later sections.



3 Measure on E via Probabilistic Computations

Our first definition of measure via probabilistic computations has the following
basic idea. Lutz's adaptation of classical measure theory to complexity classes
is based orreal-valued martingale functions To turn this into a meaningful
complexity-based notion, Lutz appeals to Turing’s notion of computing a real num-
ber by arbitrarily close dyadic rational approximations (see [Ko83]). In a similar
vein, we would like to define probabilistic measure via martingales that caf be
ficiently computed probabilistically to arbitrary accuracgimong many possible
notions of probabilistic computation of numerical functions, the following natural
definition due to Karp and Luby [KL83] has risen to prominence.

Definition 3.1. Afunction f : ¥* — QZ=° has dully polynomial-time randomized
approximation schem@PRAS) if there are a probabilistic Turing machikeand
a polynomialp such that for all: € * ande, § € Q>°,

Pr((1 - €)f(z) < M(z,6,8) < (1 + € f(x)] > 13, 7
andM (z, e, d) halts withinp(|z| + (1/¢) + log(1/6)) steps.

(It is equivalent to remové and write “1 — €” on the right-hand side of (2), but the
above form is most helpful to us.)

Definition 3.2. A probabilisticE-martingaleis a martingale that has an FPRAS.

This definition bounds the time to approximate martingale vadlies by a poly-
nomial in N = |w|, which is the same agoly(2") = 2°("). Our later generaliza-
tion of an FPRAS will work nicely for all time bounds, stated in terms.0f

Now to obtain a notion of probabilistie-measure, we simply carry over Defi-
nition 2.1.

Definition 3.3. A classC of languagedas probabilisticE-measure zerowritten
psrr(C) = 0, if there is a probabilisti&-martingaled such thaC C S*°|[d].

A viewpoint orthogonal to randomized approximation arises naturally from
classical measure theory.

Definition 3.4. A “randomized martingale machineV/ has access to an infinite
sequence € {0,1}*, which it uses as a source of random bits. Every fixed
defines a martingalé’,, and for any inputw, M first computesi;,(v) on the
successive prefixasC w before computing/y, (w), drawing successive bits from
p without repetition. M runs inE-time if this computation takes timg?(®) =

poly(|w]).



Now we want to say that a clashas probabilistic measure zero if a “random”
p makesd’, coverC. To do this, we simply use the long-established definition of
“random” viaclassical Lebesgue measure the spacd 0, 1 } of sequencegp,
which is much the same as the familiar Lebesgue measure on the real numbers in
[0, 1].

Definition 3.5. A classC is “E-random-null” if there is arE-time randomized
martingale machin@/ such that for allA € C, the set

{p:Ae s>y}
has Lebesgue measure one.

For countable class&3, it is equivalent to stipulate that the set pfsuch that

C C S°°[df,] has Lebesgue measure one. In the case of uncountable classes such
asP/poly, however, we do not know such an equivalence. Nevertheless, Defini-
tion 3.5 is equivalent to Definition 3.3, and to a third condition stated familiarly in
terms of “random oracles,” which differ from random sequencasthat bits can

be used with repetitions. Note th@ais unrelativized in the third case.

Theorem 3.1 For any clas<C of languages, the following statements are equiva-
lent.

(&) There is a probabilistidz-martingale that cover§.
(b) C is E-random-null.

(c) For arandom oracled, C hasE4-measure zero.

The neat thing about the equivalence is that Definition 3.3 allows us to treat a
“probabilistic martingale” as a single entity rather than the ensemble of Defini-
tion 3.5, while Definition 3.5 does not involve an approximation parametand
makes no reference to bounded-error computation at all! With this understood, we
can point out that probabilistie-martingales have already implicitly been used in
the literature. The construction in Theorem 18 of [RSC95] shows that for every
“natural proof/property’Il of sufficient density, there is a probabilistic martingale

of equivalent complexity that covers the class of languagedtimtiseful against.

The constructions in Section 5 of [BMM8] show that every E-betting game”

can be simulated by a probabilisticmartingale. These two constructions hold for
EXP in place ofE as well.



The proof of Theorem 3.1 is deferred until Section 6, where the generalization
to other time bounds is stated and proved. The proof is more informative in the
general setting. Its general workings are similar to the proofs by Bennett and Gill
[BG81b] and Ambos-Spies [Amb86] thBPP equals the class of languages that
belong toP# for a random oraclel. These proofs extend to show tiRPE equals
the class of languages that belongf6 for a random oraclel. The next section
explores how well our unified definitions serve as a notion of measureB&¥.

4 Measure Properties and BP Time Hierarchies

The important axioms for a measyteon a complexity clas®, as formulated by
Lutz [Lut92] and summarized in [AS94], are:

M1 Easy unions of null sets are nuNVe skirt the difficult formal definition of
an “easy” infinite union in [Lut92] and concentrate on the “finite unions”
case: ifC; andC, are subclasses @ with ;(C;) = 0 andu(C2) = 0, then
,LL(Cl U CQ) =0.

M2 Singleton sets of easy languages are nuFor all languages. € D,

n({L})=0.

M3 The whole space is not nulh other words, it is not the case thatD) = 0.
This is called “measure conservation” in [Lut92]. Under the stipulation that
forC CD,u(C) =1 < u(D\C) = 0, this can be rewritten g§D) = 1.

All of the recent attempts to strengthen Lutz's measure framework to make more
classes null have missed out on one of these axioms, most notably finite unions
[AS95, BMR'98], and this paper is no exception.

Why is it interesting to meet these axioms? A “pure” reason is that they
abstract out the distinguishing characteristics of Lebesgue measure, and meeting
them assures the integrity of a measure notion. They can also have direct connec-
tion to open problems in complexity theory, however. A recent example is that
if the “betting-game measure” of [BMRO8] has the finite-unions properiyi1,
then the nonrelativizable conseque®BP =# EXP follows. A similar inter-
est applies here: We show that probabilistic martingales saidfiandM2 with
D = BPE. If they also satisiyM3, thentight BPTIME hierarchies follow—in
particular, BPTIME[O(n)] € BPP C BPTIMEgpoly(n)].

This consequence is interesting at this time because Rettinger and Ver-
beek [RV97] have recently claimed to construct an oratleelative to which



BPTIME#[O(n)] = BPP# = BPTIME[gpoly(n)], which would fix the main
result of Fortnow and Sipser ([FS89], withdrawn in [FS97]). We have not yet been
able to verify this claim, but the point is that bounded-error probabilistic time is not
known to have a tight hierarchy like that for deterministic or nondeterministic or
even unbounded-error probabilistic time. Karpinski and Verbeek [KV87] proved
thatBPP, and als@PTIME|[gpoly(n)] andBPTIME[t(n)] for some bounds(n)

slightly above quasi-polynomial, are properly containedin (BPTIME[2"].

This result and its translates are basically the best ones known. Thus interest in our
work partly depends on how well the following notion provides a new angle on the
problem of diagonalizing out of small®PTIME classes into larger ones.

Intuitively, a martingaled is decisiveif it never makes a bet so small that its
winning is insubstantial for the goal of succeeding on any language. In the present
case of exponential time, suppagen stringsw of length N makes bets of mag-
nitude less than /N2. Sincelly>1(1 + 1/N?) < oo, even ifall such bets win
along a languagd, d still does not succeed aA. Hence we would consider any
individual bet of this size to be insubstantial. Our formal definition actually relaxes
the threshold from /N2 to 1/N* for any fixedk.

