
Simultaneous Bounds on Time and Space

Jonathan F. Buss? and Kenneth W. Regan

1 Cheriton School of Computer Science
University of Waterloo

2 Department of Computer Science and Engineering
University at Buffalo

Abstract. We consider complexity classes defined by imposing simulta-
neous bounds on time and space. We show that general time-space trade-
offs can be recursively extended, thereby achievng better improvements
in time than obtainable from simple padding. For example, a constant-
factor speedup at linear time implies a quadratic improvement in the
minimal time required to accept the hardest languages accepted in lin-
ear space;, that is, any language acceptable using cn bits of space becomes
acceptable in 2(cn/2)+o(n) time.

1 Introduction

Time and space have long been considered the most important compu-
tational resources. Each has received extensive investigation, both on its
own and in relation to the other, as exemplified by the standard time
and space complexity classes Time(t) and Space(s). Comparatively little
is known regarding computations in which both resources are simulta-
neously and non-trivially bounded in single computations. Let TiSp(t, s)
denote the class of problems decidable by some multitape Turing ma-
chine that uses time O(t) and also space O(s). Likewise let FTiSp(t, s)
denote the class of functions computable by some multitape Turing ma-
chine that uses time O(t) and also space O(s).

Consider the following well-known results.

Proposition 1. Le t1(n) > n and t2(n) be time-constructible functions such
that t1 log t1 ∈ o(t2), and let s1 and s2 be space-constructible functions such
that s1 ∈ o(s2).

– Time(t1) 6= Time(t2) (Hartmanis and Stearns [4]).
– Space(s1) 6= Space(s2) (Stearns, Hartmanis and Lewis [9]).
– The proofs of the above can be combined, yielding TiSp(t1, s1) 6=

TiSp(t2, s2) (with slightly stronger constructibility requirements).
? Supported in part by the Natural Sciences and Engineering Research Council

(NSERC) of Canada and by SUNY Buffalo.

Proposition 2 (Savitch [8]).

NTime(t) ⊆ TiSp
(
2O(t2), t2

)
.

Proposition 3 (Hopcroft, Paul, Valiant [6]; also Adelman, Loui [1]).

TiSp(t, t) ⊆ TiSp(2O(t/ log t), t/ log t) .

In the succeeding thirty years, no significant improvements to the
above results have been found. For example, the following questions
remain open.

– Can the time bound in either Proposition 3 or 2 be improved, using
the same space?

– Under what conditions is TiSp(t, s1) 6= TiSp(t, s2)?
– Under what conditions is TiSp(t1, s) 6= TiSp(t2, s)?
– What is the relationship of TiSp(t, r) to TiSp(u, s) for t = o(u) and

s = o(r), allowing more time but less space?

We do not have absolute answers to these questions—such would
be a major breakthrough. Instead, we consider possible new relation-
ships among these questions, based on principles of recursion and self-
reference. The main idea, which is specific to function classes and which
we have not seen given clear focus in the literature, is as follows.

Suppose, for example, that one finds a clever algorithm to show that3

FTiSp(2n/2 lg n, n) ⊆ FTiSp(2n/3 lg n, n lg n) ,

which is a speedup by a factor of 2n/6 lg n. By simply repeating
the algorithm an appropriate number of times, the factor 2n/6 lg n of
speedup can be obtained for any initial time bound above 2n/2 lg n—e.g.,
FTiSp(2(n/2)+(n/6 lg n), n) is contained in FTiSp(2n/2, n lg n). We show,
however, that a much greater speedup follows; Theorem 10 below im-
plies that FTiSp(2(n/2)+(n/6 lg n), n) is contained in FTiSp(2n/3, n lg2 n).

We obtain our speedups by applying the assumed speedup recur-
sively. Consider a (reasonably efficient) universal machine U . Under
our supposition, the following linear-space computable function is in

3 Note that the first class contains many natural PSpace-complete problems: a formula,
graph or similar structure encoded with n bits generally has only n/c log n distinct
variables, nodes or the like. Also note that the second time bound is the 2/3 power of
the first, achieved at only a logarithmic-factor cost in space—the supposition is by no
means trivial.

