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Abstract

We study families of Boolean circuits with the property
that the number of gates at distancet fanning into or out of
any given gate in a circuit is bounded above by a polynomial
in t of some degreek. We prove that such circuits require
sizeΩ(n1+1/k/ log n) to compute several natural families
of functions, including sorting, finite field arithmetic, and
the “rigid linear transformations” of Valiant [26]. Our
proof develops a “separator theorem” in the style of Lipton
and Tarjan [14] for a new class of graphs, and our methods
may have independent graph-theoretic interest.

1. Introduction

Nonlinear lower bounds for natural problems, whether
for machine-based or circuit models, have been frustrat-
ingly hard to obtain. Indeed, there is currently no example
of a functionf : { 0, 1 }n → { 0, 1 }n whose graph belongs
to NP or to E that is known to require Boolean circuits of
size more than4n.

Faced with this situation, it is natural to seek other con-
ditions on the circuits or machines under which nonlinear
lower bounds can be proved. Valiant [26] added the condi-
tion that the circuits have logarithmic depth as well as linear
size. He defined a class of “highly rigid” linear transfor-
mations on{ 0, 1 }n (regarded as then-dimensional vector
space over GF(2)), and proved that log-depth circuits re-
quire sizeΩ(n loglogn/ log loglog n) to compute them.

We introduce a different condition that is both limiting
and natural. Define a familyC1, C2, C3, . . . of Boolean cir-
cuits to havepolynomial vicinityif there is a polynomialp
such that for any gateg in anyCn, and allt > 0, the num-
ber of gates connected tog by a path of length at mostt is at
mostp(t). For example, circuits whose gates are the nodes
of ad-dimensional mesh have vicinityO(td). For contrast,
a circuit in the form of a full binary tree does not have poly-

∗Supported in part by National Science Foundation Grant CCR-
9409104. Author’s current address: Computer Science Department, 226
Bell Hall, Box # 602000, UB North Campus, Buffalo, NY 14260-2000.
Email: regan@cs.buffalo.edu

nomial vicinity, sinceΘ(2t) gates are within distancet of
the root. Indeed, circuits with an output gate that depends
on alln input gates must havenΩ(1) depth if they have poly-
nomial vicinity. Note that the boundp(t) is independent of
the size or number of inputsn of the circuitsCn.

The main motivation for this condition is a practically-
minded one. Let us regard computing elements, be they
solid-state gates or optical nodes or etc., as having some dis-
crete uniform minimum size. Then in 3-dimensional space,
the number of elements one can “pack” within distancet
of a given elementg is O(t3). If time is measured in units
of how long it takes a signal from one element to reach a
neighboring one, then onlyO(t3) elements can affect the
computation ofg over the nextt time units. Thus cubic
vicinity is a property of those networks we can physically
build, at least under “physics as we know it.” Although real
solid-state components are being shrunk to degrees barely
imagined ten years ago, the vicinity condition still domi-
nates asn → ∞, i.e., for the kind of asymptotic bounds
that complexity theory is concerned with.

Similar arguments have been made by prominent re-
searchers in related contexts. Schorr [23] argued that the
constraints of embeddings in physical space prevent the re-
alization of (poly)logarithmic running times for parallel al-
gorithms; i.e., that PRAM and NC-theory-based running
times are too optimistic. This argument was carried further
by Vitányi [27], down to fine details of wire thickness and
heat concentration and other limits imposed by “the laws of
nature.” Feldman and Shapiro [8] gave a less-formal ver-
sion of the above definition of “polynomial vicinity” for a
machine model, and presented a 3-dimensional model for
which the best possible parallel speedup isn-to-n1/4 steps.
Kruskal, Rudolph, and Snir [13] advocated the study of such
“polynomial speedups” for other reasons.

A formal machine-based definition of “polynomial
vicinity” that generalizes Feldman and Shapiro’s, and also
applies to oracle machines, was introduced in the con-
ference paper [21]. A motivation given there is that
whereas unrelativized Turing machines have linear vicinity,
all known constructions of oraclesA such thatPA = NPA

use exponential vicinity. Thus “vicinity” may be the right
kind of quantitative concept to get beyond the notorious ob-



stacles posed by relativization results.
The circuit/graph form of the concept treated here is just

as quantitative and couldn’t be simpler to state. It also
makes no geometrical assumptions about how a graph is
represented in finite-dimensional space. Hence our final
motivation is to see to what degree lower bounds that have
been proved in VLSI or mesh-based models can be carried
through in a more-general setting.

The main result of this paper is asub-linear graph sepa-
rator theoremfor polynomial-vicinity (PV) graphs.