Definition 4.1. A (probabilistic) E-martingaled is decisiveif there existsk > 1
such that for alkw, eitherd(w1) — d(w) = 0, or |d(w1) — d(w)| > 1/|w|*.

Proposition 4.1 (a) ProbabilisticE-martingales satisfim1l andM2.
(b) Decisive probabilistidi-martingales satisfii2 and M3.

Proof. (a) Givend; andd, coveringC; and(C,, the functionds = (dy + ds)/2
coversC; U Cq, and has a randomized approximation scheme of the same order of
running time and precision as those trandd,. (Note thatds is the same as
flipping a coin to decide whether to bet accordingiioor d» on a given string.)
For infinite unions, we defer the proof until Section 7.

For M2 in (a) and (b), given a fixed language € BPE, use amplification
to find a probabilistic2®(™-time TM M, such that for allz of any lengthn,
Pr[M,(z) = A(z)] > 1 —1/2"". Now letd be the trivial martingale that doubles
its capital at every step alongjand gets wiped out to zero everywhere else. Then
d is decisive. To compute an FPRAS féfw), useM 4 to test for alli whether
w; =1 <= s; € A. With high probability all the tests are correct, and so the
value—either zero a2/l—is correct with the same probability.

(b) For M3, given a decisive probabilistie-martingaled, define a sequence
A =wy C wy C ws...inductively by

w1 = w;l if d(w;l) < d(w;),



= w;0 otherwise

This infinite sequence defines a languageGivenk from Definition 4.1, we can
use amplification to obtain al-computable FPRAS/1 for d such that for alkw,
Pr||M(w) — d(w)| < 1/N*1] > 1 —1/2"*. (Recall thatN = 2" = |w|.) Now
define M 4 to be a machine that on any inpuffirst runs itself recursively on all
inputsy < x. The recursive calls build up a string whose domain is all the
strings up to but not including. Again with high probabilityzw = wx_1. Finally,
M4 computesM (w1l) and compares it to its already-computed valdéw). If
M(wl) < M(w), M4 acceptse; elseM 4 rejectse.

The point is that owing to decisiveness, whenevee A, |d(wl) — d(w)]
is large enough that the approximating value§w) and M (wl) will show
M(wl) < M(w) with high probability, soM 4 will accept. Similarly whenever
x ¢ A, M4 will most likely not getM (wl) < M (w), and with high probability
will correctly rejectz. SinceM4(x) does little more than run the FPRAS 2"
times, M 4 runs in2°(" time, and so4 € BPE. O

The construction in (a) fails to establishl for decisiveE-martingales. The
problem is that/; andd, can be decisive, but a valug (w) can be positive and
do(w) negative such that; (w) — d2(w) is close to but different from zero. We do
not know of any other strategy that maké$ hold for decisive martingales, so that
they would yield a fully-qualified notion of measure. Now do we know whether
M1 holding for them would have any larger-scale complexity consequences.

The “bigger game,” of course, is whether every probabiligtimartingaled
can be simulated by a decisive ode in the sense that*>[d] C S>°[d'], from
which M3 would follow. For deterministids-martingales this is a simple simula-
tion: taked’ = (d + e)/2, wheree bets an amountl /2) - (1/N?) in the direction
that takes the combined bet away from zero. The particular probabilistic martin-
galesd that we care about are those that arise in the proof of the next theorem.

Theorem 4.2 For all fixede > 0, BPTIME[2°"] can be covered by a probabilistic
E-martingale.

The tricky part of this, compared to the simple proof that DTIRIE] has mea-

sure zero ink, is that it may not be possible to obtain a recursive enumeration
of “BPTIME]...]| machines.” However, probabilistic martingales (though maybe
not decisive ones) can take up the slack of starting with a larger enumeration of
unbounded-erromprobabilistic TMs, and arrange to succeed on those TMs that
happen to have bounded error.



Proof. TakeP;, P, ...to be a standard recursive enumeration of probabilistic Tur-
ing machines that run in tim&". We define a “randomized martingale machine”
M as follows. M divides its initial capitalCy = 1 into infinitely many “shares”
sk = 1/2k? for k > 0 (with an unused portion — 72 /12 of Cy left over). Each
sharesy, is assigned to the corresponding machife maintains its own capital,
and (for a fixed random inpyf) computes a martingale that bets a nonzero amount
only on stringse of the formy10*. The martingale computed by is well-defined
by the sum of the shares.

To play shares;, on a stringe, M uses its random bits to simulakg 2“"-many
times, treating acceptance-a$ and rejection as-1, and letss be the sample mean
of the results. (O can apply the construction in [GZ97], which is defined for
any probabilistic TM even though it only amplifies whél has bounded error.)
M then bets a portiom/2 of the current capital of sharg with the same sign as
v. ThenM runs in timeO(22").

For any P, that has bounded error probability, a measure-one set of random
sequences give:

e for all but finitely many0™ € L(P), v > 1/2, and
o for all but finitely many0™ ¢ L(Py), v < —1/2.

For any sequence in this set, shagesurvives a possible finite sequence of losses
and eventually grows te-co. HenceM succeeds of(Py). |

By our equivalence theorem, Theorem 3}, defines a probabilistic martin-
galed that has an FPRAS. We may fail to obtain suchthat is decisive, however,
for two main reasons. First and foremost, whgnhas unbounded error, the sam-
ple means may be very close to zero. However, this does not prexemdividual
shares, from playing a decisive betting strategy: if || < 1/3 then bet zero.
Other thresholds besiddg3 can be used, and can be varied for differenor
scaled toward zero dg |=|?, and so on. Since the shares play on different strings,
the combination of the revised shargsyields a functiond’ that is decisive (i.e.,
this is not the problem iM1 for decisive martingales). The second rub, however,
is thatd’ may no longer be fully randomly approximable. This is because a tiny
difference in a reported may cross the threshold and cause a displacement in the
value ofd’ that is larger than the scheme allows. Put another way, the random vari-
ablev for a particular: may happen to be centered on the currently-used threshold,
so that two widely-displaced values are output with roughly equal probability.

Seen in isolation, the problem of simulating a tin{e) probabilistic martin-
galed by a decisived’ is tantalizing. There seems to be slack for fiddling with



thresholds to defind’, or trying to take advantage of the fact that a martingale
must make infinitely many large bets along any language that it succeeds on. Or
one could try to make one of the parts of the proof of Theorem 6.2 below produce
a decisive probabilistic martingale from the given one. However, this problem is
tied to (and basically a re-casting of) the longer-studied problem of diagonalizing
against bounded-error probabilistic machines:

Theorem 4.3 If all probabilistic E-martingales can be simulated by decisive ones,
then for allk > 0, BPTIME[n*] # BPP.

Proof. By Theorem 4.2, it immediately follows that for ak > 0,
BPTIME[2"] # BPE. The conclusion then follows by familiar “translation”
or “padding” techniques. O

Rather than rely on translation/padding results as in the proof of Theorem 4.3,
however, we find it more informative to do the measure and diagonalization directly
on BPP. The next section makes this possible, and independently contributes to
the growing debate about the “proper” way to extend Lutz’s theory to measure on
sub-exponential time classes.

5 A New Take on Sub-Exponential Measure

The key idea is to focus on the “betting strategy” that a martingale represents.
The strategy plays on an unseen languageand tries to win money by “pre-
dicting” the membership or non-membership of successive sturngsA. Stan-
dardly, a martingald corresponds to the strategy that starts by betting the amount
B; = d(1) — d()) “on” the assertiom\ € A, and given a string that codes the
membership of all stringg < x in A, betsB, = d(wl) — d(w) onz. Here a
negativeB, means that the bet winsif ¢ A. For measure df and above, one

can freely switch between the two views because the (upper bound on the) time
to compute all ofi(\),d(1),...,d(w) has the same order as the time to compute
d(w) alone.

