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1 The Problem of Linear Time

The first of several reasons Linear Time has received relatively little theoretical attention is that
no one has given a robust notion of what “Linear Time” is. Whereas Polynomial Time is the same
for just about every sequential modelM that has been proposed, almost every two of these models
seem to give different definitions of linear time. Two other reasons are that Linear Time seems not
to have as many pleasant closure properties as Polynomial Time, and often depends on fussy details
of how information is represented. (For instance: Given n integers in the range 1 . . . n2, should the
length of the input be n or ≈ n log n? In linear time, a TM can add integers in standard binary
notation but multiplication is considered unlikely; in prime-factor notation, a TM can multiply
but likely not add.) However, one of several reasons for the importance of Linear Time is that
the frontier of proving lower bounds for natural problems on reasonable models of general-purpose
computation has only barely been pushed west of the O(n) Meridian. This survey aims first to put
the model-dependence issue into greater focus, and then to provide a new angle for work on lower
bounds.

Machine models. Suppose that for every machine M1 in modelM1 running in time t = t(n)
there is a machine M2 in M2 which computes the same partial function in time g = g(t, n). If
g = O(t) + O(n) we say that model M2 simulates M1 linearly . If g = O(t) the simulation
has constant-factor overhead ; if g = O(t log t) it has a factor-of-O(log t) overhead , and so on.
The simulation is on-line if each step of M1 is simulated by step(s) of M2 in some transparent
manner—see [vEB90, LL92b] for discussion of how to formalize this.

The most powerful sequential models in the survey by van Emde Boas [vEB90] are forms of
the random access machine (RAM) with the unit cost time measure (RAM-TIME), which charges
one time unit to execute any instruction. A standard RAM has addition and subtraction as arith-
metic operations.2 For our purpose, the arguments of Cook and Reckhow [CR73] that unit cost is
unreasonable hold force. The SRAM model with arithmetic limited to increment and decrement
lessens this objection, and here our interests begin. Cook and Reckhow instead advocated using the
log-cost time measure (RAM-TIMElog), which charges one time unit per bit of address and operand
values in an instruction. Sources differ on how to represent an input x ∈ { 0, 1 }n in a RAM-based
model: (i) as an integer in register R0, (ii) bitwise in the first n registers, or (iii) on a separate
read-only Turing tape; (iii) is standardized in [WW86] and used in [KvLP88, TLR92, LL92b].

We note the following “Large Cluster” of models known to simulate each other with overhead
at most O(log t). The storage modification machine (SMM) of Schönhage [Sch80], the programming
model of Jones [Jon93], and the SRAM all simulate each other linearly [Sch80, Jon93]. The tree

1The author’s own work reported here was partly supported by NSF Grant CCR-9011248
2Having unit-cost multiplication yields the MRAM, which can accept QBF and other PSPACE-complete languages

in polynomial time [HS74], and is regarded as a “parallel” model in [vEB90, TLR92].
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computer (TC) can be described as a TM which has worktapes in the form of infinite binary trees,
or which has standard tapes but can move a worktape head on some cell a to cell ba/2c, 2a, or
2a+1 in one step. A TC can simulate a log-cost RAM with constant-factor overhead [PR81],
and can be simulated by a TM in time O(t2/ log t) [PF79].3 Loui and Luginbuhl [LL92b] give an
O(t log t/ loglog t) simulation of a TC by a log-cost RAM M , and interestingly, prove that this is
optimal for on-line simulation when t(n) = n. We note that their M has the property that every
cell address a and register content i used is bounded by a polynomial in the running time t, which
is the defining property of the “RAM with strongly polynomially compact memory” of Grandjean
and Robson [GR91]. Gurevich and Shelah [GS89] show other models to belong (some with a small
power of log t), including the RAC model of [AV79] and “random-access Turing machines.”