Theorem 1.1 (informal statement) Let [Gn] be a family
of graphs of sizes(n) and vicinityO(tk) independent of
n. Then for any disjoint vertex subsetsA,B of sizem in
Gn, there is a setS ofO(s(n) logm/m1/k) vertices whose
removal disconnects almost half the vertices inA from half
the vertices inB.

The setS is the separator. Whenm, s(n) = Θ(n), S has
sub-linear sizeO(n1−1/k log n). We will think of A as the
set of input nodes, andB as the set of output nodes, of a
circuit computing a function on{ 0, 1 }n. Valiant [26] ob-
served that circuits computing certain “highly rigid” linear
transformations on length-n vectors cannot have separators
of size less thann. We extend this observation to functions
having a certain “property of randomness” defined by Man-
sour, Nisan, and Tiwari [17], including sorting, the function
(a, b, c) 7→ a ·b + c in finite fields, and any (other) family
of universal hash functions. Separators for these functions
cannot have size less thann/2−1. Withm = Θ(n) in these
cases, we obtain our main application:

Theorem 1.2 Circuits of vicinityO(tk) that sort, or that
compute rigid linear transformations, or computea ·b + c
in finite fields, or do universal hashing on inputs of sizen,
must have sizeΩ(nk+1/ log n).

This is a fairly strong nonlinear size lower bound.
These results also show asize-vicinity tradeoff that

complements known time-space tradeoffs for these func-
tions. Pippenger and Fischer [20] proved that time-t Tur-
ing machines can be simulated by Boolean circuits of size
O(t log t). Hence any function computed in quasilinear
time qlin = n · (log n)O(1) has circuits ofqlin size. By
our results, however, such circuits for sorting anda ·b + c
cannot have polynomial vicinity. If our main theorem can
be improved in respects discussed in Section 5, it may give
a sense in which the olderO(t2)-size circuit simulation by
Savage [22], which gives quadratic vicinity, is optimal.

The main stem of computer-science interest in graph-
separator theorems were two papers by Lipton and Tarjan
[14, 15]. They showed that for any planar graphG of size
N , and any weighting functionwt on the vertex setV (i.e.,∑
v wt(v) = 1, wt(v) ≥ 0 for all v), there is a setS ⊆ V

of size less than2.83n1/2 whose removal breaksG into two
disconnected pieces, each of total weight between1/3 and
2/3. This improved Ungar’s theorem [25] giving such anS
of sizeO(n1/2 log n). They also gave an efficient algorithm
to find S, and gave applications. The universal quantifica-
tion overA andB in our Theorem 1.1 is roughly similar to
theirs over thewt function, and enables some of the same
applications. Note also that we have an “extra” log factor
like Ungar’s. Whether this can be taken out, and other im-
provements made, is also discussed in Section 5.

Separator theorems have since been obtained for several
other classes of graphs: graphs with a planar representa-
tion havingO(n) crossings [12], graphs of finite genus [10],
graphs of bounded tree-width or with excluded clique mi-
nors [2, 3], “d-local” graphs (meaning graphs embedded in
d-space so that the ratio of the length of the longest edge
in a minimum spanning tree to that of the shortest edge
is at mostd) [28], and graphs defined by intersections of
spheres around points ind-space [18, 19]. The class of
graphs of vicinityO(td) (for somed > 0) is incompara-
ble with each of these. One other connection to note is that
our graphs have relatively high (namely,nΩ(1)) diameter,
and this property is related both to the second-highest eigen-
value of various matrices associated to the graph and to hav-
ing small separators in papers by Alon [1], Chung [7], and
Spielman and Teng [24]. We do not, however, see how to
get our particular result from these connections. Our proof
uses justMenger’s Theoremand a means of obtaining large
independent sets in PV bipartite graphs.

2 Low-Vicinity Graphs

Given a subsetA of the vertex setV of an undirected
graphG = (V,E), letS(A) = { v ∈ V : (∃u ∈ E)(u, v) ∈
A }, and letN(A) = A ∪ S(A). Here one callsS(A) the
boundaryof A andN(A) the neighborhoodof A. Now
for t ≥ 2 inductively defineSt(A) = S(N t−1(A)) and
N t(A) = N(N t−1(A)). WhenA has just one vertexv we
writeN t(v) for N t({ v }) and so on.

Definition 2.1. (a) A graphG hasvicinity f(t) if for all
verticesv in G, |N t(v)| ≤ f(t).

(b) A family G of graphs hasvicinity f(t) if every graph
in G has vicinity at mostf(t). The graphs inG have
polynomial vicinity, and arePV graphs, if they have
vicinity tO(1).