For sub-exponential time bounds, however, one has to choose one’s view. Pre-
vious proposals for measures on classes bdlojMay94, AS94, AS95, Str97,
CSS97] have worked directly with the martingales. We apply time bounds directly
to the betting strategies, relaxing the condition that they must betiooessive



strings, but maintaining that bets be in lexicographic order. The following is equiv-
alent to the way a “lex-limited betting game” is defined in [BM&8]. (The gen-
eral notion of betting games is obtained by replacing “lex-legal” by the simpler
requirement thafz can never bet twice on the same string.)

Definition 5.1. For any time bound(n), atime+(n) martingaleis one computed
by a maching= that executes one infinite computation as followis.maintains
a “capital tape” and a “bet tape,” in addition to its other worktapes, and works in
stagesi = 1,2,3... Beginning each stage the capital tape holds a nonnegative
rational numbet’; . Initially Cy = 1. G computes a query string to bet on and
abet amountB;, —C;_1 < B; < C;_1, where again a bet with negativ& wins if
x; is not in the language being played on. If the bet wins, then the new céjital
equalsCi_; + | B;|, else itisC;_1 — | By

G is allowed to choose the next string, 1 to bet on depending on the results
of previous bets. The computatioriéx-legalso long as the sequence of bet strings
x; is in ascending lexicographical ord&r.runs in timet(n) if for all n, every bet
on a string of lengt is made within the first(n) steps.

The martingale computed b¥ is defined for allw by dg(w) = the capital
after the finite sequence of bets that are resolved b{The “lex” limitation here
makes this a martingale, unlike the corresponding situation in [BRBR.)

Now we simply carry over Definition 2.1 to the new definition of running time.

Definition 5.2. A classC hastime+(n) measure zerdf there is a timet(n) mar-
tingaled such tha C S*°[d].

For time bounds closed under multiplication &%, this is equivalent to Lutz’s
definition. Our point is that for smaller time boundsén) that meet the follow-
ing definition, time¢(n) martingales define a notion of measure that meets all the
measure axioms.

Definition 5.3. A collectionT" of time bounds is “well-behaved” if it is closed
under squaring, i.e. if € T = t> € T, and if everyt € T is fully time-
constructible and at least linear.

Examples are polynomial timguasipolynomial time (i.e..T” = {functions
2e(lozm)” for ¢ d € Q*}), linear exponential time (functiors™ for ¢ € Q+), and
poly-exp. time (functionQC”d for ¢, d € QT), when the corresponding DTIME]
classes ar®, DTIME[gpoly|, E, andEXP. The corresponding bounded 2-sided
error probabilistic complexity classes are here calkelP, BPTIME[gpoly],
BPE, andBPEXP.



Proposition 5.1 For any well-behaved collectidfi of time bounds, timetn) mar-
tingales fort € T define a measure oDTIME[T] that meets measure axioms
M1-M3.

Proof. For the finite-union version d¥11, suppose we are gives; andGs from
Definition 5.1. Define(G3 to divide its initial capital into two equal “shares}
ands-, which follow the respective betting strategies usedyyandG,. In con-

trast to the situation for general betting games in [BM#8], where closure under
finite unions implieBPP # EXP, the point is that owing to the lex-order stipula-
tion, G5 can play the two shares side-by-side with no conflicts. Whichever share’s
choice of next string to bet on is the lesser gets to play next; if they both bet on a
stringz, thenG's’s bet is the algebraic sum of the two bets.

We postpone the definition and treatment of the infinite-unions case until the
end of this section.

ForM2, we actually show that for any tim&n) martingaled, there is aime-

t(n) printablelanguageA that is not covered by. Let M start simulating ther
for d, and definer € A iff G makes a negative bet an ThenM can print out all
the strings inA of length up ton within its first¢(n) steps.

For M3, we show the stronger result that for ahye 7', DTIME[t(n)] has
time-T" measure zero. TakB,, P», Ps, ... to be a recursive presentation of time-
t(n) Turing machines so that the langudge, ) : « € L(FP;) } can be recognized
by a machine\/ that runs in time, say,(n)2. Let G divide its initial capital into
infinitely many “shares’s;, wheres; has initial capitall /2;2. To assure meeting
the time bound( bets only on tally strings = 0/ as follows: Leti be maximum
such tha®’ divides;. Then bet all of the current value of shasepositively if z €
L(P;), negatively otherwise. For all € DTIME[t(n)], the share; corresponding
to any P; that acceptsi doubles its capital infinitely often, making succeed on
A regardless of how the other shares do. Theruns in timeO(nt(n)?), which
belongs tdrl". O

Definition 5.1 defines a single infinite process that begins with empty input.
We want an equivalent definition in terms of the more-familiar kind of machine
that has finite computations on given inputs. We use the same model of “random
input access” Turing machinegd used by others to define measures on classes
belowE [May94, AS94, AS95], but describe it a little differently: L& have an
“input-query” tape on which it can write a string and receive the bib; of w that
indexess;. Initially we place onM'’s actual input tape the lexically last string
that is indexed by (if |w| = N, thenxz = sy), and writeM (w : =) or M (w : N)
to represent this initial configuration.



It is now believed that the class of martingales computed by machines of this
kind running inpoly(n) time or space is too big to define a good notion of measure
on P or PSPACE, respectively. Up to now, the main solution has been to impose
some “dependency set” restriction on the queries madi/bysiven M, define a
directed grapiy; by making(s;,z) an edge if there exists some of lengthn
such thatM (w : x) queries bitj of w. Necessarilys; < x. The condition used
by Allender and Strauss to define “conservaii«eneasure” [AS95] (and used in
[AS94]) is that for everyr, the set ofy such that there is a path frognto x in '
haspoly(|x|) size and can be output in polynomial time. We define a condition that
is incomparable with theirs, and seems to yield an incomparable notion of measure.

Definition 5.4. An input-query machin@/ “runs lex-nicely in timet(n)” if for all
w, z, andm < |z|, the computatiod/ (w : 2) makes its input queries in lex order,
and queries any; of lengthm within the firstt(m) steps of the computation.

The intent of the definition is also clear if we add sof:)-sized “extras” to the
input tape, such as an indéx n. or some error parameterss.

An example where this condition is more liberal is &h that first queries
the stringsd? for 0 < i < n, reads the results as a binary stringf lengthn,
queriesr, and then querie&™*!. Then0"*! has exponentially-many predecessors
in T'ps, but M still runs lex-nicely in quadratic time. A poly-time machine of the
Allender-Strauss kind can, however, query all strings of ler@tlog n), which
our machines cannot do.

The technical nub now is whether the extra information that writingr equiv-
alently N, on the input tape ol imparts is enough to compute more martingales
than in Definition 5.1. The nice robustness property is that the answer ©ur
proof is similar in spirit to robustness proofs in [AS95], and we would like to know
whether it can be simplified or cast as a simple patch to one of their proofs.

Lemma 5.2 LetT be a well-behaved collection of time bounds. THes a time-
t(n) martingale for some € T if and only if d is computed by an input-query
machine)M that runs lex-nicely in some tim&n) with ¢’ € T'.

