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Abstract nomial vicinity, since®(2!) gates are within distandeof
the root. Indeed, circuits with an output gate that depends
We study families of Boolean circuits with the property on alln input gates must have*(!) depth if they have poly-
that the number of gates at distanctanning into or out of ~ nomial vicinity. Note that the boung((t) is independent of
any given gate in a circuit is bounded above by a polynomial the size or number of inpuis of the circuitsC:, .

in ¢ of some degreé. We prove that such circuits require The main motivation for this condition is a practically-
sizeQ(n'*'/* /log ) to compute several natural families minded one. Let us regard computing elements, be they
of functions, including sorting, finite field arithmetic, and ggjig-state gates or optical nodes or etc., as having some dis-
the “rigid linear transformations” of Valiant [26]. Our  ¢rete uniform minimum size. Then in 3-dimensional space,
proof develops a “separator theorem™ in the style of Lipton  the number of elements one can “pack” within distance
and Tarjan [14] for a new class of graphs, and our methods gt 5 given elemeny is O(¢3). If time is measured in units
may have independent graph-theoretic interest. of how long it takes a signal from one element to reach a
neighboring one, then onlg(t3) elements can affect the
computation ofg over the next time units. Thus cubic
1. Introduction vicinity is a property of those networks we can physically
build, at least under “physics as we know it.” Although real
solid-state components are being shrunk to degrees barely
imagined ten years ago, the vicinity condition still domi-
nates a1 — oo, i.e., for the kind of asymptotic bounds
that complexity theory is concerned with.

Nonlinear lower bounds for natural problems, whether
for machine-based or circuit models, have been frustrat-
ingly hard to obtain. Indeed, there is currently no example
of a functionf : {0,1}™ — {0,1}" whose graph belongs

to NP or to E that is known to require Boolean circuits of Similar arguments have been made by prominent re-
size more tharn. searchers in related contexts. Schorr [23] argued that the

constraints of embeddings in physical space prevent the re-
alization of (poly)logarithmic running times for parallel al-
gorithms; i.e., that PRAM and NC-theory-based running
times are too optimistic. This argument was carried further
by Vitanyi [27], down to fine details of wire thickness and
heat concentration and other limits imposed by “the laws of
nature.” Feldman and Shapiro [8] gave a less-formal ver-
sion of the above definition of “polynomial vicinity” for a
machine model, and presented a 3-dimensional model for
which the best possible parallel speedupi®-n'/* steps.
Kruskal, Rudolph, and Snir [13] advocated the study of such
“polynomial speedups” for other reasons.

Faced with this situation, it is natural to seek other con-
ditions on the circuits or machines under which nonlinear
lower bounds can be proved. Valiant [26] added the condi-
tion that the circuits have logarithmic depth as well as linear
size. He defined a class of “highly rigid” linear transfor-
mations on{ 0,1 }" (regarded as the-dimensional vector
space over Gf2)), and proved that log-depth circuits re-
quire size2(nloglog n/ logloglog n) to compute them.

We introduce a different condition that is both limiting
and natural. Define a familg,, Cs, Cs, . . . of Boolean cir-
cuits to havepolynomial vicinityif there is a polynomiap
such that for any gatein anyC,,, and allt > 0, the num-
ber of gates connected §dy a path of length at mosis at A formal machine-based definition of “polynomial
mostp(t). For example, circuits whose gates are the nodesvicinity” that generalizes Feldman and Shapiro’s, and also
of a d-dimensional mesh have vicinit)(t%). For contrast, ~ applies to oracle machines, was introduced in the con-
a circuit in the form of a full binary tree does not have poly- ference paper [21]. A motivation given there is that

unnoried T oar by National Science Foundation Grant CCR whereas unrelativized Turing machines haveIIAinear viginity,
94091UC§)£ Author’spcurrer?; address: Computer Science Department, 226aII known constructions of oracles such tha® = NP

Bell Hall, Box # 602000, UB North Campus, Buffalo, NY 14260-2000. US€ exponential vicinity. Thus “vicinity” may be the right
Email: regan@cs.buffalo.edu kind of quantitative concept to get beyond the notorious ob-




stacles posed by relativization results.
The circuit/graph form of the concept treated here is just
as quantitative and couldn’t be simpler to state. It also

of size less thaf.83n'/2 whose removal breaks into two
disconnected pieces, each of total weight betweéhand
2/3. This improved Ungar's theorem [25] giving such &n

makes no geometrical assumptions about how a graph if sizeO(n'/?logn). They also gave an efficient algorithm

represented in finite-dimensional space. Hence our final

to find S, and gave applications. The universal quantifica-

motivation is to see to what degree lower bounds that havetion over A and B in our Theorem 1.1 is roughly similar to
been proved in VLSI or mesh-based models can be carriedheirs over thewt function, and enables some of the same

through in a more-general setting.
The main result of this paper issaib-linear graph sepa-
rator theoremfor polynomial-vicinity (PV) graphs.