Below the “Large Cluster” are Turing machines with d-dimensional worktapes (d-TMs), whose
time classes we denote by DTIMEd[t].4 For d = 1 we have the standard multitape TM model,
whose time classes are denoted by DTIME[t], and for nondeterministic TMs, NTIME[t(n)]. DLIN
and NLIN are short for DTIME[O(n)] and NTIME[O(n)]. Turing machines with multiple heads
per tape, even with head-to-head “jumps” allowed, can be simulated step-for-step by ordinary
TMs (see [FMR72, PF79, Kos79, LS81]). TMs with only one worktape, or with some other kind
of restricted storage such as a stack or queue or counters, are generally considered too weak to
model general-purpose computation, though interesting nonlinear lower bounds have been proved
for them [DGPR84, MS86, LV88, DMS91, LLV92].

Theorem 1.1 (a) RAM-TIMElog[t] ⊆ DTIMEd[t1+1/d/ log t] [PF79].
(b) DTIMEd[t] ⊆ DTIME[t2−1/d] [Lou83].

Loui and Luginbuhl [LL92a] also prove that in the case t(n) = O(n), (a) is close to optimal for
on-line simulations. However, no separations at all have been proved for the language classes, not
even for DLIN vs. SRAM-TIME[O(n)].5 Thus among the whole sweep of “reasonable” models, the
problem of linear-time robustness is really wide open. The problem boils down to a matter of n vs.
n2. From reasonable RAMs to d-TMs it is a matter of n vs. n1+1/d.

A focal point for the problem is the concept of vicinity of a machine model M raised by
Feldman and Shapiro [FS92], which we formalize as follows. Let C be a data configuration, and let
HC stand for the finite set of memory locations [or data items] designated as “scanned” in C. For
all t > 0, let It denote the set of locations [or items] i such that there exists anM-program which,
when started in configuration C, scans i within t time units. Then the model M has vicinity v(t)
if for all C and t, |It|/|HC | ≤ v(t). Feldman and Shapiro contend that realistic models should have
polynomial vicinity—perhaps cubic vicinity under physics as we know it. However the RAM, even
under log-cost, has exponential vicinity. So do all the other models in the “Large Cluster,” even
that of [GR91] (consider t much less than the overall runtime). TMs with d-dimensional tapes
have vicinity O(td). The theorem of [PPST83] that NLIN 6= DLIN is not known to carry over to
any model of super-linear vicinity. Our “BM” model below has a parameter µ which calibrates its
vicinity.

3This improves the O(t2) simulation of log-cost RAM by TM given in [CR73]; see also [Wie83, vEB90].
4A d-TM is simulated linearly by an SMM [Sch80], in time O(t · 5d log∗ t) by a TC [Rei82], and in time

O(t(log t)1−1/d(loglog t)1/d) by a log-cost RAM [LL92a]. For d = 1, [KvLP88] give more detail: if the TM runs
in time t, space s, and gives output length u, the log-cost RAM takes time O(t+ (n+ u) loglog s).

5The inclusion DTIME[t] ⊆ RAM-TIME[t/ log t] implies a log t separation, which is hardly felt to be the true
power of the unit-cost RAM over the TM, but it was proved by [HPV75] only for t(n) = Ω(n logn). Sudborough and
Zalcberg [SZ76] prove DLIN ⊂ RAM-TIME[O(n)].
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2 Linear-Time Problems

The following natural decision problems have received much attention in the literature. We may
suppose that the list elements xi, yj ∈ { 0, 1 }∗ all have the same length.

(a) Pattern matching: Lpat := { p#t : (∃u, v ∈ { 0, 1 }∗) t = upv }.

(b) Element (non)distinctness: Ldup := {x1#x2# . . .#xm : (∃i, j) i < j ∧ xi = xj }.

(c) List intersection: Lint := {x1#x2# . . .#xm, y1#y2# . . .#ym : (∃i, j)xi = yj }.

(d) Triangle: L∆ := {G : G is an undirected graph which contains a triangle}.

Lpat belongs to DLIN [FP74] (cf. [FMR72, GS83]), and was recently shown not to be recognizable
by a one-way multihead DFA [JL93]. Ldup and Lint can be solved in linear time by a RAM which
treats list elements as cell addresses. L∆ is not believed recognizable in linear time on a RAM at
all—the best method known is to square the adjacency matrix of G.