Proof. The forward direction is immediate: gived, M (w : z) just simulates
G up through all stages that bet on strings indexedubgnd outputs the final
capital. Since(|z|) is time-constructible) knows to shut itself off ifG' dithers

for t(n) steps without betting on any more strings of lengthThe point of the
converse is that the extra information giverMiw : z) in the form ofx (compared
to how betting games receive empty input) does help M compute any more



martingales. The effect is similar to the robustness results for the “conservative
measure-ork?2 notions of [AS95]. The main point is the following claim:

Claim 5.3 Suppose is a proper prefix ofv such thatd(v1) # d(v). ThenM (w :
x) must query the string, indexed by the ‘1’ inv1.

To prove this, suppose not. Také = {w’ : |v'| = |w|andv C w'}, W; =
{w e W :vl Cw}, andWy = W \ W;. Thanks to the lex-order restriction,
noneof thew’ € W causeM (v’ : z) to queryy,—they all make the same queries
lexically less thany,, and then either all halt with no further queries, or all make
the same query higher thgip and can never queny, from that point on. Now for
allw, € Wy, there is a corresponding, € W, that differs only in the bit indexing
Yy It follows thatM (w; : z) andM (wy : =) have the same computation. But then
the average of (w; : z) overw; € W; must equal the average of (wy : z)
overwy € Wy, which contradictsi(v0) # d(v1) sinced is a martingale. This
proves the claim.

It follows that if v is a shortest initial segment such th&iv1) # d(v), then
for everyw with |w| > |v|, the computationV/ (w : |w|) queriesy,, after perhaps
querying some strings lexically befogg. Then for a shortest, extendingv0
with d(vpl) # d(vp), and allw with |w| > |vg| andv0 C w, the computation
M (w : |w|) must queryy,,, and so on...and similarly far, extendingul...

Now the lex-limited betting gamé& simulatingM takes shape: For all, the
phase of the computation in whial bets on some (or no) strings of length
begins by simulating\/ (w : 14). WheneverM (w : 1/") queries a string:
of lengthn, call z a “top-level query.” G then simulates\/(w : x) in order to
learn what to bet om. G maintains a table of all queries made by and their
results. If a stringy < x queried byM (w : z) is a top-level query, by the lex-order
restriction applied taV/ (w : 11™), 4 will already be in the table. If; is not in
the table, therG doesnot queryy—indeed, it might violate the runtime-proviso
to queryy if y is short. Instead(Z proceeds as though the answerntis “no.”
Finally, if M (w : x) queriesz, G simulates both the “yes” and “no” branches and
takes half the signed difference as its bet. M{{fw : =) does not query;, thenGG
bets zero o) By Claim 5.3, the average of the two branches is the same as the
value of M (w : z’) for the top-level query’ lexically preceding: (or the average
is d(\) = 1in casex is the first query). By induction (see next paragraph), this
equals the capitals has at this stage, 96 has sufficient capital to make the bet.
ThenG queriesz. Whent(n) steps of the simulation af/ (w : 11")) have gone
by, or whenM (w : 11")) wishes to query a string of length n, G abruptly skips
to the next stage of simulatinyy (w : 1*"*1)) and handling any queries of length
n + 1 that it makes.




For correctness, it suffices to argue that the vadeiesmputes while simulating
M(w : ) always equalM (w : x), despite the possibly-different answers to non-
top-level querieg. Suppose andv’ be two initial segments up tothat agree on
all top-level queries, such thdtv) # d(v'). LetW = {w : v C w A x,, = 1) }
andW’ = {w' : v/ Cw' A x, = 1™ }. Then for everyw € W there is a
w’ € W', obtained by altering the bits indexing non-top-level queries to make
v a prefix, on whichM (w’ : 14") has the same computation &&(w : 1t(™).
Hence the average i/ (w : 1™) overw € W equals that ofV/ (w’ : 1¢(™)
overw’ € W', but the former equald(v) and the latter equalé(v’) sinced is a
martingale, a contradiction. 3& always gets the correct valuesdifw) as it bets.

Finally, the running time of this process up through queries of lemgth
bounded by>"" _, t(m) < nt(n). One technicality needs to be mentioned, how-
ever: G needs to maintain a dynamic table to record and look up queries. On a
fixed-wordsize RAM model a string can be added or looked up in tind&(|x|),
but it is not known how to do this on a Turing machine. However, we can appeal
to the fact that a Turing machine can simulatsteps of a fixed-wordsize RAM
in time O(t?). Hence the final runtime is at mogit(n))?, which by the closure
under squaring in “well-behaved” is a boundiin O

Now we candefinethe infinite-unions case in a way that carries over Lutz’s
intent. Say that a sequende, d, ds, . .. of martingales igime+(n)-presentedf
there is an input-query maching that given N#: on its input tape computes
d;(w) (for all w with |w| = N) lex-nicely in timet(n). A time-t(n) infinite union
of measure-zero classes is then defined by a sequkn€e, Cs . . . of classes for
which there is a time{n) sequence of martingalés, da, ds, . . . with C; C S*°[d;]
for eachi. The niggling extra condition we seem to need restricts attention to
complexity classe§ that are closed under finite variations, meaning that whenever
A € CandA A B isfinite, alsoB € C.

Proposition 5.4 Let T be a well-behaved family of time boundsC{tC,,C5 . ..
is a time#(n) infinite union of measure-zero classes, and egcis closed under
finite variations, then;C; has time¢(n) measure zero.

Proof. We build anM’ that divides its initial capital into infinitely many shares
s;, each with initial capitall /2i2. (The portionl — 72 /12 of the capital left over
is ignored.) Také\/ to be the timeXn) input-query machine computing the time-
t(n) sequence of martingalés, dz, ds, . . . from the above definitions. Then share
s; Will try to simulate computationd/ (w : z#i).



Givenw andx, where|z| = n, M'(w : x) loops overn from 1 to n. At each
stagem it allots t(m) steps to each of the computatioh&w : x#1),..., M(w :
x#m). The rubis that the last of these, namely (w : z#m), was not included in
the previous iteratiom — 1 and before, and conceivably may want to query strings
of length < m that M’ has already passed over. The fix is that we may begin
the simulation ofM (w : z#m) by answering “no” for each such query, without
submitting the query.

For queries made by these computations on strings of length itself, M’
works in the same parallel fashion as in the proof for finite unions in Proposi-
tion 5.1. Namely, whichever of the computations wants to query the lexicographi-
cally least string is the one that receives attention. This polling téKes?) extra
time per step on strings of length. If two or more wish to bet on the same string,
thenM’ submits the algebraic sum of the bets. The running time of iteratiarh
the for-loop is thug) (m3t(m)), and summing this tells us thaf’ runs lex-nicely
in time nt(n), which bound belongs t®.

For any languagd € U;C;, there exists ansuch that not onlyl € C;, but also
all finite variations ofA belong toC;, and hence are covered By. In particular,
the finite variationA’ that deletes all strings of length less thas covered byi;.
Then share; imitates the simulation by/ of d; playing onA’, and hence sees its
capital grow to infinity. O

Whether we can claim that our measure satisfies Lutz’s infinite-unions axiom,
and henceall the measure axioms, is left in a strangely indeterminate state. All
complexity classes of interest are closed under finite variations, and we've shown
that the infinite-unions axiom holds for them. If we could show thatll —> the
closureC’ of C under finite variations is null, then the construction would probably
be uniform enough for time bounds to plug in to the above proof and remove
the condition on th€;. But as it stands, this last is an open problem, and a niggling
chink in what is otherwise a healthily robust notion of measure.