Theorem 1.1 (informal statement) Let [G,,] be a family
of graphs of sizes(n) and vicinity O(t*) independent of
n. Then for any disjoint vertex subsets B of sizem in
G, there is a sef of O(s(n) logm/m!/*) vertices whose
removal disconnects almost half the verticeslifrom half
the vertices inB.

The setS is the separator. Whem, s(n) = O(n), S has
sub-linear size&d(n'~1/*logn). We will think of A as the
set of input nodes, ané as the set of output nodes, of a
circuit computing a function of 0,1 }™. Valiant [26] ob-
served that circuits computing certain “highly rigid” linear
transformations on length-vectors cannot have separators
of size less tham. We extend this observation to functions
having a certain “property of randomness” defined by Man-
sour, Nisan, and Tiwari [17], including sorting, the function
(a,b,c) — a-b+ cinfinite fields, and any (other) family

applications. Note also that we have an “extra” log factor
like Ungar’s. Whether this can be taken out, and other im-
provements made, is also discussed in Section 5.
Separator theorems have since been obtained for several
other classes of graphs: graphs with a planar representa-
tion havingO(n) crossings [12], graphs of finite genus [10],
graphs of bounded tree-width or with excluded cliqgue mi-
nors [2, 3], ‘d-local” graphs (meaning graphs embedded in
d-space so that the ratio of the length of the longest edge
in a minimum spanning tree to that of the shortest edge
is at mostd) [28], and graphs defined by intersections of
spheres around points ifrspace [18, 19]. The class of
graphs of vicinityO(t?) (for somed > 0) is incompara-
ble with each of these. One other connection to note is that
our graphs have relatively high (nameh/}(")) diameter,
and this property is related both to the second-highest eigen-
value of various matrices associated to the graph and to hav-
ing small separators in papers by Alon [1], Chung [7], and
Spielman and Teng [24]. We do not, however, see how to
get our particular result from these connections. Our proof
uses jusMenger’s Theorerand a means of obtaining large

of universal hash functions. Separators for these functionsindependent sets in PV bipartite graphs.

cannot have size less thap2 — 1. With m = ©(n) in these
cases, we obtain our main application:

Theorem 1.2 Circuits of vicinity O(¢*) that sort, or that
compute rigid linear transformations, or computeb + ¢
in finite fields, or do universal hashing on inputs of size
must have siz@(n**!/logn).

This is a fairly strong nonlinear size lower bound.

These results also show size-vicinity tradeoffthat
complements known time-space tradeoffs for these func-
tions. Pippenger and Fischer [20] proved that titmEuar-
ing machines can be simulated by Boolean circuits of size
O(tlogt). Hence any function computed in quasilinear
time glin = n - (logn)°™ has circuits ofglin size. By
our results, however, such circuits for sorting andé + ¢
cannot have polynomial vicinity. If our main theorem can
be improved in respects discussed in Section 5, it may give
a sense in which the oldé?(¢?)-size circuit simulation by
Savage [22], which gives quadratic vicinity, is optimal.

The main stem of computer-science interest in graph-

2 Low-Vicinity Graphs

Given a subsetd of the vertex sel of an undirected
graphG = (V, E),letS(A) ={veV :(Fu e E)(u,v) €
A}, and letN(A) = AU S(A). Here one callsS(A) the
boundaryof A and N(A) the neighborhoodof A. Now
for t > 2 inductively defineS*(4) = S(N'~1(4)) and
Nt(A) = N(N'~'(A)). WhenA has just one vertex we
write N (v) for N*({v }) and so on.

Definition 2.1. (a) A graphG hasvicinity f(t) if for all
verticesv in G, |[Nt(v)| < f(t).

(b) A family G of graphs hawicinity f(¢) if every graph
in G has vicinity at mostf(¢). The graphs irG have
polynomial vicinity and arePV graphs, if they have
vicinity O,

Here we mean that(¢) gives an upper bound on the “vicin-
ity function” of G, which could be defined byq(t) =

separator theorems were two papers by Lipton and Tarjansup,c |N*(v)|. This looser usage suffices in this paper.