FTiSp(2n/3 log n, n log n), where γ stands for an instantaneous description
of an arbitrary Turing machine, as U would encode it.

I(γ, r, j) =


U j(γ), if j ≤ 2|γ|/2 log |γ| and for all i, 0 ≤ i ≤ j,

|U i(γ)| ≤ r

⊥ otherwise.

Our assumption therefore implies a machine S that can speed up
2n/2 log n steps of U into 2n/3 log n steps of its own, at the cost of using
quasilinear space. The new idea is this: apply S recursively to its own com-
putations. Although a recursive simulation may cost time and/or space,
the major issue is that the original algorithm changed the “shape” of
the computation. We began with a machine S0 computing f with an ex-
tremely “long and narrow” time-space profile. Since the machine S has a
less-extreme profile, we cannot simply re-apply the tradeoff assumption.
We show, however, that the initial tradeoff assumption can be combined
with carefully controlled recursion to give larger tradeoffs.

The effect of our improvements depends on the available depth of re-
cursion. The example above has the minimal non-trivial recursion depth
of 2, where it “tops out” at time 2n. If one assumes a constant-factor
speedup of linear time, the resulting recursion depth can be nearly n,
and yields a quadratic speedup at exponential time: any language ac-
ceptable using cn bits of space becomes acceptable in 2(cn/2)+o(n) time.

The paper is organized as follows. We give our conventions and def-
initions in the next section. In Section 3, we discuss standard padding
techniques to translate hypothetical inclusions up to higher complexi-
ties. We show that, for simultaneous bounds, padding can be interleaved
with repetition to produce greater speedups than padding alone. The
main part, Section 4, adds the further element of recursion and applies
speedups to sped-up computations. Section 5 gives some instances of the
main theorem, and applications for upper time bounds on linear space
problems that result from the initially assumed base tradeoffs.

Strictly speaking, the results of Section 3 are not needed for the main
results in Section 4. Understanding the former, however, should assist
understanding the latter. We end in the final section with some example
special cases of the main theorem.

2 Conventions and Definitions

All of our Turing machines will use the same fixed input and work al-
phabet Σ, with at least two symbols in addition to the blank, and have a

read-only input tape plus some number of work tapes. If we us a func-
tion f in a time or space bound, we assume that f(n) is monotonically
non-decreasing and its binary representation bin(f(n)) is computable
from bin(n) in time polynomial in lg max{n, f(n)} (the size of input plus
output). We say that such a function is strongly tisp-constructible.4

Definition 4. For functions t and s, TiSp†(t, s) is the set of languages decided
by some multitape Turing machine that uses t(n)(1+ o(1)) steps and s(n)(1+
o(1)) work tape cells on each input of length n. If the machine has a read-only
input tape, then the space excludes the input itself.

FTiSp†(t, s) is the set of functions computable in the same time and space
bounds, where the space bound does apply to the output tape.

Note that a machine using time 2t(n) may not be convertible to use time
t(n)(1 + o(1)) with the same fixed alphabet, even when t(n) ∈ ω(n).
However, TiSp†(O(t), O(s)) is the same as TiSp(O(t), O(s)) = TiSp(t, s).

We apply space bounds to the output for two reasons: first, so that
two or more consecutive space-limited computations require only the
sum of their individual times and the maximum of their space, and sec-
ond, our recursive method requires space-limited output. As a pleasant
effect of the convention, we need not distinguish between the output of
a machine and its final configuration.

We assume that there is a universal machine U , such that for every
machine M and string x, U on input 〈M,x〉 simulates the computation
of M on input x. Further, there are a function v : N → N (independent
of M and x) and constants cM and dM depending only on M such that
to simulate t steps of M , which use space s, requires at most cM t · v(s)
steps of U and uses space at most dMs, for all sufficiently long inputs.