For measure of® in particular, our notion lives at the weak end insofar as the
P-printable sets, and hence the sparse sets, do notthaweasure zero. However,
it is strong enough for the construction in the main result of [AS94]. For any fixed
e > 0, letE, stand for the collection of time bound&’ for § < e. This is closed
under multiplication and hence well-behaved.

Theorem 5.5 (after [AS94]) For everye > 0, the class of language$ < E. such
that BPP ¢ P4 has E.-measure zero (in our terms).



Proof Sketch. The key detail in the proof in [AS94] is that the dependency sets
for computationsV/ (w : x) have the form{ 02'1ly - ly| < (logn)/b}, wherebis

a constant that depends eandn = |z|. These sets are computable in polynomial
time, and more important, are sparse enough that every string of lengiithe

set can be queried ipoly(m) time, for allm < n. Hence we can construct an
E.-martingale to simulate the martingale in that proof. O

6 Probabilistic Sub-Exponential Measure

We first wish to generalize the notion of an FPRAS to general time bot(nds
The indicated way to do this might seem to be simply replacipighy “t” in
Definition 3.1. However, we argue that the following is tbarrect conceptual
generalization.

Definition 6.1. Let T denote an arbitrary collection of time bounds. A function
f: ¥* — Q=" has afully poly-T randomized approximation scherfie-FPRAS)

if there are a probabilistic Turing machidé, a bound:t € T', and a polynomiap
such that for alk: € £* ande, § € Q>°,

Pri(1—e€)f(z) < M(x,€6,6) < (1+¢€)f(x)] >1-4,
andM (xz, €, d) halts withinp(¢(|z]) 4+ (1/€) + log(1/4)) steps.

That is, we have replacedz{” in Definition 3.1 by “¢(|z|).” If T is closed un-

der squaring (i.e., well-behaved), theft(|z|)) is a time bound’ in 7', and the

time bound in Definition 6.1 could essentially be rewrittent/ag:|) - p((1/€) +
log(1/4)). The point is that the time to achieve a given target accusamyerror

0 remains polynomial (for an§”) and is not coupled with the running tinén),

which figuratively represents the time for an individual sample. The application in
this section is entirely general and typical of the way an FPRAS is constructed and
used. Hence we assert that the result supports our choice of generalization.

Now we would like to say simply that a probabilistic tiffemartingale is a
martingale that has a fully poly-randomized approximation scheme. However,
recall the discussion in the last section before Definition 5.4 that the unrestricted
definition of a deterministic timefn) martingale is considered too broad. We need
to work the “lex-nicely” condition into the manner of computing the approxima-
tion, and so define:



Definition 6.2. A probabilistic time7" martingaleis a martingale that has a fully
poly-T' randomized approximation scheme computed by a machindat runs
lex-nicely in some time < 7.

Expanded, the lex-nicely proviso in this case says that in the randomized com-
putation of M (w : N, e, d), accesses t@ must be in ascending (i.e., left-to-right)
order, and any requesj for bit j of w must be made within the firgf|s;|) steps.
Here we could weaket(|s;|) to p(t(|s;]), €,log(1/d)) without affecting any of
our results. This proviso may seem artificial, but it maRésplay by the same
rules used to define suld time martingales in the first place. Anyway, for time
boundsT" at E and abovethis technicality can be ignored, add(w, ¢, §) can be
anyT-FPRAS ford(w).

The other main definition in Section 3 carries over without a hitch. We simply
give lex-limited betting game& access to a sourgeof random bits, calling the
resulting machiné,.

Definition 6.3. A classC is “time-T-random-null” if there is a tim&- randomized
martingale machiné&’ such that for allA € C, the set

{p:AeS>®dg,)}
has Lebesgue measure one.

Before we prove that this definition yields the same “null” classes as the previ-
ous one, we give a noteworthy motivation. A sequefageis “polynomially non-
negligible” if there existg > 0 such that for all but finitely many, €, > 1/n¢.

Theorem 6.1 For any polynomially non-negligible sequerieg], the class of lan-
guages of density at mokt2 — ¢, is polynomial-time random null, but it—nor the
subclass of languages of density at mgst-does not have measure zero in any
sub-exponential time bound.

Proof Sketch. Let L be any language of density at mdgt2 — 1/n°. Then (for
all large enough) the probability that a random string of lengthbelongs toL

is at mostl /2 — 1/n¢. By samplingO(n2°) strings, we create a process in which
with probability > 1 — 1/n° there is an excess of at least strings that are not
in L. A martingale that bets conservatively on strings not being ican more
than double its value whwnever that event occurs. Since the productdf/n¢
converges for > 1, and this analysis holds for any sughthe class of suclh is
polynomial-time random null.



However, every deterministic timgn) martingale fails to cover some time-
O(t(n)) printable language, so whe() = o(2"), not all languages of that den-
sity can be covered. Whenbelongs to a well-behaved familfy that does not
include2™, it follows that for allc > 0, some language of densityn¢ is not cov-
ered. O

Theorem 6.2 LetC be a class of languages, and {Etdenote a well-behaved col-
lection of time bounds. Then the following are equivalent:

(&) There is a probabilistic tim&: martingale that covers§.
(b) Cis “time-T-random-null”
(c) For arandom oracled, C hasDTIME[T]#-measure zero.

Proof. (&) = (b): Letd be a probabilistic tim& martingale that covers, and

let M compute al'-FPRAS ford. Then there aré € T and a polynomiap such
that M runs lex-nicely in timep(¢(. . .), .. .). Here we may suppose thdh) > 2n
and thatt(n) is fully time constructible. We describe a probabilistic lex-limited
betting game& with an auxiliary sequence € {0, 1}* that works as followsG,
carries out the simulation of/” in Lemma 5.3, using to supply random bits
requested by//. Whenever)M makes a (top-level) query of lengthn, G takes

en = 1/Kt(n)? andé,, = 1/4t(n)3, where the quantitys is described below, and
simulatesM (w : z, €,, §,,). Note thatG has time to write:,, andJ,, down before
betting on a string of length. (Also note thaip(t(n), €,,log(1/d,)) is likewise

a polynomial int(n), which is why the change remarked after Definition 6.2 does
not affect this result. Moreover, we can chodsas low a2~ 7°%((n) rather than
essentially taking,, = ¢,; this slack is not surprising given the remark on slack in
defining an FPRAS after Definition 3.1.)

Now suppose thatr, has current capital’ just before queryinge. Let w
index the strings up to but not including Let C; be the result of simulating
M(wl : x,€e,,dy), andCy the result of simulating// (w0 : x, €y, d,). If we had
complete confidence in the estimat&sandC; for the valuesi(w0), andd(w1l),
respectively, then we would bét, = Cgi;gg on the event: is “in.” However,
since the estimate may err by a factor(df+ ¢,,) even whenl’s approximation
is successful, we mak@/, play a little conservatively. Specifically, we will make
G suppose that’; underestimateg(w1), and also thaf’y underestimated(w0).
Imitating the equations in the proof of Theorem 18 in [RSC95], we define:

C1—Co
(C1 + €,C) + (Co + €,C)°

B, =C

®3)



Making B, smaller in absolute value in this way also has the effect of preventing
the current capital from going to zero even after a finite sequence of bad bets re-
sulting from incorrect estimates by/. This scaling-down works even @ itself

falls belowe,,.

Claim 6.3 Let A be alanguage on whiathsucceeds. I is such that, starting with
the current bet, all estimates by are within the prescribed FPRAS bounds, then
G, playing onA grows its capitalC' to infinity, regardless of how small is at the
current stage.