[14, 15]. They showed that for any planar gra@lof size
N, and any weighting functiomt on the vertex set’ (i.e.,
>, wt(v) = 1, wt(v) > 0 for all v), there isa ses C V

This concept has been studied in only one context that
we know, namely wheré& is a (possibly infinite)Cayley
graphof a group, and is tied to questions about “polynomial



growth” of infinite groups (cf. [16, 4]). We can generalize to show(1 + ¢)® > agb. Then

(b) to boundsf (¢, n) that depend on the size or indexof b o2log (a0 logy., 2) )

graphsG,, € G, and will indeed do so in the proof of our (1+4¢)” = 278200 814D = (aglogy 4. 2)

main theorem. However, the notion of vicinity is intended

to be local and independent of _
In this paper we focus on vicinity bounds of the foatk aob = 2ao(log, .0 2) 10gy(do 10gy 4. 2).

for some fixed (not necessarily integral) constants 3 Upon cancellingi(log; . 2) from both sides, it suffices to

andk > 1. The idea is thak is an abstract notion of ~Show that

the dimension of the graph, as exemplified by (rectangu-

lar or simplicial or etc.)-dimensional mesh graphs having

vicinity ©(t¥). However, the full binary tree is an exam- je., thatz > 2log, z with = = ag log, , . 2. This is true so

ple of a planar graph of vicinit®(2¢), while not all graphs long asz > 4, and the conditions, > 2 andc < v/2 — 1
of quadratic or even linear vicinity are planar. In fact, one ping this about.

can convert any'grapH. qnq create atqpologically similar Fork > 1, leta’ = a(lj/k, andlet? = (1+¢)'/k — 1, so
graph of nearly linear vicinity by replacing every vertein _ Nk
e ) that(1+¢) = (1 + ¢')*. Then

H by a*“ring” of degree-3 vertices, and then subdividing ev-
ery edge with a huge number of degree-2 vertices (exponen- (1+¢)b>ah® = 1+ > (d'b)"
tif':ll_ly.m:_:my in cas_eH had gxponential vicinity). Thus low — (1+)>db.
vicinity is not aminor-invariantproperty of graphs. We do
not know whether graphs of vicinityt* must have “nice” Sincec’ < /2 —1 also holds, the desired valuetofollows
embeddings irk-dimensional space of the kind studied in from the casek = 1 by substitutinga’ for ag and ¢’ for
[18, 19, 28], and personal communications from some au-c in the formulab = 2(log, . . 2) log,(ag log; , . 2). Since
thors of these papers have turned up no reasons why thisog, ., 2 = klog,_ .2, this gives (1). N
should be so.

One evident property of PV graphs is that they have rel- _ . _ .
atively large diameter, in factnin-diameter The diame- The main point needed for later results is that in all cases
ter of a finite graphG is the maximum distance(u,v) 0 = O(loga). We will use this in cases where™is not
between two vertices, andv. The min-diameter equals @ constant but depends on the sineof certain bipartite
min, ey maxyey d(u,v). An n-vertex graph of vicinity graphs, and where: itself may depgnd on t_he input-length
at* has min-diameter at least/* /a. This already implies ~ Parametem. The dependence onis less important, be-
that PV graphs are not go@xpandersbut there is amuch ~ causec will be fixed. cher tradeoffs betweem_and.a in
more striking sense in which PV graphs are the antithesis@ Pound forb are possible; the general question involves
graph to be an expander is that for some> 0 and all interested reader. We emphasize that this counting bound
A C V of size at most (say/2, |S(A)| > c|A]. We applies cpncretely to a single glraph, not just asymptotically
show that for PV graphg’ = (V, E), for all ¢ > 0 and for a family of graphs. We modify the argument to show:
v € V, there is a relatively small value ofsuch that with
A= Nt(v),|S(A)] < c|Al.

and

(aology,.2) > 2logy(aglogy . 2);

Lemma 2.2 Leta,c, k andb be as in Lemma 2.1, and let
b’ =2b+ 4klog;, . 2. Then there existg 1 < ¢ < b’, such
that|St(v)| < ¢|N*=1(v)| and|S*1(v)| < ¢|Nt(v)].

Lemma 2.1 LetG be a single graph of vicinityt*, k > 1.