Adachi and Iwata [AI84] showed that every language in DTIME[O(nk)] many-one reduces
in O(n log n) time to a language Lk defined by a pebble game with 4k + 1 pebbles; thus Lk
is not in DTIME[nk−ε]. Grandjean [Gra90] showed that every language in NLIN reduces to a
natural NP-complete problem called “RISA” by DLIN-reductions; thus RISA is not in DLIN.
However, we know of no language in NLIN ∩ P which is not in DLIN. For recent clear treatments
of quadratic lower bounds on the product of space and time for sorting and other natural functions,
see [Bea91, MNT93], and for related results on languages, [Kar86, Yao88, GS88]. For nonlinear
lower bounds in other models see [KMW89, KW91, BS91, DM92].

3 A Game

The basic idea of our new model can be expressed as a one-person game in which the Player (P)
seeks the least costly way to change given strings x, initially placed in locations 0 . . . n−1 of a “long”
sequential file, into corresponding strings y. There is a monotone function µ : N → N such that
µ(a) represents the cost of accessing location a in the file. The intent is that low-numbered locations
are like a fast-memory cache, while high locations figuratively reside on a large but slow disk drive.
Typical µ functions, studied also in our major references [AACS87, ACS87], are µlog(a) := dlog2 ae
(basically the log-cost criterion), µd(a) := a1/d, which models the decay in response time for memory
laid out on a d-dimensional grid, and step functions with finitely many values. (The cited papers
write f for µ and α for 1/d.) The highest “memory access cost function” we consider is µ1(a) := a.

A simple edit rule would allow P to change the character in some cell a, at a cost of µ(a)
time units. The distinctive point of our game is that if several edits of a similar kind can be done
in one block [a . . . b] of consecutive locations in the file, P should profit from this spatial locality
by being charged µ(a) or µ(b) only for the initial access, and unit time per edit thereafter. Here
“similar kind” means that the edits can be done by a finite-state machine, for which we take the
deterministic generalized sequential machine (GSM) formalized in [HU79]. (A GSM S is essentially
a Mealy machine which can output not just one but zero, two, three, or more symbols in a given
transition.)

Rule 1. In any move, P may mark locations a1, b1, a2, b2, with b1 < a1 and/or b2 < a2

allowed, and select a GSM S. Let z be the string held in locations [a1 . . . b1]. Then S(z) is written
to locations [a2 . . . b2], at a charge of ‖S‖·|z|+ µ(a), where a = max{ a1, b1, a2, b2 }.
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Here ‖S‖ may be taken as the number of states in S; this discourages P from using GSMs which
are too large. The output S(z) “overtypes” any previous content of [a2 . . . b2]. This editor does not
have an insert/delete mode or allow P to “cut” z and/or “paste” S(z) at location a2. In practice, a
large number of block insertions and deletions can “fragment” files and file systems. Willard [Wil92]
gives efficient ways of simulating these operations on a realistic sequential file system model which
lacks them. However, information in [a2 . . . b2] may be preserved under the following convention
which seems to involve no loss of efficiency.

Rule 2. The blank B may be an output character of GSMs, and in Rule 1, every B in the
output stream S(z) leaves the previous symbol in its target cell in [a2 . . . b2] unchanged.

Under Rules 1 and 2 we speak of the block move S[a1 . . . b1] into [a2 . . . b2]. By analogy with
UNIX(R) text editing, the stream z is “piped” through the finite-state “filter” S. The move is valid
if the two intervals are disjoint. The strict boundary condition is that the output S(z) exactly fills
[a2 . . . b2]. (Here we can take for granted that P chooses b2 to make this so, but in the uniform
model below this is a nontrivial restriction.)

Complexity. Each block move adds 1 to the pass count R(x), |b1−a1| ·‖S‖ to the work w(x),
and µ(a) to the memory access charges µ-acc(x), under a given µ. The µ-time for the computation
equals w(x)+µ-acc(x). The space s(x) equals the largest magnitude of an access point a in the com-
putation. These complexity measures are extended to functions R(n), w(n), µ-acc(n), µ-time(n),
and s(n) of input lengths n in the usual manner.