We could appeal to the proof of Theorem 18 in [RSC95], but here we sketch a
different way to do the argument. We first show thatpheportionof C' that is bet

(i.e., the fractional part oB,) is close to the ideal proportion given by the values
d(w), d(wl), andd(w0). Without loss of generality suppose; > Cj so that

B, > 0—the case’y < (1 is handled symmetrically. Suppose first tliat is a
losingbet, i.e.x ¢ A. We want to prove thatl — %) > ‘il(gfuo)) (1 — Ke) (writing

e fore,,). Now

&)_ B Ch1—Cy o 2Ce + 2Cy
c’ 01+Co+206_206+01+00'

This is least wher®y = d(w0)(1 — €) andC; = d(wl)(1 + €) within the bounds
allowed by the FPRAS. Then we obtain

C; = (2d(w) —d(w0))(1+e€)
Ci+Cy = 2d(w)+2ed(w) — 2ed(w0), and
C1>Cy = d(w)+ed(w) > d(w0).

Hence

Bey _ d(w0) + ¢(C — d(w0))
C’  dw)(1+e€) +e(C — d(w0))
d(w0)(1 —€) + eC
d(w)(1 + €) — ed(w0) 4 eC
d(w0)(1 —€) + eC

= )1+ e) — e(d(w) + ed(w)) + €C
~ d(w0)(1 —¢€) +eC

 dw)(1 —€2) +eC

> d(wO d(w) (1— 0



The last line follows from the identity,z > 0 A b > a = £ > ¢, and
d(w0)(1—¢) = a > b= d(w)(1—e* because(w)(1+¢) > d(w0). That finishes
this case, withi = 1.

The case of a winning bet is not quite symmetrical. We want to sfiow

Bey > %(1 — Ke). We have

% Ch1—Cy o 2Ce + 2C,
C Cl—i-C()—‘rQCE_QCE-‘rCl—i-CO'

This is least whert; = d(w1)(1 — €) andCy = d(w0)(1 + ¢€) within the bounds
allowed by the FPRAS. Then we obtain

(1+=)=1+

Co = (2d(w)—d(wl))(1+e)
Ci+Cy = 2d(w)+ 2ed(w)— 2ed(wl), and
C1>Cy = d(wl)>d(w)(l+e).

The last line is the part that isn't symmetrical. Now we get:

By, dwl)+eC —d(wl))
1+=) = d(w)(1+€) + €(C — d(wl))

C
Now we want to use the identity

a+x > g'

b+z — b

If C < d(wl), this is satisfied withc = ¢(C — d(wl)), a = d(wl), andb =
d(w)(1 + €). This is becaus€’; > Cy = a > b, andb + = > d(w) + ed(w) —
ed(wl) > d(w)(1 — €) sinceC > 0 andd(wl) < 2d(w). Thus we get

(x<O0OA(b+x)>0 AN a>b) =

I+ ) 2 dwma+e 2 dw)

1-9

and we're home, again witkhk = 1. Now what if C' > d(w1)? In this analysis,
that impliesC' > d(w)(1 + ¢). We can wave this case away by reasoning that if the
current capital is already doing that much better than the “true val(e)) then
there is nothing to prove. Or we can makealways keep some of its capital in
reserve, so thaf' stays less thai(w) unless the FPRAS estimates are violated on
the high side. Finally, we could also change the2¢C” in the denominator of (3)
to something else, at the cost of makiAghigher.

(Remark. One interesting thing about this argument is that the inequalities
resulting from the worst-case choices@f andCj, namelyd(w1) > d(w)(1 +¢)



for a winning bet andi(w0) < d(w)(1 + ¢) for a losing bet, hold automatically

if d is a decisive probabilistic martingale, as defined below in Definition 7.1. Here
the latter inequality is trivial, but in the symmetrical casg < C; the losing-bet
case has the nontrivial inequality.)

The basic point in any event is that for any fixéd we can makg],, (1 —
t(n)Ke,) stay bounded below by a constant, by choosipg= 1/Kt(n)? (note
alsot(n) > 2n). The leadingt(n) comes in becaus#/ can make up td(n)
queries of lengtm, and(1 — Ke, )™ > (1 — t(n)Ke,). Hence asl(w) — oo
forw C A, C' — oo in a constant proportion té(w). This proves the claim.

Next we observe that with the choice&f, the probability thaall estimates by
M are within the FPRAS bound, which is lower-boundedby-.; (1 — 2t(n)dy,),
is bounded away from zero by a fixed constant. Thus the sgtsoich thatG,
succeeds ol has nonzero measure.

Now we finish the argument by claiming th&¥ succeeding o is atail
event i.e., independent of any changes to a finite initial segmept &ecause of
the way (3) is defined as a proportion of the current cagitalf G, and because
the “conservative” adjustment preserves a chgytk of the current capital’ even
in cases wherg(w1) actually equals zero and ¢ A, the strategy can recover
from a finite initial sequence of inaccurate bets. The recovery can happen within
the prescribed time bound because even it(@l) bets at lengtin get wiped out

down to thee,C' chunk, the resulting capital - ei™ = (C/K) - (1/t(n)? ™)
can still be written down i8¢(n) log t(n) time. All told, G runs in time at most
p((t(n))?), which by well-behavedness is still a time bound/in

(b) < (c): The infinite sequence of independent random bits given
can be simulated by an oracle T® that never repeats a query. For the converse,
there is the problem tha&#’? may succeed or for a random oraclé but by dint
of repeating oracle queries. However, a betting géhweith random coin-flips has
time to maintain a dynamic table of all the oracle queries (note—these are separate
from queries tav) made byG’, and in case of a repeat, answer from the table rather
than flip a fresh coin. Then the behavior @fover p is identically distributed to
that of G’ over oracle languages.

(c) = (a): LetG be an betting machine that takes an auxiliary sequence
and runs in timeD(t(n)), such that for every. € C, the set of sequencessuch
that G” succeeds o has Lebesgue measure 1. By the “slow-but-sure winnings”
lemma of [BMR"98] (or similar lemmas in [May94, BL96]), we may assume that
the capitalG has before any string of length+ 1 is queried is at mosb(¢(n)),
irrespective of or the languagel thatG is betting on. (This is done by restricting



G to never bet more than one unit of its capital.)
For everyn, the computation of7” along A can use at most(n) bits of p
before all queried strings of length are queried. Thus a finite initial segment
o C p of lengtht(n) suffices to determine the capital ti@t has at any point prior
to querying a string of length + 1. Now define, for anyw of length NV ~ 27,
d(w) to be the average, over all sequenees lengtht(n), of the capital thaG?
has after it has queried all strings (that it queries) whose membership is specified
by w. It is immediate thatl is a martingale.

Claim 6.4 C C S*°[d].

Proof. (of Claim 6.4). Suppose there is a langudges C on whichd does not
succeed. Then there is a natural numhesuch that for alkw C L, d(w) < m.
Now for each/NV define

On :={p: GuC L |u| < N)GP(w) > 2m}, (4)

and finally defineO® = U,crO,. Then eachOy is topologically open in the
space{ 0,1 }*, because € Oy is witnessed by a finite initial segmeatC p
of lengtht(n), which is long enough to fix the computati6# (w). Also clearly
01 C Oy C Os...,so0thatO is an increasing union of th@ .

Finally and crucially, eacldy has measure at most2. This is because the
measure oDy is just the proportion of of lengtht(n) such thaiG? (w) > 2m.

If this proportion were> 1/2, then the overall averagé(w) would be > m,
contradicting the choice df andm.