Letc be such thad < ¢ < v/2 — 1, and letv € V. Finally Proof. If not, then|N? (v)| > (1 + ¢)¥/2. But |[NY (v)]

let must be at mostb’* = (a2*)(b'/2)*. Hence we get the de-
b= (2klog, . 2) - log,(kay/ " log, ;. 2), (1)  sired conclusion if we show that+¢)?'/2 > (a2*) (b /2)*.

S & . .
whereap — max{a,2}. Then for some, 1 < ¢ < b, Substitutingz2® for ag in (1) tells us that this happens when

1S (v)] < e[ N*H(v)]. (t'/2) = (2klog,..2)-log,(2ka'*log, .. 2)

Proof. Suppose not;i.e., thatforalll <t <b,|S'(v)| > = bt (2klogy.2).

¢|N*~!(v)|. Then|N*(v)| > (1+¢)". SinceG has vicinity  This gives the result. 0

at®, this would imply (1 + ¢)® < ab*. Hence to reach the

contradiction that proves the lemma, we need only show

that in fact(1 + ¢)® > ab*. It follows that there is always asddvalue oft < ' such
Fork = 1, we haveb = 2(log, . 2) logy(ag log, . 2), that|S**1(v)| < ¢|N*(v)|, and this is the consequence of

and need to show thét+c)® > ab. Sincea, > a it suffices the lemma that we actually use.



3 The Separator Theorem

Let A and B be two disjoint subsets df in an undi-
rected graptG = (V, E). A subsetS of V is said tosep-
arate A from B in G if S is disjoint from(A U B) and the
graphG’ induced by deleting all vertices ifi has no path
from a vertex inA to one inB. It will actually be cleaner
for use to relax the condition tha&tbe disjoint fromA and
B, as done by Bolloés in [6]: CallS a “weak separator”

for A, B if deleting all vertices inS leaves no path from a
vertex inA\ StooneinB\ S. The corresponding form of

Menger’s Theorerthat we use is also given in [6]:

Theorem 3.1 If A, B have no weak separator of size- 1,
then there aré: paths connectingl and B such that no two
paths share a vertex.

setA’ = AN I, B" = BN I. Then any path going from
A’ to B’ in G has length greater than By Theorem 3.1, if
there is naS of size N//¢ that weakly separate$’ from B’,
then there aréV//¢ vertex-disjoint paths from’ to B’ in G.
However, the total number of vertices in these paths would
be greater thaiV. This contradiction shows that there does
indeed exist a weak separat®of size at mosiV/<.

Thus all we have to do is construttso thatA” and B’
have the desired sizes.

The graphl’ has vicinity bounded by/¢*t*. This is be-
cause a path of lengthin I" corresponds to a path of length
at mostét in G. Now letay = af*. Note thata, varies
with m. The strategy from here on is (1) choose a suit-
ably small constant—takingc = ¢/(2 + ¢) will be seen
to suffice, (2) calculate the quantity in Lemma 2.2 in
terms ofayg, ¢, andk, (3) choose (on which? depends) so
thataolkb'* < em/2, and finally (4) show that with these

The converse also holds (immediately), but this is the direc- .pices we can build the desirdd Step (3) is possible
tion we use. We now have enough to state and prove OUrbecausé

main theorem in full detail.

Theorem 3.2 Given fixedt > 0, £ > 1, anda > 2, we can
find § > 0 such that for any grapltz = (V, E) of vicinity
at®, the following holds: For any disjoint, B C V, with
m = |A| > |B|, there existA’ C A, B’ C B,andS C V
such that

e S weakly separated’ from B’.
o [A]>(3 - o)Al
e |B'| > 1|B|, and

N log.
o S| < 58

whereN = |V|.
If Nlog,m/ém'/* < em, then we can arrange tha

is disjoint from A’ and B’; i.e., that S separatesA’ from
B'.

b = O(log ag) = O(log {),

and so

apl*v* = [apdm/(logy m)¥] - O(log® ¢)
= [apdm/(logy m)*] - O(log" m) = 6 - O(m).

The constan€ inside the O” depends only om, k, anda,
and we simply choosé = ¢/2C.