Here we mean thatf(t) gives an upper bound on the “vicin-
ity function” of G, which could be defined byvG(t) =
supv∈V |N t(v)|. This looser usage suffices in this paper.
This concept has been studied in only one context that
we know, namely whereG is a (possibly infinite)Cayley
graphof a group, and is tied to questions about “polynomial



growth” of infinite groups (cf. [16, 4]). We can generalize
(b) to boundsf(t, n) that depend on the size or indexn of
graphsGn ∈ G, and will indeed do so in the proof of our
main theorem. However, the notion of vicinity is intended
to be local and independent ofn.

In this paper we focus on vicinity bounds of the formatk

for some fixed (not necessarily integral) constantsa ≥ 3
and k ≥ 1. The idea is thatk is an abstract notion of
the dimension of the graph, as exemplified by (rectangu-
lar or simplicial or etc.)k-dimensional mesh graphs having
vicinity Θ(tk). However, the full binary tree is an exam-
ple of a planar graph of vicinityΘ(2t), while not all graphs
of quadratic or even linear vicinity are planar. In fact, one
can convert any graphH and create a topologically similar
graph of nearly linear vicinity by replacing every vertexv in
H by a “ring” of degree-3 vertices, and then subdividing ev-
ery edge with a huge number of degree-2 vertices (exponen-
tially many in caseH had exponential vicinity). Thus low
vicinity is not aminor-invariantproperty of graphs. We do
not know whether graphs of vicinityatk must have “nice”
embeddings ink-dimensional space of the kind studied in
[18, 19, 28], and personal communications from some au-
thors of these papers have turned up no reasons why this
should be so.

One evident property of PV graphs is that they have rel-
atively large diameter, in fact,min-diameter. The diame-
ter of a finite graphG is the maximum distanced(u, v)
between two verticesu and v. The min-diameter equals
minu∈V maxv∈V d(u, v). An n-vertex graph of vicinity
atk has min-diameter at leastn1/k/a. This already implies
that PV graphs are not goodexpanders, but there is a much
more striking sense in which PV graphs are the antithesis
of expanding graphs. A typical definition for ann-vertex
graph to be an expander is that for somec > 0 and all
A ⊂ V of size at most (say)n/2, |S(A)| ≥ c|A|. We
show that for PV graphsG = (V,E), for all c > 0 and
v ∈ V , there is a relatively small value oft such that with
A = N t(v), |S(A)| < c|A|.

Lemma 2.1 LetG be a single graph of vicinityatk, k ≥ 1.
Let c be such that0 < c ≤

√
2− 1, and letv ∈ V . Finally

let
b = (2k log1+c 2) · log2(ka1/k

0 log1+c 2), (1)

wherea0 = max{ a, 2 }. Then for somet, 1 ≤ t ≤ b,
|St(v)| ≤ c|N t−1(v)|.

Proof. Suppose not; i.e., that for allt, 1 ≤ t ≤ b, |St(v)| >
c|N t−1(v)|. Then|N b(v)| > (1+ c)b. SinceG has vicinity
atk, this would imply(1 + c)b < abk. Hence to reach the
contradiction that proves the lemma, we need only show
that in fact(1 + c)b ≥ abk.

For k = 1, we haveb = 2(log1+c 2) log2(a0 log1+c 2),
and need to show that(1+c)b ≥ ab. Sincea0 ≥ a it suffices

to show(1 + c)b ≥ a0b. Then

(1 + c)b = 22 log2(a0 log1+c 2) = (a0 log1+c 2)2

and
a0b = 2a0(log1+c 2) log2(a0 log1+c 2).

Upon cancellinga0(log1+c 2) from both sides, it suffices to
show that

(a0 log1+c 2) ≥ 2 log2(a0 log1+c 2);

i.e., thatx ≥ 2 log2 x with x = a0 log1+c 2. This is true so
long asx ≥ 4, and the conditionsa0 ≥ 2 andc ≤

√
2 − 1

bring this about.
Fork > 1, let a′ = a

1/k
0 , and letc′ = (1 + c)1/k − 1, so

that(1 + c) = (1 + c′)k. Then

(1 + c)b ≥ a0b
k ⇐⇒ (1 + c′)kb ≥ (a′b)k

⇐⇒ (1 + c′)b ≥ a′b.

Sincec′ ≤
√

2−1 also holds, the desired value ofb follows
from the casek = 1 by substitutinga′ for a0 and c′ for
c in the formulab = 2(log1+c 2) log2(a0 log1+c 2). Since
log1+c′ 2 = k log1+c 2, this gives (1).