Thus we have an increasing countable union of open sets, each of measure at
most1/2. It follows that their union® has measure at most2. The easiest way
to see this is to writ€) = O; U (O3 \ O1) U (O3 \ O2) U .... This makesO a
disjoint union of piece®y \ On_1, and boundg:.(O) by an infinite sum whose
summands are non-negative and whose partial sums areldlt. Hence the sum
converges to a valug 1/2.

Hence the complement of O has measure at least2. For everyp € A, and
everyN, p ¢ Oy. This implies that for alkv C L (of any lengthV), G?(w) <
2m. It follows thatG” does not succeed ain Thus the se{p : L ¢ S*[G*] }
has measure at leakt2, contradicting the hypothesis th@p : L € S*[G”] } has
measure one.

Finally, we note that/ has a full time7' randomized approximation scheme.
This is simply because the averages can be estimated to within a desiyédn ) )
mean error by makingoly(t(n)) random samples, in time bounded by a polyno-
mial in t(n). More details follow.



Let A be a language along whigh succeeds, fix a prefix of A of length
2", and for an auxiliary sequence of lengtht(n), let G°" denote the capital
that G has prior to querying any string of length+ 1. As mentioned above,
we will assume that the “slow-but-sure” construction of [BNM®8] has been ap-
plied toG. This ensures that the capitdlhas before querying any string of length
n + 1 is at mostO(t(n)) (irrespective of its auxiliary sequence and the language
that it is betting on). Giver andd, we will divide theO(t(n))-sized range into
O(t(n)) tiny intervals of constant size. Pi@(@ log @) random auxiliary
sequences, and for each sequenee computeGG>™ and find out which interval
this capital falls within. This computation takes tim(m)O(@ log @) =
(t(n))°MO(L1log 1). By standard Chernoff bounds, for any interyaivith prob-
ability 1 — 6/(t(n)), the probability thatz?* falls within I is accurate to within
¢/Q((t(n))?). Thus with probability at least—O(¢(n))(6/92(t(n))), the probabil-
ities are accurate to withiey Q((t(n))?) for every interval. Therefore, the estimate
of d(w) made this way is accurate withid(t(n)) x O(t(n)) x ¢/Q((t(n))?) = €
with probability at least — §. ]

In the above proof of (c}=- (a), by replacing 2m" by “ K'm” for larger K in (4),

we can show that the measure®farbitrarily close to zero. Hence we have: given

G andL, if { p : GP coversL } does not have measure 1, then it has measure 0.
This seems curious, becausgé” coversL” is not in general a “tail event.” Nev-
ertheless, nothing in this part of the argument requires this to be a tail event—nor
even thaiG be a betting game! Thus our proof actually shows more generally that
“FPRAS” is a robust notion of computing real-valued functionginnamely that

it is equivalent to the “measure one” type definitions that are possible.

7 Measuring Sub-Exponential BP Time Classes Directly

Now we can carry over the definitions and results of Section 4 to sub-exponential
time boundg(n), starting right away with the notion of decisiveness.

Definition 7.1. A martingaled is t(n)-decisiveif there existst > 0 such that for
all w, taking N = |w| andn = [log,| N, eitherd(wl) — d(w) = 0 or |d(wl) —
d(w)| > 1/t(n)*.

Recall that a familyl” of time bounds is well-behaved if for alle T andk > 0,
the functiont(n)* also belongs t@". The threshold /¢(n)* is fine enough to make
time-t(n) martingales that bet below it fail to succeed, and coarse enough to enable



atimed'(n) randomized approximation scheme’s estimates to be finer than it, with
high probability.

Although giving proof details here is somewhat redundant with Section 4, we
want to make it fully clear that the results really do carry over to sub-exponential
time bounds.

Proposition 7.1 Decisive probabilistic martingales for well-behaved time bounds
T satisfy measure axionhd2 andM3. That is:

(a) Foranylanguaged € BPTIME[T (n)], there is a decisivBPTIME[T (n)]
martingaled such thatd € S,

(b) For every decisiv8PTIME[T (n)] martingaled, there is a languagel €
BPTIME[T (n)] such thatA ¢ S°°[d].

Proof. (a) Taket € T such thatd € BPTIME(t(n)]. We can find a probabilistic
TM M 4 running in timeO(¢(n)) such that for allz of any lengthn, Pr[Ma(z) =
A(z)] > 1 — 172%™ which is bounded below by — 1/2>" sincet(n) > n.
Now let d be the martingale induced by the lex-limited betting game that plays
only on string9)” and bets all of its capital oA (0™). Thend is trivially decisive,
and is approximable usind/4 in time O(t(n)), so it is a time?’(n) probabilistic
martingale that coverd.

(b) Define A to be the diagonal language of the martingaleiz. A = {z :
d loses money o }. We need to show that € BPTIMEI[T (n)]. TakeM be a
time-T'(n) randomized approximation scheme that with high probability approxi-
mates (the betting strategy used kiytp within 1/2t(n)*, and letM 4 acceptr iff
M says that the bet om is negative. Owing to decisiveness, wheneveg A,
M will say “negative” with high probability, and similarly for ¢ A. Hence
A € BPTIME[T (n)]. O

Proposition 7.2 Probabilistic time?’ martingales satisfifM1—finite unions and
M2, and satisfyM1—infinite unions for classes closed under finite variations.

Proof. The proof forM2 is immediate by the last proof. The proof for the finite
case ofM1 is the same as that of (a) in Proposition 4.1. For infinite unions, we
combine the construction in Proposition 5.4 with the idea for finite unions. By
running approximations for valueg (w), ..., d,(w) so that each comes within a
factor of (1 + ¢, /n) with probability at least1 — §,,/n), we can approximate the
desired weighted sum af; (w), ..., d,(w) to within a factor of(1 + ¢,), with



probability at least1 — §,,). Settinge, = 1/t(n)® andd,, similarly does the trick.
[

Theorem 7.3 For all individual time bounds € T'(n), BPTIME[t(n)] can be
covered by a tim&-(n) probabilistic martingale.

Proof. TakeP;, P, . ..to be a standard recursive enumeration of probabilistic Tur-
ing machines that run in tim&n). Now play the randomized lex-limited betting
gameM defined as follows.M divides its initial capitalCy = 1 into infinitely
many “shares’s, = 1/2k? for k > 1 (with an unused portion — 72 /12 of Cj

left over). Each share, is assigned td;, maintains its own capital, and plays on
infinitely many strings: of the formz = 0™, wheren is divisible by2* but not by
2k+1 Then no two shares play on the same string.

To play shares;, on a stringr = 0", M uses its random bits to simulat,
t(n)-many times, treating acceptancefasand rejection as-1, and letsv be the
sample mean of the resultd/ then bets a portiow/2 of the current capital of
shares;, with the same sign ag ThenM runs in timeO(¢(n)?).

As in the proof of Theorem 4.2, For aii§;, that has bounded error probability,

a measure-one set of random sequences makel/2 for all but finitely many

0" € L(Py) andv < —1/2 for all but finitely many0™ e~ L(P;). Hence for any
such sequence, shafgsurvives a possible finite sequence of losses and eventually
grows to+oco. HencelM succeeds ot (Py). |

The corollary now follows directly from the measure, rather than relying on
padding results.

Corollary 7.4 If probabilistic timed’(n) martingales can be simulated by decisive
ones, then for alt(n) € 7', BPTIME[t(n)] # BPTIME[T'(n)].

If the decisive simulation is uniform enough to apply to any well-behaved
then

BPTIME[O(n)] Cc BPP c BPTIME[gpoly], and
BPE C BPEXP,

all of which are unknown and possibly contradicted by oracle evidence.