A vital fact for our argument is that every vertex-induced
subgraph of” has the same upper bouaét* on its vicin-
ity, and hence we can use the same estimates in a process
that recursively breaks off “pieced” of I': At any step in
the process, let be any vertex inA that does not yet be-
long to a “piece.” Find an odd < ¥’ from Lemma 2.2,
and letP = N'*1(v). Now by the vicinity bound and the
choice in Step (3), there are at mast /2 vertices inP.
LetI” =T\ P, and continue this process recursivelyldn
until all remaining connected components have size at most

The hypothesis of the last sentence will hold asymptotically em/2. These remaining connected components are called

in cases wheren = O(n) and (for sake of contradiction)

we suppose thal is not Q(n'*+/¥). The conclusion of
the last sentence follows simply by renamiAgto A’ \ S

andB’ to B’ \ S and adjusting a little. Hence we can re-

“leftover pieces.”

For a non-leftover piec®, its boundary isS**!(v), and
this is a subset afl. In any event, define thed-side” of P
to be N*(v) N A, and the ‘B-side” to beN*(v) N B. The

gard Theorem 3.2 as producing a separator in the traditionalA-side equal§ PN A) \ S*™!(v), and we think of S*+1 (v)|
graph-theoretic sense. Both our proof and the observationsas “lost” when choosing the-side. TheB-side, however,
in [26, 17] that our applications build on, however, work does equal’ N B, so there is no loss from choosing that
more naturally for weak separators, and so we refer to weakside. For a leftover piec®, the A-side is simplyP N A and

separators from now on.

Proof. Let ¢ = dm'/*/log, m, where we explain how to
chooses at the end. Now create a bipartite grapiwith
edges fromA to B defined by: foru in A andv in B, (u,v)

is an edge il if and only if there is a path of length at most

¢fromutowv in G. Let I be any independent set i and

the B-side isP N B. Thenanychoice of A-side orB-side
from each piece produces an independent sEt in

Now order the pieces according to ttegio of the car-
dinality of their A-side to that of theirB-side, in non-
increasing order of this ratio. Forihby choosingA-sides
until the running sum of cardinalities is at le@sf2—¢)| A|,
and then for all remaining pieces, choosing tBesides.



The only thing we have to do now is show that with =
InB,|B'|>|B|/2.

Let a; = |I N A, let 5; be the sum of the sizes of the
B-sides of the pieces whosé-sides were chosen, let;
similarly sum theA4-sides of the pieces whog& sides were
chosen, and leB; = |B/|. PutM = a3 + as + 1 +
B2. We claim thaiA| < a; + as + ¢M. This is because
at each stage, is chosen so thdtS* ™1 (v)| < ¢|Nt(v)|—
hence the total “loss” on thd-side is at most times the
sum of| N*(v)| over all such stages, which sum in turn is at
mostM . This proves the claim. Singg + 5, = |B| < |4,
we getM < 2(a;+as)+eM,soM < 2(a;+as2)/(1—c),
and so

|A] < (o1 + a2)(1+ 2¢/(1 — ¢)).

Now because every piece has size at mbdf/2 (since
m = |A]), we obtain:

< JAlG -9 +elAlf2
= Al
< ("5) @r2e/a- oy -o)
<

a1 + a9
2
provided2¢/(1 — ¢) < ¢, which we arrange by choosing
c<e/(2+e¢).
Froma; < (ay + «a3)/2 it follows directly thatg8s >

(61 + B2)/2, by the scaled ordering of the pieces. This
gives|B’| > 1|B|, and this completes the entire proof_]

4  Applications

In this section we fix = 1/10, so that alwaysA’| >
(2/5)|Al.

Valiant [26] defined a directed acyclic gragh to be
an (f(r), s, t)-grateif there exist disjointd, B C V with
|A| = s and|B| = t such that if any vertex sef C V' of
sizer is removed from, then the resulting grapfi” still
has at leasf (r)-many pairdu, v) € (A\S) x (B\S) such
that there is a path fromto v in G’.

We takes = ¢t = m. We will consider functionsf of
the form f(r) = (m — r)2. Note that ifr = o(m), then
we can arrange the constants so that— r)? > (4/5)m?.
It follows that in anf(r)-grate, there cannot be a sgf
r vertices whose deletion separa®$ of the vertices inA
from 1/2 of the vertices inB. With some reasonable abuse
of asymptotic notation, we can state:

Lemma 4.1 A DAG G whose underlying undirected graph
has vicinityat® cannot be an((m — r)2, m, m)-grate (for
any givenm) unless its siz&V is Q(m!* (/%) /logm).