The main point needed for later results is that in all cases
b = O(log a). We will use this in cases where “a” is not
a constant but depends on the sizem of certain bipartite
graphs, and wherem itself may depend on the input-length
parametern. The dependence onc is less important, be-
causec will be fixed. Other tradeoffs betweenc anda in
a bound forb are possible; the general question involves
the study of so-calledLambert functions, and is left to the
interested reader. We emphasize that this counting bound
applies concretely to a single graph, not just asymptotically
for a family of graphs. We modify the argument to show:

Lemma 2.2 Let a, c, k and b be as in Lemma 2.1, and let
b′ = 2b+ 4k log1+c 2. Then there existst, 1 ≤ t ≤ b′, such
that |St(v)| ≤ c|N t−1(v)| and|St+1(v)| ≤ c|N t(v)|.

Proof. If not, then|N b′(v)| > (1 + c)b
′/2. But |N b′(v)|

must be at mostab′k = (a2k)(b′/2)k. Hence we get the de-
sired conclusion if we show that(1+c)b

′/2 ≥ (a2k)(b′/2)k.
Substitutinga2k for a0 in (1) tells us that this happens when

(b′/2) = (2k log1+c 2) · log2(2ka1/k log1+c 2)
= b+ (2k log1+c 2).

This gives the result.

It follows that there is always anoddvalue oft ≤ b′ such
that |St+1(v)| ≤ c|N t(v)|, and this is the consequence of
the lemma that we actually use.



3 The Separator Theorem

Let A andB be two disjoint subsets ofV in an undi-
rected graphG = (V,E). A subsetS of V is said tosep-
arateA fromB in G if S is disjoint from(A ∪ B) and the
graphG′ induced by deleting all vertices inS has no path
from a vertex inA to one inB. It will actually be cleaner
for use to relax the condition thatS be disjoint fromA and
B, as done by Bollob́as in [6]: CallS a “weak separator”
for A,B if deleting all vertices inS leaves no path from a
vertex inA \ S to one inB \ S. The corresponding form of
Menger’s Theoremthat we use is also given in [6]:

Theorem 3.1 If A,B have no weak separator of sizek−1,
then there arek paths connectingA andB such that no two
paths share a vertex.

The converse also holds (immediately), but this is the direc-
tion we use. We now have enough to state and prove our
main theorem in full detail.

Theorem 3.2 Given fixedε > 0, k ≥ 1, anda ≥ 2, we can
find δ > 0 such that for any graphG = (V,E) of vicinity
atk, the following holds: For any disjointA,B ⊆ V , with
m = |A| ≥ |B|, there existA′ ⊆ A, B′ ⊆ B, andS ⊆ V
such that

• S weakly separatesA′ fromB′.

• |A′| ≥ ( 1
2 − ε)|A|,

• |B′| ≥ 1
2 |B|, and

• |S| ≤ N log2 m

δm1/k ,

whereN = |V |.
If N log2m/δm

1/k < εm, then we can arrange thatS
is disjoint fromA′ andB′; i.e., thatS separatesA′ from
B′.

The hypothesis of the last sentence will hold asymptotically
in cases wherem = Θ(n) and (for sake of contradiction)
we suppose thatN is not Ω(n1+1/k). The conclusion of
the last sentence follows simply by renamingA′ to A′ \ S
andB′ toB′ \ S and adjustingδ a little. Hence we can re-
gard Theorem 3.2 as producing a separator in the traditional
graph-theoretic sense. Both our proof and the observations
in [26, 17] that our applications build on, however, work
more naturally for weak separators, and so we refer to weak
separators from now on.

Proof. Let ` = δm1/k/ log2m, where we explain how to
chooseδ at the end. Now create a bipartite graphΓ with
edges fromA toB defined by: foru in A andv in B, (u, v)
is an edge inΓ if and only if there is a path of length at most
` from u to v in G. Let I be any independent set inΓ, and

setA′ = A ∩ I, B′ = B ∩ I. Then any path going from
A′ toB′ in G has length greater thaǹ. By Theorem 3.1, if
there is noS of sizeN/` that weakly separatesA′ fromB′,
then there areN/` vertex-disjoint paths fromA′ toB′ inG.
However, the total number of vertices in these paths would
be greater thanN . This contradiction shows that there does
indeed exist a weak separatorS of size at mostN/`.

Thus all we have to do is constructI so thatA′ andB′

have the desired sizes.
The graphΓ has vicinity bounded bya`ktk. This is be-

cause a path of lengtht in Γ corresponds to a path of length
at most`t in G. Now let a0 = a`k. Note thata0 varies
with m. The strategy from here on is (1) choose a suit-
ably small constantc—taking c = ε/(2 + ε) will be seen
to suffice, (2) calculate the quantityb′ in Lemma 2.2 in
terms ofa0, c, andk, (3) chooseδ (on which` depends) so
thata0`

kb′k ≤ εm/2, and finally (4) show that with these
choices, we can build the desiredI. Step (3) is possible
because

b′ = O(log a0) = O(log `),

and so

a0`
kb′k = [a0δm/(log2m)k] ·O(logk `)

= [a0δm/(log2m)k] ·O(logkm) = δ ·O(m).