4 The Block Move Model

The Block Move (BM) model can be regarded as an extension of the Block Transfer (BT) model
of Aggarwal, Chandra, and Snir [ACS87]. The BT is a RAM with the special instruction copy
[a−m. . . a] into [b−m. . . b], which is charged m+ max{µ(a), µ(b) } time units. The BT likewise
sets no fixed limit on the block-size m. Other RAM instructions involving some register a are
charged µ(a) time units, and since this is the same as the time for copy [a . . . a] into [0 . . . 0], in
the BT one may suppose that the other instructions involve registers 0 and 1 only. The BT uses
RAM convention (ii): an input x of n symbols (or n integers) is placed in the first n registers.
The authors of [ACS87] prove tight nonlinear bounds on the time required to copy every symbol to
register 0, and hence to compute any function which depends on all of the input, viz. Θ[n log n] for
µ = µ1, Θ[n loglog n] for µ = µd with d > 1, and Θ[n log∗ n] for µ = µlog. The same upper bounds
apply, for the same µ, to the time for P in the game to change 0n into any given y ∈ { 0, 1 }n, using
only copy and writing 0 or 1 to cell 0. By contrast, the other finite transductions allowed in Rule 1
can glean information about the input in a way that copy cannot, and enable a rich theory of linear
time.

The BM model makes the above game uniform by fixing limits on the number of GSMs a given
machine M can use, and on the number of locations which can be the access points a1, b1, a2, b2 in
any one turn. The element of robustness is that it doesn’t much matter how the game’s basic idea
is implemented, with regard to any µ function which gives polynomial vicinity. Some variants:

• Pointer form: M has four “pointers” labeled a1, b1, a2, b2, some number m ≥ 4 of “pointer
markers,” and a finite control composed of “GSM states” and “move states.” Initially one marker
is in cell n − 1, the rest in cell 0. A GSM state S executes S[a1 . . . b1] into [a2 . . . b2], and passes
control to a move state. In a move state, each pointer marker on some cell a may be moved to
cell ba/2c, 2a, or 2a+ 1 or left where it is. Then the four pointers are redistributed among the m
markers, and control branches according to the symbol in the cell now occupied by pointer a1. The
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charge is µ(a) for the largest a involved in a pointer or marker move; markers which stay put are
not charged in a move step.

• Random-access form: M has four address tapes labeled a1, b1, a2, b2 which can receive the
output of block moves—here the output overwrites the address tape, and specifies an integer which
becomes the value of the corresponding pointer for the next step. This form is closest to the BT,
though based on a fixed-wordsize rather than integer RAM. Richer forms have any number k of
main tapes, each with its own pointers and address tapes, and have block-move instructions which
mark intervals on the k tapes and use GSMs which read a k-tuple of symbols at a time.

• Reduced form: M consists of a single GSM S, some of whose states r have no outarcs but
instead have labels l1(r) and l2(r). M has just one tape with two heads; at the start of each pass,
one is set to cell 0 and the other to cell a, where a is the current address. Initially a = 0 and
the first pass has mode ‘Ra,’ meaning that the cell-a head reads z moving rightward from cell a,
and the cell-0 head writes the output S(z). In mode ‘La’ the cell-a head reads leftward instead
of rightward. In mode ‘0R’ the cell-0 head reads (necessarily moving rightward) and the cell-a
head does the writing rightward from cell a; last, mode ‘0L’ moves the latter leftward from cell a.
If and when S enters some terminal state r, the label l1(r) alone determines whether the entire
computation halts. If not, l1(r) states whether a is changed to ba/2c, 2a, or 2a+1 or kept where
it is for the next pass, and l2(r) sets one of the four modes for the next pass. (Note that here
the boundaries b1 of the read block and b2 of the write block are not set before the pass, but are
data-dependent.)

