

Closed book, closed-notes, closed neighbors, 48 minutes. Please do ALL FOUR problems in the exam booklets provided. Please *show all your work*; this may help for partial credit. The exam totals 80 pts., subdivided as shown.

(1) (21 + 3 = 24 pts. total)

For all $n \geq 1$, define

$$s(n) = \sum_{r=1}^n \frac{1}{r^2}.$$

(a) Prove by induction that for all $n \geq 1$, $s(n) \leq \frac{2n}{n+1}$. (*Hint*: at the end, carefully cross-multiply by n^2 on one side and $(n+1)$ on the other—if you use “ k to $k+1$ ” style you will have similar but different quantities here.)

(b) Deduce that the infinite sum

$$s(\infty) = \sum_{r=1}^{\infty} \frac{1}{r^2}$$

converges—by giving the least integer t you can such that $s(\infty) \leq t$.

(2) (3+3+6+1+1+3 = 17 points total)

For all integers n , define $f(n)$ to be the nearest multiple of 3 to n . Note that if n is a multiple of 3, then $f(n) = n$.

(a) Give the values $f(n)$ for $n = 0, 1, 2, 3, 4, 5$.

(b) What, therefore, is $f(\{0, 1, 2, 3, 4, 5\})$? What is its cardinality?

(c) What is $f^{-1}(\{3, 4, 5, 6\})$? Find a proper subset $S \subset \{3, 4, 5, 6\}$ such that $f^{-1}(S)$ gives the same answer.

(d) Is f 1-to-1?

(e) Is f onto the set of integers?

(f) Which of the following is a formula for $f(n)$ when $n \geq 0$? (Recall $\lfloor x \rfloor$ means the greatest integer y such that $y \leq x$.)

(i) $3\lfloor \frac{n+1}{3} \rfloor$
 (ii) $3\lfloor \frac{n}{3} \rfloor$
 (iii) $3\lfloor \frac{n+2}{3} \rfloor$
 (iv) $3\lfloor n+1 \rfloor$

Exam continues overleaf

(3) (9 + 12 + 3 = 24 points total)

Let A, B, C be subsets of some universe U . Consider the proposition

$$P \equiv A \setminus (\tilde{B} \cup \tilde{C}) \subseteq B \cap C.$$

(Note: the text would write $A - (\bar{B} \cup \bar{C}) \subseteq B \cap C$ instead.)

- (a) Write the corresponding logical proposition, using just a for " $x \in A$ ", and b similarly for B , c similarly for C . Call it ρ (Greek rho).
- (b) Prove that ρ is a tautology. Any covered proof method, e.g. truth-tables or some other "semantic proof," proof rules or some other "syntactic proof," is AOK.
- (c) Deduce that P itself is always true.

(4) (5 × 3 = 15 pts.)

True/False. Please write out the words **true** and **false** in full. Brief justifications are not needed, but might help for partial credit.

- (a) The power set of the empty set is the empty set.
- (b) The power set of the empty set has cardinality $2^0 = 1$.
- (c) If $P(0)$ is true, $P(1)$ is true, and for all $n \geq 2$, $P(n-2) \rightarrow P(n)$ is true, then $(\forall n)P(n)$ is true, where n ranges over the domain of natural numbers.
- (d) The complement of the union of two sets is always a subset of one of the sets.
- (e) The difference of two sets is always a subset of their intersection.

END OF EXAM