The constantC inside the “O” depends only onc, k, anda,
and we simply chooseδ = ε/2C.

A vital fact for our argument is that every vertex-induced
subgraph ofΓ has the same upper bounda`ktk on its vicin-
ity, and hence we can use the same estimates in a process
that recursively breaks off “pieces”P of Γ: At any step in
the process, letv be any vertex inA that does not yet be-
long to a “piece.” Find an oddt ≤ b′ from Lemma 2.2,
and letP = N t+1(v). Now by the vicinity bound and the
choice in Step (3), there are at mostεm/2 vertices inP .
Let Γ′ = Γ\P , and continue this process recursively onΓ′,
until all remaining connected components have size at most
εm/2. These remaining connected components are called
“leftover pieces.”

For a non-leftover pieceP , its boundary isSt+1(v), and
this is a subset ofA. In any event, define the “A-side” ofP
to beN t(v) ∩ A, and the “B-side” to beN t(v) ∩ B. The
A-side equals(P ∩A)\St+1(v), and we think of|St+1(v)|
as “lost” when choosing theA-side. TheB-side, however,
does equalP ∩ B, so there is no loss from choosing that
side. For a leftover pieceP , theA-side is simplyP ∩A and
theB-side isP ∩ B. Thenanychoice ofA-side orB-side
from each piece produces an independent set inΓ.

Now order the pieces according to theratio of the car-
dinality of their A-side to that of theirB-side, in non-
increasing order of this ratio. FormI by choosingA-sides
until the running sum of cardinalities is at least(1/2−ε)|A|,
and then for all remaining pieces, choosing theB-sides.



The only thing we have to do now is show that withB′ =
I ∩B, |B′| ≥ |B|/2.

Let α1 = |I ∩ A|, let β1 be the sum of the sizes of the
B-sides of the pieces whoseA-sides were chosen, letα2

similarly sum theA-sides of the pieces whoseB-sides were
chosen, and letβ2 = |B′|. PutM = α1 + α2 + β1 +
β2. We claim that|A| ≤ α1 + α2 + cM . This is because
at each stage,t is chosen so that|St+1(v)| ≤ c|N t(v)|—
hence the total “loss” on theA-side is at mostc times the
sum of|N t(v)| over all such stages, which sum in turn is at
mostM . This proves the claim. Sinceβ1+β2 = |B| ≤ |A|,
we getM ≤ 2(α1+α2)+cM , soM ≤ 2(α1+α2)/(1−c),
and so

|A| ≤ (α1 + α2)(1 + 2c/(1− c)).
Now because every piece has size at mostε|A|/2 (since
m = |A|), we obtain:

α1 ≤ |A|(1
2
− ε) + ε|A|/2

= |A|(1− ε
2

)

≤
(
α1 + α2

2

)
((1 + 2c/(1− c))(1− ε))

≤
(
α1 + α2

2

)
provided2c/(1 − c) ≤ ε, which we arrange by choosing
c ≤ ε/(2 + ε).

Fromα1 ≤ (α1 + α2)/2 it follows directly thatβ2 ≥
(β1 + β2)/2, by the scaled ordering of the pieces. This
gives|B′| ≥ 1

2 |B|, and this completes the entire proof.

4 Applications

In this section we fixε = 1/10, so that always|A′| ≥
(2/5)|A|.

Valiant [26] defined a directed acyclic graphG to be
an (f(r), s, t)-grate if there exist disjointA,B ⊂ V with
|A| = s and|B| = t such that if any vertex setS ⊂ V of
sizer is removed fromG, then the resulting graphG′ still
has at leastf(r)-many pairs(u, v) ∈ (A\S)×(B\S) such
that there is a path fromu to v in G′.

We takes = t = m. We will consider functionsf of
the formf(r) = (m − r)2. Note that ifr = o(m), then
we can arrange the constants so that(m− r)2 > (4/5)m2.
It follows that in anf(r)-grate, there cannot be a setS of
r vertices whose deletion separates2/5 of the vertices inA
from 1/2 of the vertices inB. With some reasonable abuse
of asymptotic notation, we can state:

Lemma 4.1 A DAGG whose underlying undirected graph
has vicinityatk cannot be an((m − r)2,m,m)-grate (for
any givenm) unless its sizeN is Ω(m1+(1/k)/ logm).

Proof. The sizer of the separatorS in Theorem 3.2 be-
comesΩ(m) only whenN = Ω(m1+(1/k)/ logm).