We leave v incompletely specified to allow for easy translation to al-
ternative machine models. For general multitape Turing machines, we
can take v(s) = O(log s). Single-tape Turing machines require v(s) =
Ω(s); however, Turing machines with a larger constant number of tapes
can take v(s) = O(1) [3]. The programming-language model of Jones [7,
2] also admits a universal constant in place of cM and dM .

The following technical lemma is immediate.

Lemma 5. Suppose that some machine M accepts a language of pairs (x, y) ∈
Σ∗ × Σ∗ in time t(|x, y|) and space s(|x, y|). Then there is another machine

4 A weaker constructibility hypothesis would suffice. We do not explore the issue here.

M ′, with one extra work tape, such that (1) M ′ accepts from input x and initial
extra-work-tape contents y if and only if M accepts the pair x, y, and (2) M ′

uses time t(|x, y|) and space s(|x, y|).

For a function f , we shall use the notation f (k) to denote the k-fold
iteration of f . For a machine M , M (k) denotes the result of running M
for k steps from the given configuration (that is, the k-fold iteration of
the transition function applied to configurations).

Finally, we reserve the variable n to denote the length of an input or
for the resource bound λn.n. When no ambiguity arises, we shall abbre-
viate “f(n)” to ”f”, for any function f .

3 Basic Translations of Speedups

First we show that simple padding and repetition apply to time-space
bounds.

Suppose that for some functions t and t′, with t < t′, any computation
in time t′ can be replaced by a computation of time t, at the cost of in-
creasing the space usage. Consequences we derive from such a speedup
will involve the ratio t′/t; thus we let h = t′/t and use ht in place of t′.

Lemma 6. Suppose that for some functions h, t, s and ŝ,

FTiSp†(ht, ŝ) ⊆ FTiSp†(t, s) .

Then for all strongly tisp-constructible functions p(n) > n,

FTiSp†
(
h(p)t(p), ŝ(p)

)
⊆ FTiSp†

(
t(p), s(p)

)
.

Proof. If s
(
p(n)

)
> n, use standard padding, replacing input x by

x01p(|x|)−|x|−1. Otherwise, write the padding string 01p(|x|)−|x|−1, with
end-markers, on a separate work tape, and apply the machine M ′ of
Lemma 5.

If the original space is linear, a computation using more time than ht
may be sped up by a factor h by repeating the sped-up version.

Lemma 7. Suppose that for some functions t, h and s, where s(n) ∈ Ω(n),

FTiSp†(h(n)t(n), n) ⊆ FTiSp†
(
t(n), s(n)

)
.

Then for all strongly tisp-constructible functions p(n) ≥ 1 and z(n) ≥ 1,

FTiSp†
(
z(n)h

(
p(n)

)
t
(
p(n)

)
, p(n)

)
⊆ FTiSp†

(
z(n)t

(
p(n)

)
, s

(
p(n)

))
.

Proof. For any Turing machine M , define

IM (γ) =

{
M

(
h(|γ|)t(|γ|)

)
(γ) if the computation uses space |γ|

⊥ otherwise.

Clearly, IM is in FTiSp†
(
h(n)t(n), n

)
and thus ex hypothesi in the

class FTiSp†
(
t(n), s(n)

)
.

Now suppose that machine M computes a function g in time zht and
space s. The following algorithm also computes g.

On input x of length n:
γ ← x01p(|x|)−|x|−1

Repeat z(n) times:
γ ← IM (γ)

Return γ

Using the assumed algorithm to compute IM , the above uses time p(n)+
z(n) · (t(p(n))+O(1)) = z(n)t(p(n)(1+ o(1)) and space s(p(n))(1+ o(1)),
as required.

If t has polynomial growth rate (whence s does also), taking p(n)
to be a linear function and repeating the computation of the previ-
ous lemma an arbitrary constant number of times yields the following
corollary, which connects our no-constant-factors classes with the usual
constant-factors-don’t-matter classes.

Corollary 8. Let t have polynomial growth rate. If

FTiSp†(h(n)t(n), n) ⊆ FTiSp
(
t(n), s(n)

)
,

then
FTiSp

(
h(n)t(n), n

)
⊆ FTiSp

(
t(n), s(n)

)
.