Proof. The sizer of the separatofS in Theorem 3.2 be-
comes)(m) only whenN = Q(m!'+(/®) /logm). [

Valiant [26] proved that the graph of any-input, m-
output Boolean circuit computing the linear transformations
x — Az, whereA is anm x m matrix over GK2) andz €
{0,1}™, must be a{R4(r), m, m)-grate. HereR 4(r) is
called therigidity function of A, and is defined to be the
minimum number of ‘1’ entries in am x m matrix B over
GF(2) such that the rank o + B is at most-. (The paper
[26] gives definitions for matrices and circuits over arbitrary
fields, but the GE2) case with Boolean circuits suffices for
our purposes.) Valiant proved that mastx m matricesA
are “highly rigid,” meaning thaR 4 (r) = (m — r)? for all
r, which is the maximum possible value. Combined with
all of the above, we obtain our first nonlinear lower bound
result.

Theorem 4.2 Circuits of vicinity O(¢*) cannot compute
linear transformations by highly-rigieh x m matrices, un-
less they have size(m'*+/* /logm). O

Note that constants can be supplied to make the bounds con-
crete for individuabln-input circuits rather than asymptotic.

One limitation of this result is that no explicit con-
structions of families ofm x m matricesA,, (for gen-
eral m) of rigidity (m — )2, or even rigidity Q(m!*?)
for some fixedd > 0 andr = ©(m), are known. Rigid-
ity Q(m!'*°) as above suffices for Valiant's conclusion
that log-depth circuits require “just barely superlinear” size
Q(mloglog m/logloglogm) to computeA,,x. Our The-
orem 4.2 seems to give superlinear lower bounds on size for
PV circuits only for the highest rigidity functions.

However, Valiant’s approach ties in readily to ideas and
results of Mansour, Nisan, and Tiwari [17]. They define a
setE of strings of lengthm to be ak-cylinderif there is a
set J ofk indicesl < j; < jo < ... < jx < m and a string
v oflengthk suchthatt = {z € {0,1}"™: (Vr,1 <r <
k)z;. = v, }. (We abbreviate this condition by writing
E ={xz:2z;=wv}.) Then they define:

Definition 4.1 ([17]). A function f : {0,1}¢ — {0,1}™
has theproperty of randomness with parametérs «, 3) if
for all k < m, everyn-cylinder D C {0,1}¢, and every
k-cylinderE C {0,1}™,

Pr.ep|f(z) € E] < 2°/2°F, 2

To state this definition another way, [Ebe the set of:
indices andu = uy . .. u,, the fixed input values that define
then-cylinder D, and letJ andv = v, ... v Similarly de-
fine E for the output values. Then (2) can be rewritten as
the conditional probability

Prze{o,l}[ [f(.’L')J = | T = 'LL] S 2—ak+ﬁ.



Now supposeC is a circuit computingf on inputs of
length?, and suppos§' is a set of nodes if' that (weakly)
separates all but input nodes ofC from somek output
nodes. Then the sizeof S must be at leasik — 5. Oth-
erwise, letl be the indices of the leftover input nodes,
and let us (arbitrarily!) fix values = ug, ..., u, for those
nodes, giving ud). Conditioned one; = u (i.e. z € D),
the values in theé: output nodes then depend only on the
s values induced by on the gates ir5. It follows that
some pattern = wvy,..., v, in those output nodes occurs
with probability at least /2° overz € D—indeed, this is
so of every pattern that occurs with nonzero probability. If
s < ak — f3, then this probability is too large.

Theorem 4.3 If f as in Definition 4.1 hag m = ©(n) and
has the property of randomness with parametersy, 3),
with « constant and3 = o(n), then circuitsC' of vicinity
at® that computef must have siz@(n'+(/%) /logn).

Proof. Let N be the size of”. Start by choosingl; to be
the set of input nodes af', and B; to be the set of output
nodes. Theorem 3.2 then gives a sub$ebf A of size at
least(2/5)¢, a subseB] of B of size at leastn/2, and a set
S, of sizeO(N logn/n'/*) that weakly separates; from
Bj in (the underlyingundirectedgraph of)C. Now take
As = Ap \ A} andB, = B, and re-apply the theorem to
get a separataf; of similar size. Continue until some stage
r atwhichA, \ A/ has size at most. Thenr is a constant
depending only o, and the se' = S;US:U. .. S, weakly
separatest; U A, U ... Al from B,. Sincer is constant,
the sizes of S is O(N logn/n'/*). It follows thats >
a|B,| — 3. Since|B,.| = ©(n), we obtainN logn/n!/* =
Q(an — B), soN = Q(n'+(/%) /logn) as stated in the
theorem. O