Valiant [26] proved that the graph of anym-input, m-
output Boolean circuit computing the linear transformations
x 7→ Ax, whereA is anm×m matrix over GF(2) andx ∈
{ 0, 1 }m, must be an(RA(r),m,m)-grate. HereRA(r) is
called therigidity function of A, and is defined to be the
minimum number of ‘1’ entries in anm×m matrixB over
GF(2) such that the rank ofA+B is at mostr. (The paper
[26] gives definitions for matrices and circuits over arbitrary
fields, but the GF(2) case with Boolean circuits suffices for
our purposes.) Valiant proved that mostm×m matricesA
are “highly rigid,” meaning thatRA(r) = (m − r)2 for all
r, which is the maximum possible value. Combined with
all of the above, we obtain our first nonlinear lower bound
result.

Theorem 4.2 Circuits of vicinity O(tk) cannot compute
linear transformations by highly-rigidm×mmatrices, un-
less they have sizeΩ(m1+1/k/ logm).

Note that constants can be supplied to make the bounds con-
crete for individualm-input circuits rather than asymptotic.

One limitation of this result is that no explicit con-
structions of families ofm × m matricesAm (for gen-
eral m) of rigidity (m − r)2, or even rigidityΩ(m1+δ)
for some fixedδ > 0 andr = Θ(m), are known. Rigid-
ity Ω(m1+δ) as above suffices for Valiant’s conclusion
that log-depth circuits require “just barely superlinear” size
Ω(m log logm/ log log logm) to computeAmx. Our The-
orem 4.2 seems to give superlinear lower bounds on size for
PV circuits only for the highest rigidity functions.

However, Valiant’s approach ties in readily to ideas and
results of Mansour, Nisan, and Tiwari [17]. They define a
setE of strings of lengthm to be ak-cylinder if there is a
set J ofk indices1 ≤ j1 ≤ j2 ≤ . . . ≤ jk ≤ m and a string
v of lengthk such thatE = {x ∈ { 0, 1 }m : (∀r, 1 ≤ r ≤
k)xjr = vr }. (We abbreviate this condition by writing
E = {x : xJ = v }.) Then they define:

Definition 4.1 ([17]). A function f : { 0, 1 }` → { 0, 1 }m
has theproperty of randomness with parameters(n, α, β) if
for all k ≤ m, everyn-cylinderD ⊆ { 0, 1 }`, and every
k-cylinderE ⊆ { 0, 1 }m,

Prx∈D[f(x) ∈ E] ≤ 2β/2αk. (2)

To state this definition another way, letI be the set ofn
indices andu = u1 . . . un the fixed input values that define
then-cylinderD, and letJ andv = v1 . . . vk similarly de-
fineE for the output values. Then (2) can be rewritten as
the conditional probability

Prx∈{ 0,1 }` [f(x)J = v | xI = u] ≤ 2−αk+β .



Now supposeC is a circuit computingf on inputs of
length`, and supposeS is a set of nodes inC that (weakly)
separates all butn input nodes ofC from somek output
nodes. Then the sizes of S must be at leastαk − β. Oth-
erwise, letI be the indices of the leftovern input nodes,
and let us (arbitrarily!) fix valuesu = u1, . . . , un for those
nodes, giving usD. Conditioned onxI = u (i.e. x ∈ D),
the values in thek output nodes then depend only on the
s values induced byx on the gates inS. It follows that
some patternv = v1, . . . , vk in those output nodes occurs
with probability at least1/2s overx ∈ D—indeed, this is
so of every pattern that occurs with nonzero probability. If
s < αk − β, then this probability is too large.

Theorem 4.3 If f as in Definition 4.1 hasl,m = Θ(n) and
has the property of randomness with parameters(n, α, β),
with α constant andβ = o(n), then circuitsC of vicinity
atk that computef must have sizeΩ(n1+(1/k)/ log n).

Proof. LetN be the size ofC. Start by choosingA1 to be
the set of input nodes ofC, andB1 to be the set of output
nodes. Theorem 3.2 then gives a subsetA′1 of A of size at
least(2/5)`, a subsetB′1 ofB of size at leastm/2, and a set
S1 of sizeO(N log n/n1/k) that weakly separatesA′1 from
B′1 in (the underlyingundirectedgraph of)C. Now take
A2 = A1 \ A′1 andB2 = B′1, and re-apply the theorem to
get a separatorS2 of similar size. Continue until some stage
r at whichAr \A′r has size at mostn. Thenr is a constant
depending only oǹ, and the setS = S1∪S2∪. . . Sr weakly
separatesA′1 ∪ A′2 ∪ . . . A′r from Br. Sincer is constant,
the sizes of S is O(N log n/n1/k). It follows that s ≥
α|Br| − β. Since|Br| = Θ(n), we obtainN log n/n1/k =
Ω(αn − β), soN = Ω(n1+(1/k)/ log n) as stated in the
theorem.