One can increase the speedup of Lemma 7 (at additional cost in
space) by repeatedly applying it, with changing values of p and z. For
example, first using p = n and z = h(s)t(s)/t(n) and then using
p = s and z = 1 yields that the containment FTiSp†(h(n)t(n), n) ⊆
FTiSp†(t(n), s(n)) implies the containments

FTiSp†
(
h(n)h

(
s(n)

)
t
(
s(n)

)
, n

)
⊆ FTiSp†

(
h
(
s(n)

)
t
(
s(n)

)
, s(n)

)
⊆ FTiSp†

(
t
(
s(n)

)
, s(2)(n)

)
.

This process can continue for any constant number i of iterations. For
the sake of brevity, let

P i
h,s(n) =def

∏i−1

j=0
h

(
s(j)(n)

)
and (for use later)

Qi
h,v,s(n) =def

∏i−1

j=0

h
(
s(j)(n)

)
v
(
s(j+1)(n)

) .

These quantities denote factors of time savings achievable by recursion
and iteration from our ground assumption of a factor-of-h(n) time sav-
ings. They show how the time-savings factor scales with the upward
allowance in space granted by iterating s(n).

Corollary 9. If

FTiSp†
(
h(n)t(n), n

)
⊆ FTiSp†

(
t(n), s(n)

)
,

then for each fixed i ≥ 0,

FTiSp†
(
P i

h,s(n) t
(
s(i)(n)

)
, n

)
⊆ FTiSp†

(
t
(
s(i)(n)

)
, s(i+1)(n)

)
.

Proof. For each j in {0, 1, 2, . . . , i} in succession, apply Lemma 7 with
p = s(j)(n) and z(n) = t

(
s(j)(n)

)
P j

h,s(n)/t(n).

The essence here is to progress from a time savings of a factor of
h(n) to one of P i

h,s(n), which not only raises the speedup factor h to the
power i, but also converts the allowance of using more space via s(j)(n)
at each stage j < i into a savings of even more time. The main cost is that
the minimal time in which this speedup is enjoyed is shifted upward
from t(n) to t(s(i)(n)).

4 Increased Speedup Via Implicit Recursion

To extend the results of the previous section to a non-constant number
of iterations, we need some form of uniformity. The hypothesis thus far,
that for each M computing a function in FTiSp†(ht, n) there is an SM

computing the same function in FTiSp†(t, s), does not immediately im-
ply that the mapping M 7→ SM is computable. As an alternative to
hypothesizing efficient computability of this mapping, we shall accept

some loss of time by utilizing speed-ups of a fixed machine that incor-
porates a universal machine.

Theorem 10. Let t(n) be a time function, s(n) a space function, c a constant,
and i(n) a function such that t

(
s(2)(r)

)
< c t

(
s(n)

)
for some constant c and all

sufficiently large n, and s(i(n))(n) = ω(n). If

FTiSp† (h(n)t(n), n) ⊆ FTiSp† (t(n), s(n))) ,

then

FTiSp†
(
t
(
s(i(n)−1)(n)

)
Q

i(n)
h,v,s(n) , n

)
⊆ FTiSp†

(
t
(
s(i(n)−1)(n)

)
, s(i(n))(n)

)
.

(1)

Proof. For the universal machine U , let

Iht(γ, r, m) =



U (m)(γ) if m < h(r)t(r) and the computation
uses space at most r,

U (h(r)t(r))(γ) if m ≥ h(r)t(r) and the computation
uses space at most r,

⊥ otherwise.

Since Iht ∈ FTiSp†(h(n)t(n), n), by the hypothesis it is also in the class
FTiSp†

(
t(n), s(n)

)
, via some machine Sht.

Consider the following algorithm B. Via implicit use of the Recursion
Theorem, we will call it initially with T = B itself.

B (γ, r, m, 〈T 〉):
If r < |m| or r < |γ|
Return ⊥

While m > h(r) t
(
s(r)

)
[If the next level of speedup is available, go to it.]