Mansour, Nisan, and Tiwari showed that all families of
universap hash functionsh : {0,1}" — {0,1}" are
such that the functiorf(h,z) = h(z) has the property
of randomness with parametefs,1/2,1). One exam-
ple is the familyH = {h,, : a,b € GF2")}, where
hap(x) = ax + b for z € GH2"). Then the function
f(h,x) is just ax + b, with input length¢ = 3n and
output lengthm = n. Another example in [17] is de-
fined in terms of “string convolutions”: Given binary strings
xr =x1...2, aNdy = yy ...y, Wherer > n, define
x o y to be the stringz of lengthr — n + 1 such that
foralli, 1 < i < r—n+ 1, bit z; equals the GR)
inner product ofz with y;...y;1n,—1. Then the family
H = {hy, :y € {0,1}* 1w e {0,1}"} with
hy.w(x) = (zoy)+wis a universal hash family. Heret- is

Corollary 4.4 For all k£ > 1, circuits of vicinityO(t*) that
compute sortingax + b in finite fields, or string convolu-
tions require siz&)(n' /% /logn).

It follows that no sorting networks of sizglog 7)) can
have polynomial vicinity.

5 Discussion: Stronger Results?

Let us fix attention momentarily on graphs of quadratic
vicinity, and draw some useful comparisons with the
Lipton-Tarjan theorem (LT) for planar graphs. Recall that
these two classes of graphs are incomparable, although their
practical motivations are similar. L&t = (V, E) be an
undirected graph wittv nodes that belongs to one, respec-
tively the other, class.

LT finds a setS, of sizeO(N'/?) whose removal breaks
G into two “halves” A, and By, each of size at least’/3.

(The resultingA4, and By, need not themselves be con-
nected, so long as they are disconnected from each other in
G\ Sy.) Thus we have a partition 6f into Ag, By, Sy such
thatS, separateg!, from By in G. Using Theorem 3.2, we
obtain:

Theorem 5.1 GraphsG of quadratic vicinity and sizeV
can be partitioned intoAd,, By, S1 such thatA; and B;
have size at leasv(1/4 — ¢€) (for any desired fixed > 0),
S; has sizeD(N'/?log N), and S; separatesd; from B;
inG.

More generally, if the graph&' have vicinityO (%), then
S, has sizeO(N'~(*/k)1og N'), and A; and B; still have
size atleastV(1/4 — ¢).

Proof. TakeA to be any set ofV/2 nodes and3 = V' \ 4,
Then Theorem 3.2 produce andB’, each of size at least
N(1/4—¢), and anS; of sizeO(N'/2log N) that separates
them. Here, as remarked in Theorem 3.2, we can arrange
that S, is disjoint from A’ and B’, so it is a true separator.
Then we can add the remaining nodes fréh, S; to A’

and B’ to obtain a partitiond;, By, S; of V such thatS;
separates!; from B;. ]

The extralog N factor in the size of5 and theN/4 rather
than /3 represent a slight slippage in bounds compared
to the LT theorem. For general weighting functions :

V' — [0,1], things become somewhat more problematic.
Still, these bounds are good enough for some of the appli-
cations in [15] and elsewhere. Our first open question is:
Can the bounds in Theorem 5.1, and those in the main The-

the same as bit-wise exclusive-or, and since this has trivialorem 3.2, be improved?

circuits, the separator-size lower bound applies to circuits

computingz o y. That sorting functions have similar pa-
rametersy andg is also mentioned in [17].

The second open question we raise is whether the theo-
rem can be improved in cases where the sizef the cho-
sen subsetd and B is little-oh of the sizeV of the graph,