Mansour, Nisan, and Tiwari showed that all families of
universal2 hash functionsh : { 0, 1 }n → { 0, 1 }n are
such that the functionf(h, x) = h(x) has the property
of randomness with parameters(n, 1/2, 1). One exam-
ple is the familyH = {ha,b : a, b ∈ GF(2n) }, where
ha,b(x) = ax + b for x ∈ GF(2n). Then the function
f(h, x) is just ax + b, with input length` = 3n and
output lengthm = n. Another example in [17] is de-
fined in terms of “string convolutions”: Given binary strings
x = x1 . . . xn and y = y1 . . . yr, wherer ≥ n, define
x ◦ y to be the stringz of length r − n + 1 such that
for all i, 1 ≤ i ≤ r − n + 1, bit zi equals the GF(2)
inner product ofx with yi . . . yi+n−1. Then the family
H = {hy,w : y ∈ { 0, 1 }2n−1, w ∈ { 0, 1 }n } with
hy,w(x) = (x◦y)+w is a universal2 hash family. Here+ is
the same as bit-wise exclusive-or, and since this has trivial
circuits, the separator-size lower bound applies to circuits
computingx ◦ y. That sorting functions have similar pa-
rametersα andβ is also mentioned in [17].

Corollary 4.4 For all k ≥ 1, circuits of vicinityO(tk) that
compute sorting,ax + b in finite fields, or string convolu-
tions require sizeΩ(n1+1/k/ log n).

It follows that no sorting networks of sizen(log n)O(1) can
have polynomial vicinity.

5 Discussion: Stronger Results?

Let us fix attention momentarily on graphs of quadratic
vicinity, and draw some useful comparisons with the
Lipton-Tarjan theorem (LT) for planar graphs. Recall that
these two classes of graphs are incomparable, although their
practical motivations are similar. LetG = (V,E) be an
undirected graph withN nodes that belongs to one, respec-
tively the other, class.

LT finds a setS0 of sizeO(N1/2) whose removal breaks
G into two “halves”A0 andB0, each of size at leastN/3.
(The resultingA0 and B0 need not themselves be con-
nected, so long as they are disconnected from each other in
G\S0.) Thus we have a partition ofV intoA0, B0, S0 such
thatS0 separatesA0 fromB0 in G. Using Theorem 3.2, we
obtain:

Theorem 5.1 GraphsG of quadratic vicinity and sizeN
can be partitioned intoA1, B1, S1 such thatA1 and B1

have size at leastN(1/4− ε) (for any desired fixedε > 0),
S1 has sizeO(N1/2 logN), andS1 separatesA1 fromB1

in G.
More generally, if the graphsG have vicinityO(tk), then

S1 has sizeO(N1−(1/k) logN), andA1 andB1 still have
size at leastN(1/4− ε).

Proof. TakeA to be any set ofN/2 nodes andB = V \A,
Then Theorem 3.2 producesA′ andB′, each of size at least
N(1/4−ε), and anS1 of sizeO(N1/2 logN) that separates
them. Here, as remarked in Theorem 3.2, we can arrange
thatS1 is disjoint fromA′ andB′, so it is a true separator.
Then we can add the remaining nodes fromG \ S1 to A′

andB′ to obtain a partitionA1, B1, S1 of V such thatS1

separatesA1 fromB1.

The extralogN factor in the size ofS and theN/4 rather
thanN/3 represent a slight slippage in bounds compared
to the LT theorem. For general weighting functionswt :
V → [0, 1], things become somewhat more problematic.
Still, these bounds are good enough for some of the appli-
cations in [15] and elsewhere. Our first open question is:
Can the bounds in Theorem 5.1, and those in the main The-
orem 3.2, be improved?

The second open question we raise is whether the theo-
rem can be improved in cases where the sizem of the cho-
sen subsetsA andB is little-oh of the sizeN of the graph,



as happens in Theorems 4.3 and 4.4. Let us ignore fac-
tors of logm or logN in this paragraph. The upper bound
N/m1/k on the size ofS in Theorem 3.2 is unusual insofar
as it scales upward asm goes downward. One might think
that smallerm should make the subsetsA andB easier to
separate, hence that the upper bound should go lower or at
least stay the same, but what happens in the dynamics of the
proof is that the smallerm leaves less choice in finding the
subsetsA′ andB′ that are actually separated. If the bound
wereN1−(1/k) as in Theorem 5.1, then Corollary 4.4 would
hold with a size lower bound ofΩ(n1+1/(k−1)) in place of
Ω(n1+(1/k)). The change from “1/k” to “ 1/(k−1)” is sig-
nificant: in the case of quadratic vicinity (i.e.,k = 2), it
would yield a quadratic lower bound on the circuit size for
sorting andax+ b andx◦y. Since these functions are com-
putable in linear timecum log factors, this lower bound is
met by the circuits of Savage [22] (see also [11] or [5]),
which have quadratic size and quadratic vicinity. Hence
this stronger version of Corollary 4.4 would give a sense
in which Savage’s construction is best possible, and would
tighten the “size-vicinity tradeoff” implied by our results.