γ ← 〈T, γ, r, m〉
m← mv

(
s(r)

)
/h(r)

r ← s(r)
EndWhile

While m ≥ h(r)t(r) [Apply the best available speedup, as often as needed]
m← m− h(r)t(r)
γ ← Sht

(
γ, r, h(r)t(r)

)
EndWhile

If m > t(r) [Finish the computation]

Return Sht(γ, r, m)
Else
Return Iht(γ, r, m) [using U directly]

Lemma 10.1. Let machine TB implement algorithm B. Then for all γ, r and
m, an invocation of TB(γ, r, m, 〈TB〉) computes I(γ, r, m).

Proof (Proof of lemma). Consider an execution of the algorithm that com-
putes the body of the first While-loop i times. We use induction on i. If
i = 0, the claim follows immediately from the definitions of I and Sht.
Now suppose that the body of the first While-loop is executed. The con-
dition that t

(
s(2)(r)

)
≤ c t

(
s(n)

)
implies that the ratio h(r)t(s(r))/m de-

creases by at least a constant factor in each iteration; thus the loop even-
tually terminates. At each iteration, the value of I(γ, r, m, 〈T 〉) remains
unchanged; thus the correct output results.

Let µ(n) be the time to multiply and divide numbers of n bits each.

Lemma 10.2. Suppose that on inputs γ, r, m, 〈T 〉, the first While-loop ex-
ecutes i times. The value of variable m at termination of the loop is mi =
m ·

∏i−1
j=0

(
v(s(j+1))/h(s(j))

)
. The total run time is at most mi/h

(
s(i)(r)

)
+

O
(∑i−1

j=0 s(j)(r)
)

+ O(iµ(n)). If mi ≤ t
(
s(i)(r)

)
, the space is s(i)(r)(1 +

o(1)) + O(n); otherwise the space is s(i+1)(r)(1 + o(1)) + O(n).

Proof (Proof of lemma). The value of m after i iterations is immediate.
Since all of the values used in the algorithm have at most n bits,

the time exclusive of the calls to Sht and to I is at most O (µ(n)) +
O

(∑i−1
j=0 s(j)(r)

)
. The second While-loop and the final invocation of Sht

or U together use at most⌈ mi

h
(
s(i)(r)

)
t
(
s(i)(r)

)⌉ (
t
(
s(i)(r)

)
+ O(n)

)
steps. These yield the required bound on time.

If mi ≤ t
(
s(i)(r)

)
, the space used is s(i)(r)(1+o(1))+O(n); otherwise

at least one call to Sht occurs and the space is s(i+1)(r)(1 + o(1)) + O(n).
Thus the required bounds hold.

These two lemmas immediately yield the required containment of the
theorem.

5 Applications to Linear Space

Our time-space tradeoffs become assertions about the relationship be-
tween space and time individually when the left-hand side of equa-
tion (1) equals the upper bound on time needed for a given initial usage
in space. When this usage is n, the original time is t0(n) = 2cn where
the constant c depends on (the alphabet of) the initial machine. Differ-
ent values of both the initial time-factor savings h(n) and the base time
t(n) translate into different ultimate upper bounds on t′(n) for which
Space[n] ⊆ Time[t′(n)] is obtained.

Alas, the dependence is difficult enough that we have no closed for-
mula to express the exact value of this gain under general conditions, so
we give some examples in the table of Figure 1. The first columns give
the assumption: the base time t(n), the speedup factor adjusted to re-
flect any value of v(n), and the space used in the sped-up computation.
The last two columns give i(n), the maximum usable depth of recur-
sive speedup, and the resulting amount of time required to accept all of
Space(n), under the assumptions.