as happens in Theorems 4.3 and 4.4. Let us ignore fac-eled It seems that this last condition should be exploitable
tors oflogm or log N in this paragraph. The upper bound for stronger bounds, but we have not (yet) achieved this.
N/m!/* on the size of5 in Theorem 3.2 is unusual insofar Finally, we ask whether our proof itself can be simpli-
as it scales upward as goes downward. One might think fied, or whether our theorem follows from some combina-
that smallerm should make the subsetsand B easier to  tion of results about other known classes of graphs. We have
separate, hence that the upper bound should go lower or agiven some counter-indication on the latter in Sections 1
least stay the same, but what happens in the dynamics of thend 2. We suspect there is a connection via eigenvalues and
proof is that the smaller leaves less choice in finding the graph diameters drawing on the results of [1] and [7], but
subsetsd’ and B’ that are actually separated. If the bound thus far it seems both far from “simple” and to give differ-
wereN'~(1/F) asin Theorem 5,then Corollary 4.4 would  ent bounds, at least in the analogous situation of [24]. One
hold with a size lower bound dd(n!*1/(*=1)) in place of  possibility for a simpler proof leads to our final question:
Q(n'+1/k), The change fromt/k” to “1/(k —1)”is sig- In graphsG of vicinity O(t*), for any vertex subsetd, B
nificant; in the case of quadratic vicinity (i.ek, = 2), it as in the statement of Theorem 3.2, does there always ex-
would yield a quadratic lower bound on the circuit size for ist a vertexv such that one of the “shells$?(v) fulfills the
sorting anchz + b andx o y. Since these functions are com- conclusions of the theorem? This is plausible because the
putable in linear timeumlog factors, this lower bound is  radius of the graph from is Q(N'/*), and hence some
met by the circuits of Savage [22] (see also [11] or [5]), S*(v) has size2(N'~1/%). The question is whether at least
which have quadratic size and quadratic vicinity. Hence one of these largé?(v) shells must separate a large chunk
this stronger version of Corollary 4.4 would give a sense of A from a large chunk oB.

in which Savage’s construction is best possible, and would
tighten the “size-vicinity tradeoff” implied by our results.

Itis notable that thenly use of the PV condition o&' in
Theorem 3.2 is to get an analogous condition on the bipar-
tite graphl" Moreover, its 0n|y use of' is to ensure that We have defined a condition on circuits that is both theo-
each individual “piece” in the proof is small and has an even retically natural and practically significant, and have shown
Sma”er boundary_ Perhaps some tang|b|y Weaker Conditionnonlinear IOWer bOUndS UHQGr th|S Condition. The IOWer
than PV can support the same theorem, with a similar proof.bounds are substantiaf2(n*/?) for cubic-vicinity graphs,
Itis true that the graphE obtained from( are special: one  2(n*/?) for quadratic vicinity (ignoring log factors).
can show that under various notions of a “random” bipartite ~ Results of this kind have been obtained for specific kinds
graph of sizen and degre@["’ = mQ(l), such graphs do of “well-behaved mesh” networks or other VLSI circuits.
not have independent sefswith a constant proportion of The special interest in our results is that they abstract away
nodes in each partition. However, it is also true that when from many model-specific details of the circuits, focusing
m = o(N), as in the last paragraph, going frafto I on the information-theoretic nature of the problem of how
“throws away” most of the graph! This above all leads us many data bits can be accessed within a spariofe units.
to suspect that there is some wastage in our main proof thail he graphs defined by our condition seem to be incompara-
can be exploited for stronger results whenis relatively ble with other classes of graphs that have been used for the

6 Conclusions

small. former results.

Note that we could also get this improvement to Corol- This work also suggests other lines of research, most no-
lary 4.4 if we could choose the initial sets andB; in the tably on size-vicinity tradeoffs for circuits, and their possi-
proof of Theorem 4.3 to have sif¥N) rather tharO(m). ble relation to other tradeoffs in complexity theory. One

The “property of randomness” on which all this is based, /02 is to see if our lower bounds can be met by up-
however, restricts attention to the input and output nodes.Pe€r bounds—e.g., can linear-time Turing machines be sim-
Hence a third question is whether the results in [17] can Ulated by cubic-vicinity circuits of(n'/?), or at least
themselves be extended to yield conclusions about the dis$2(n*/*), size? In this regard we note results by Fortnow [9]
tribution of Boolean values at other levels of circuits com- 1N these proceedingsiAT cannot be accepted by uniform
puting these functions besides the inputs and outputs. ThiCircuits of log depth ana(log n)°() size; and for Turing

seems more problematic than improving Corollary 4.4 di- MachinesSAT must lie outside either nondeterministic log
rectly, however. space or deterministie(log 7)) time. Is there any con-

nection? One weakness of the technique in Section 4, as
with [26, 17], is that it really applies only for circuits com-
puting functions not those recognizinnguages Can we
define and find non-separation properties for languages?

A fifth matter is that all of our work has been based on
undirected graphs. We do not see any immediate improve-
ment that would follow from the hypotheses tiGitis di-
rected, and tha#l is a set of sources anl a set of sinks.
However, let us also note that the circuits of [22] &re-
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