It is notable that theonlyuse of the PV condition onG in
Theorem 3.2 is to get an analogous condition on the bipar-
tite graphΓ. Moreover, its only use onΓ is to ensure that
each individual “piece” in the proof is small and has an even
smaller boundary. Perhaps some tangibly weaker condition
than PV can support the same theorem, with a similar proof.
It is true that the graphsΓ obtained fromG are special: one
can show that under various notions of a “random” bipartite
graph of sizem and degreea`k = mΩ(1), such graphs do
not have independent setsI with a constant proportion of
nodes in each partition. However, it is also true that when
m = o(N), as in the last paragraph, going fromG to Γ
“throws away” most of the graph! This above all leads us
to suspect that there is some wastage in our main proof that
can be exploited for stronger results whenm is relatively
small.

Note that we could also get this improvement to Corol-
lary 4.4 if we could choose the initial setsA1 andB1 in the
proof of Theorem 4.3 to have sizeΩ(N) rather thanO(m).
The “property of randomness” on which all this is based,
however, restricts attention to the input and output nodes.
Hence a third question is whether the results in [17] can
themselves be extended to yield conclusions about the dis-
tribution of Boolean values at other levels of circuits com-
puting these functions besides the inputs and outputs. This
seems more problematic than improving Corollary 4.4 di-
rectly, however.

A fifth matter is that all of our work has been based on
undirected graphs. We do not see any immediate improve-
ment that would follow from the hypotheses thatG is di-
rected, and thatA is a set of sources andB a set of sinks.
However, let us also note that the circuits of [22] arelev-

eled. It seems that this last condition should be exploitable
for stronger bounds, but we have not (yet) achieved this.

Finally, we ask whether our proof itself can be simpli-
fied, or whether our theorem follows from some combina-
tion of results about other known classes of graphs. We have
given some counter-indication on the latter in Sections 1
and 2. We suspect there is a connection via eigenvalues and
graph diameters drawing on the results of [1] and [7], but
thus far it seems both far from “simple” and to give differ-
ent bounds, at least in the analogous situation of [24]. One
possibility for a simpler proof leads to our final question:
In graphsG of vicinity O(tk), for any vertex subsetsA,B
as in the statement of Theorem 3.2, does there always ex-
ist a vertexv such that one of the “shells”St(v) fulfills the
conclusions of the theorem? This is plausible because the
radius of the graph fromv is Ω(N1/k), and hence some
St(v) has sizeΩ(N1−1/k). The question is whether at least
one of these largeSt(v) shells must separate a large chunk
of A from a large chunk ofB.

6 Conclusions

We have defined a condition on circuits that is both theo-
retically natural and practically significant, and have shown
nonlinear lower bounds under this condition. The lower
bounds are substantial:Ω(n4/3) for cubic-vicinity graphs,
Ω(n3/2) for quadratic vicinity (ignoring log factors).

Results of this kind have been obtained for specific kinds
of “well-behaved mesh” networks or other VLSI circuits.
The special interest in our results is that they abstract away
from many model-specific details of the circuits, focusing
on the information-theoretic nature of the problem of how
many data bits can be accessed within a span oft time units.
The graphs defined by our condition seem to be incompara-
ble with other classes of graphs that have been used for the
former results.

This work also suggests other lines of research, most no-
tably on size-vicinity tradeoffs for circuits, and their possi-
ble relation to other tradeoffs in complexity theory. One
idea is to see if our lower bounds can be met by up-
per bounds—e.g., can linear-time Turing machines be sim-
ulated by cubic-vicinity circuits ofΩ(n4/3), or at least
Ω(n3/2), size? In this regard we note results by Fortnow [9]
in these proceedings:SAT cannot be accepted by uniform
circuits of log depth andn(log n)O(1) size; and for Turing
machines,SAT must lie outside either nondeterministic log
space or deterministicn(log n)O(1) time. Is there any con-
nection? One weakness of the technique in Section 4, as
with [26, 17], is that it really applies only for circuits com-
puting functions, not those recognizinglanguages. Can we
define and find non-separation properties for languages?
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