Theorem 4.1 ([Reg92]) Under any memory cost function µd with d ≥ 1 and rational, the above
forms of the BM model, and further variants obtained by selectively enforcing the validity and
strict boundary conditions and/or making block boundaries data-dependent, all simulate each other
linearly in µd-time.6

Hence all forms define the same complexity classes DµdTIME[O(t(n))], even for t(n) = O(n).
The smallest of these is TLIN := Dµ1TIME[O(n)]. Linear-time robustness almost holds under
µlog—all forms simulate each other within O(log t) overhead. To define DµlogTIME[t], and classes
with a bound on R(n), we refer to the pointer form.

Example 4.1. The language D1 of balanced parentheses belongs to TLIN. Define S to work as
follows on any x ∈ { (, ) }∗: If x = λ, S goes to a terminal state r labeled Accept; if x begins with
‘)’, S goes to Reject. Else S erases the leading ‘(’ and thereafter takes bits in twos, translating

(( 7→ ( )) 7→ ) () 7→ λ )( 7→ λ. (1)

If x ends in ‘(’ or |x| is odd, S also signals Reject. Then S has the property that for any x 6= λ
which it doesn’t immediately reject, x is balanced iff S(x) is balanced. Furthermore, |S(x)| < |x|/2.
(We can think of the language D1 as being self-reducible in a sharp sense.) Hence the reduced-form
BM M which iterates S on its own output (Theorem 4.1 lets us ignore the validity condition)
accepts D1 in linear µ1-time.

Since M also has R(n) = O(log n), we say D1 belongs to log-pass TLIN. Some log-pass TLIN
operations on lists x1# . . .#xm are: determining whether an item p appears in the list (and marking

6The reason d is stated to be rational is that some of the simulating machines M ′ actually calculate µd(a).
The simulations do not necessarily preserve w and µ-acc individually up to constant factors, but do preserve their
sum. If M is memory-efficient , meaning that µ-timeM (n) = O(wM (n)), then M ′ is also memory-efficient. Always
s′(n) = O(s(n)), but several simulations give R′(n) = O(R(n) log s(n)).
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all occurrences if so), finding the maximum element, and computing all prefix sums. Counting, and
hence the set of palindromes, is in log-pass TLIN. Whether the language D2 of balanced (, ), [, ] is
in TLIN at all is open. The reduced form is comparable to the “sweeping automata” and linear
iterative arrays studied by Ibarra et al. (see [CIV88]).

5 Complexity Classes

Like the RAM but unlike what is known for the multitape TM (see [CR73, HU79]), the BM under
any µd has only a constant-factor overhead for universal simulation.7 One consequence is that the
small fixed set S of GSMs used by the universal BM (same one for all µd) is also universal for the
editing game; i.e. simulates any other set S ′ up to constant factors. Another consequence is the
following “tight deterministic time hierarchy” theorem. A function t is µ-time constructible if t(n)
is computable from n in binary notation in µ-time O(t(n)).

Theorem 5.1 With respect to µd (d ≥ 1 and rational), let t1 and t2 be functions such that
t1(n) ≥ n, t1 = o(t2), and t2 is µd-time constructible. Then DµdTIME[t1] is properly contained in
DµdTIME[t2].

The first open question this raises is whether there is any hierarchy at all when time is fixed and
d varies, and in particular whether TLIN 6= Dµ2TIME[O(n)] 6= Dµ3TIME[O(n)] 6= . . . It seems
reasonable to expect that separations by more than factors of O(log n) should be provable, but
the following results point out the difficulty of obtaining even such a separation of TLIN from
linear-time on a TC or SRAM:

Theorem 5.2 For any time function t(n) ≥ n,

(a) Dµ1TIME[t] ⊆ DTIME[t] ⊆ Dµ1TIME[O(t log t)].

(b) DµlogTIME[t] ⊆ TC-TIME[O(t)] ⊆ DµlogTIME[O(t log t)].

(c) For any d ≥ 1, DµdTIME[t] ⊆ DTIMEd[t].

Thus letting µ vary from µlog to µ1 spans the whole range of models in Section 1. The second
inclusion in (a) follows because the Hennie-Stearns simulation [HS66, HU79, WW86] is memory-
efficient under µ1. We suspect that for d > 1 the converse simulation in (c) requires notably more
than the O(log t) overhead of the d = 1 case (a); see [PSS81] for related matters. The intuitive
reason is that a d-TM may often change its head direction, but in going to a BM this is a break in
pipelining and subject to a memory-access charge.