Cai et al. [CLL"95] define the notion of &easible generatoto be a prob.
polynomial time machine that, on inpli¥, generates a string of lengthaccord-
ing to some probability distributio® = {D, }52,. In that paper we raised the



following question of whether every feasible generator ha®aic refinementor

every feasible generatdd, is there a maching/’ such that for all, there exists

y € {0,1}" s.t. Pr[M'(1™) = y] > 3/4? We also studied the analogue of this
question for arbitrary generators (i.e., non-feasible generators), and showed that,
in general, this is impossible.

Further, in [CLL™95] we observed a connection between this problem and the
notion of fully polynomial time randomized approximation scheme (FPRAS), and
established the following two facts:

(1) For every functiory with an FPRAS, there is a machidé, such that for
everyz ande there are two valueg, andys such thatl —e)f(z) < y1 < yo <
(1+ €) f(z) and such that for any, Pr[M(z,€,0) € {y1,y2}] > 3/4.

(2) If there is a machind@/; that achieves an effect similar to (1) with just one
valuey instead of two valueg; andys,, then every feasible generator has a monic
refinement.

It follows from our results that if every FPRAS has a symmetry breaking algo-
rithm as in (2), then one would obtain a tight BPTIME hierarchy.

8 Conclusions

We have defined a natural and interesting candidate notion of probabilistic mea-
sure. The notion has already been applied to “natural proofs” and a simulation of
“betting games,” from which it follows that it measures classes not known to be
measured deterministically. We have proved it to be fairly robust and appropriate
for BPTIME classes. We have tied questions about its suitability to the longstand-
ing open problem of whether there is a tigh® TIME hierarchy. One footnote on

the latter deserves measure. It follows from our work that one of the following is
true:

o #P £P

e BPP has a nontrivial time hierarchy, viz. for some, and all ¢,
BPTIME[n] # BPTIME[nkC].

While this can be argued directly by lettiigoe something like the time for com-
puting the permanent assumi#g® = P, the connection through measure is inter-
esting.



References

[Amb86]

[AS94]

[AS95]

[BFT95]

[BG81a]

[BG81b]

[BL96]

[BMR*98]

[CLL+95]

K. Ambos-Spies. Relativizations, randomness, and polynomial re-
ducibilities. InProceedings, First Annual Conference on Structure in
Complexity Theoryvolume 223 ofLect. Notes in Comp. Scpages
23-34. Springer Verlag, 1986.

E. Allender and M. Strauss. Measure on small complexity classes,
with applications for BPP. I®roc. 35th Annual IEEE Symposium on
Foundations of Computer Sciengmges 807-818, 1994.

E. Allender and M. Strauss. Measure on P: Robustness of the notion.
In Proc. 20th International Symposium on Mathematical Foundations
of Computer Scienc@olume 969 ol ect. Notes in Comp. Scpages
129-138. Springer Verlag, 1995.

H. Buhrman, L. Fortnow, and L. Torenvliet. Using autoreducibility
to separate complexity classes. 36th Annual Symposium on Foun-
dations of Computer Sciengeages 520-527, Milwaukee, Wisconsin,
23-25 October 1995. IEEE.

C. Bennett and J. Gill. Relative to a random orat]@4 # NP4
coNP# with probability 1. SIAM J. Comput.10:96-113, 1981.

C. Bennett and J. Gill. Relative to a random ora¢)@* # NP4
coNP with probability 1. SIAM J. Comput.10:96-113, 1981.

H. Buhrman and L. Longg@. Compressibility and resource bounded
measure. IrL3th Annual Symposium on Theoretical Aspects of Com-
puter Sciencevolume 1046 ofncs pages 13—-24, Grenoble, France,
22-24 February 1996. Springer.

H. Buhrman, D. van Melkebeek, K. Regan, D. Sivakumar, and
M. Strauss. A generalization of resource-bounded measure, with an
application. InProc. 15th Annual Symposium on Theoretical Aspects
of Computer Sciencevolume 1373 ofLect. Notes in Comp. Sgi.
pages 161-171. Springer Verlag, 1998.

J.-Y. Cai, R. Lipton, L. Longm, M. Ogihara, K. Regan, and
D. Sivakumar. Communication complexity of key agreement on lim-
ited ranges. IProc. 12th Annual Symposium on Theoretical Aspects



[CSS97]

[FS89]

[FS97]

[GZ97]

[HILLO1]

[JS89]

[JVV86]

[KL83]

[Ko83]

[KV87]

of Computer Scien¢ceolume 900 ofLect. Notes in Comp. Scpages
38-49. Springer Verlag, 1995.

J.-Y. Cai, D. Sivakumar, and M. Strauss. Constant depth circuits and
the Lutz hypothesis. IRroc. 38th Annual IEEE Symposium on Foun-
dations of Computer Sciengeages 595-604, 1997.

L. Fortnow and M. Sipser. Probabilistic computation and linear time.
In Proc. 21st Annual ACM Symposium on the Theory of Computing
pages 148-156, 1989.

L. Fortnow and M. Sipser. Retraction of “Probabilistic computation
and linear time”. IfProc. 29th Annual ACM Symposium on the Theory
of Computingpage 750, 1997.

O. Goldreich and D. Zuckerman. Another proof that BPPH (and
more). Technical Report TR97-045, Electronic Colloquium on Com-
putational Complexity (ECCC), September 1997.

J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. Construction of a
pseudo-random generator from any one-way function. Technical Re-
port 91-68, International Computer Science Institute, Berkeley, 1991.

M. Jerrum and A. Sinclair. Approximating the permanesitAM J.
Comput, 18:1149-1178, 1989.

M. Jerrum, L. Valiant, and V. Vazirani. Random generation of com-
binatorial structures from a uniform distributio.heor. Comp. Sgci.
43:169-188, 1986.

R. Karp and M. Luby. Monte-Carlo algorithms for enumeration and
reliability problems. InProc. 24th Annual IEEE Symposium on Foun-
dations of Computer Sciengeages 56—64, 1983.

K. Ko. On the definitions of some complexity classes of real numbers.
Math. Sys. Thy16:95-109, 1983.

M. Karpinski and R. Verbeek. Randomness, provability, and the sepa-
ration of Monte Carlo time and space. Gomputation Theory and
Logic, volume 270 ofLect. Notes in Comp. Scipages 189-207.
Springer Verlag, 1987.



[Lut92] J. Lutz. Almost everywhere high nonuniform complexity. Comp.
Sys. Scj.44:220-258, 1992.

[May94] E.MayordomoContributions to the Study of Resource-Bounded Mea-
sure PhD thesis, Universidad Poégnica de Catalunya, Barcelona,
April 1994,

[NW88]  N. Nisan and A. Wigderson. Hardness vs. randomnesBrdn. 29th
Annual IEEE Symposium on Foundations of Computer Scjgrecges
2-11, 1988.

[RR97] A. Razborov and S. Rudich. Natural proafsComp. Sys. S¢b5:24—
35, 1997.

[RSC95] K. Regan, D. Sivakumar, and J.-Y. Cai. Pseudorandom generators,
measure theory, and natural proofs.Aroc. 36th Annual IEEE Sym-
posium on Foundations of Computer Scierages 26—35, 1995.

[Rv97] R. Rettinger and R. Verbeek. BPP equals BPLINTIME under an oracle
(extended abstract), November 1997.

[Stro7] M. Strauss. Measure on P—strength of the noftigiorm. and Comp.
136:1-23, 1997.