Base Initial speedup Initial Maximum Resulting
time factor space cost iterations time to accept
t(n) h(n)/v(s(n)) s(n) i(n) all of Space(n)

n b an logab(2
n/n) 2n/2

n2 n n2 lg(n/ lg n)− 1 2n/2

nc nb na loga

` a(a−1)
(ba+c(a−1))

n
lg n

´
2

a(a−1)
ba+c(a−1) n

2n/3 lg n 2n/6 lg n an 2 22n/3

Fig. 1. Examples of recursive speed-up

To illustrate, we state the first line of the table as a theorem. It shows the
consequences of a constant-factor speedup (with no increase in the size
of the tape alphabet or in the number of tapes) combined with a constant-
factor increase of space. Recursively applying the speedup, as provided
by Theorem 10, yields that all of Space(n) then can enjoy a square-root
improvement of its time, if the same linear space is allowed.

Theorem 11. If FTiSp†(n log n), n) ⊆ FTiSp†(O(n), O(n)), then
Space[n] ⊆ Time[2n/2].

Recursively applying the speedup, as provided by Theorem 10,
yields that all of Space(n) then can enjoy a square-root improvement of
its time, if the same space is allowed.

6 Conclusions and Speculations

We have introduced a novel technique for improving given time-space
tradeoffs starting from linear space. It often gives a greater factor of time
improvement as compared to standard padding, at a cost of more space.
Our applications in the last section are really about the nature of “long
and skinny” computations of functions f(x), typified by using n work-
tape cells and taking 2n steps, on inputs x of length n. It follows by count-
ing that at some (indeed, many) timesteps j, the string yj on the work-
tape at step j has relative Kolmogorov complexity KC(yj |x) ≥ n. (For
this and other notions of Kolmogorov complexity, see [?].) However, if
f(x) is computable in time 2n−g(n) for non-constant g(n), regardless of
space and even allowing synchronous parallel computation such as by
cellular automata, then every yj stored has KC(yj |x) ≤ n− g(n) + C (for
some contant C depending only on the machine M involved) and so is
non-random relative to x, since j itself plus M describe yj from x. Thus
all time-space tradeoffs involve reducing the potential randomness of
storage.

We take this as reason to believe that “Tower-of-Hanoi”-type compu-
tations that snake through a large number of space-n IDs are necessary
for some space-n computable functions f(x). We have not been able to
create a more-substantial theorem around this observation, however. A
related observation is that if KC(yj |x) = O(log n) for all j (where n = |x|),
then f(x) is computable in polynomial time, because there are only poly-
nomially many such strings yj (together with states of M and tape head
positions), and a longer computation must be looping. It is curious that
this observation doesn’t care whether the “KC” is the standard uncom-
putable definition, or some highly resource-bounded restriction of Kol-
mogorov complexity able to unpack yj from j. Overall, we hope that
our results will bring more attention to means of recursively extracting
structure from long space-bounded computations.

References

1. ADELMAN, L., AND LOUI, M. Space-bounded simulations of multitape Turing ma-
chines. mst 14 (1981), 215–222.

2. BEN-AMRAM, A., AND JONES, N. Computational complexity via programming lan-
guages: Constant factors do matter. Acta Informatica 37 (2000).

3. FÜRER, M. Data structures for distributed counting. J. Comput. System Sci. 29 (1984),
231–243.

4. HARTMANIS, J., AND STEARNS, R. On the computational complexity of algorithms.
Trans. Amer. Math. Soc. 117 (1965), 285–306.

5. HENNIE, F., AND STEARNS, R. Two–way simulation of multitape Turing machines.
J. Assoc. Comp. Mach. 13 (1966), 533–546.

6. HOPCROFT, J., PAUL, W., AND VALIANT, L. On time versus space. J. Assoc. Comp.
Mach. 24 (1977), 332–337.

7. JONES, N. Constant factors do matter. In Twenty-fifth Annual ACM Symposium on the
Theory of Computing (1993), pp. 602–611.

8. SAVITCH, W. Relationship between nondeterministic and deterministic tape com-
plexities. J. Comput. System Sci. 4 (1970), 177–192.

9. STEARNS, R., HARTMANIS, J., AND LEWIS II, P. Hierarchies of memory-limited com-
putations. In Proceedings, 6th Ann. IEEE Symp. Switching Circuit Theory and Logical
Design (1965), pp. 179–190.