Let us abbreviate quasi-linear time by qlin := n(log n)O(1), and following [Sch78], DTIME[qlin]
to DQL, NTIME[qlin] to NQL. All models in the “Large Cluster” accept the same class—call it
DNLT—of languages in time qlin. Gurevich and Shelah [GS89] also proved that the nondetermin-
istic counterparts of these models accept exactly the languages in NQL. Finally, let NµTIME[t(n)]
be the class of languages accepted in µ-time t(n) by NBMs, which may use nondeterministic GSM
mappings in block moves.

Corollary 5.3 (a) Dµ1TIME[qlin] = DQL.
7TMs with a fixed number k ≥ 2 of worktapes do have constant factor universal simulation [Für84]. The constant

factor in Jones’ universal simulation theorem is independent of the program being simulated [Jon93]—this yields a
sharper result than Theorem 5.1 for his model. Sudborough and Zalcberg [SZ76] proved results similar to Jones’ for
the unit-cost RAM.
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(b) DµlogTIME[qlin] = DNLT.

(c) For all µ ≤ µ1, NµTIME[qlin] = NQL.

Thus if for some d > e we could separate DµdTIME[O(n)] from DµeTIME[O(n)], or even TLIN
from DµlogTIME[O(n)], by more than a polylog factor, then we would have proved NQL 6= DQL.
However, the question of NQL vs. DQL seems to have much the same “shape” as P vs. NP—
see [Sch78, BG93]. Thus the problem of linear time robustness runs into old familiar issues of
determinism versus nondeterminism. And by Theorem 5.2(a), even an ω(n log n) bound on time
under µ1 implies a nonlinear lower bound for Turing machines.

6 Open Problems in Linear Time

The main open problem is to find nonlinear lower bounds on µ-time for natural problems. In
particular, can the lower bounds for FFT, matrix transpose, and sorting in [ACS87] be established
under the extension to the BT which Rules 1 and 2 represent? The evident idea is to exploit
the fact that in order for a BM M to run in linear µ-time, the set of access points used in the
computation must thin out at the high end of memory. In particular for µ = µ1, there are long
segments between access points which can be visited only a constant number of times. Can this
idea be used to separate DµdTIME[O(n)] from NµdTIME[O(n)]? Languages (a-d) in Section 2 all
belong to NTLIN; indeed, the NBM need only guess a1, b1, a2, b2 for a single pass, making O(log n)-
many deterministic passes otherwise. Proving non-membership in log-pass TLIN, or generally with
R(n) = o(n), may be a leg up on the problem stressed by Valiant [Val92] of finding natural problems
which don’t have simultaneously linear-size, log-depth circuits. Some related open problems have
come up in this work:

• Does every language in TLIN have linear-sized circuits? (Compare Theorem 5.2(a) and the
fact that every L ∈ DLIN has O(n log n)-sized circuits.)
• Is log-pass TLIN ⊆ NC1? (Generally, NCk ⊆ BM poly work, O(logk n) passes ⊆ NCk+1

(k ≥ 1), and some restrictions on GSMs give equality in the former [Reg93].)
• Consider sorted lists which have

√
n elements, each of size

√
n. For any d > 1, two such lists

can be merged in linear µd-time. But can this be done in linear µ1-time?
• Does every language accepted by a k-head DFA (see [JL93]) belong to TLIN?
• Can nonlinear lower bounds be proven for a TM with one worktape, initially holding the

input x, and one pushdown store with the restriction that after any Pop, the entire store
must be emptied before the next Push?

Because µ is a parameter we have admittedly not given a single answer to the question “What
is Linear Time?” However, we nominate Dµ3TIME[O(n)], Dµ2TIME[O(n)], and TLIN as lead-
ing candidates. We offer the BM as providing useful new structure for the study of linear-time
computation and the quest for nonlinear lower bounds.

Acknowledgments I am grateful to Michael C. Loui and Lane A. Hemaspaandra for helpful
comments on earlier drafts.
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