
CSE250, Spring 2014 Final Exam May 14, 2014

Open book, open notes, closed neighbors, 170 minutes. Do All Five questions in the exam
books provided. Please show all your work—this may help for partial credit. The exam totals
200 pts., subdivided (48,36,30,56,30) and further as shown.

(1) (6+6+9+6+12+9 = 48 pts.)
Let h be the hash function on strings that adds up number values of letters a = 1, b = 2,

c = 3 etc., and let binary search trees compare strings in alphabetical order with the earlier
(lesser) string on the left. Show the process of inserting the strings ace, bad, bed, bag,

ebb, beg, did in that order into the following data structures. Show the hash tables and
the red-black tree after bed, after ebb, and then after did—if you can! One picture of the
BST is enough, while the FlexArray should be shown after each split.

(a) A size-8 hash table with chaining, with new elements going at end-of-buckets.

(b) A size-8 open-address hash table, using linear probing: h(k) + i for the i-th try.

(c) A size-8 open-address hash table, using the quadratic probe function h(k) + i2.

(d) A simple binary search tree.

(e) A red-black tree.

(f) A FlexArray fa with nodes of capacity 4, where a first non-dummy node is cre-
ated to store ace, and then each of the other strings x is inserted using the call
fa.insert(fa.begin()++,x); Nodes split when they reach (not exceed) size 4.

(2) (6 × 6 = 36 pts.)
Short answer questions : two sentences or formulas at most.

(a) Suppose we begin with an empty FlexArray object fa and execute
fa.insert(fa.size(), x); in a loop for n different items x, using the indexing
version of insert from Project 1. Assume the nodes have capacity roughly c =

√
n. Is

the total running time O(n)? Justify your answer.

(b) Suppose we begin with an empty FlexArray object fa and execute
fa.insert(fa.end(), x); in a loop for n different items x, using the iterator
version of insert from Project 1. Assume the nodes have capacity roughly c =

√
n. Is

the total running time O(n)? Justify your answer.

(c) Same question as (b), except that now we use the “pre-allocated” representation of
the node vector, meaning it operates the way the text describes for vector in Chap-
ter 4: When a node is allocated, its elements vector is initialized to size c not
size zero, and when the new element x is inserted at the end, an assignment like
elements->at(rearSpace++) is executed.

(d) Now suppose we insert new elements at the place where they would go to keep the
FlexArray in sorted order, rather than at a given index or iterator. Explain why it is
impossible for the n inserts to take O(n) time now. (questions continue overleaf)

1



(e) If f(n) = o(g(n)), then is f(n)2 = o(g(n)2)? Justify briefly.

(f) Why was FlexArray a better choice for the word-chains application—specifically the
part allowing new words to be put in anywhere, not just the ends of a chain—than it
would have been for the movie-base or user-base container classes on Project 2?

(3) (10 × 3 = 30 pts. total)
For each task below labeled 1.–10., say which of these best describes its running time:

(a) Guaranteed O(1) time.

(b) Amortized O(1) time.

(c) Usually O(1) time.

(d) Guaranteed O(log n) time.

(e) Usually O(log n) time.

(f) Guaranteed O(
√
n) time.

(g) Guaranteed O(n) time.

In all cases n denotes the number of items currently in the underlying data structure, and any
other parameters are stated. The variable vec stands for a vector, deq for a deque, dlist for
a doubly-linked list (unsorted), fa for a “FlexArray” data structure with c '

√
n, bst for

a BST—i.e. a general binary search tree, rbt for a red-black tree, itr for an iterator of the
appropriate kind, and item for a typical item in the data structure. All of these objects use
the same STL-compliant interface as on Project 1. Justifications are not required, but might
help for partial credit. “Amortized” and “usually” mean as on Assignment 8.

1. For a BST iterator itr, the call erase(itr);

2. For a red-black tree iterator itr, the call erase(itr);

3. fa.erase(fa.begin());

4. vec.insert(vec.begin(),item);

5. dlist.erase(itr);

6. For a set data structure s, the call s.find(item);

7. For two FlexArray iterators itr1 and itr2, the test itr1 == itr2;

8. For a deque deq, n consecutive calls to popRear();

9. Given a red-black tree rbt with n elements and a BST bst with only n/ log2 n elements,
copying the latter from bst into rbt.

10. Given two FlexArray objects fa1 and fa2, with the same capacity c, creating a new
FlexArray as the union of the two.

2



(4) (9+3+9+3+9+2+21 = 56 pts. total)
Suppose you have an online trading service for role-playing-game cards, such as Pokemon

or Yu-gi-oh or Magic: The Gathering. Each card has a name (such as “Pikachu” or “Voice of
Resurgence”) and a “par price” in your catalog. Users of your service have ID numbers which
are consecutive integers 1, 2, . . . , U , while the cards do not have numbers1 Each user can sell
cards to you at the par price p, and can bid for cards at a price q that might be over or under
p. Bid requests are recorded in a file with N lines of the form:

[userid] [card_name] [bid_price q]

Of course you sell the cards you have in stock to the highest bidders. What you now want to
find out are the k users who tend to bid the most over par. That is, for every user u, let bu
be the number of bids u makes. Let Sq be the sum of the bid prices on these cards, let Sp be
the sum of the corresponding par prices, and let Pu = (Sq − Sp)/bu. You want the k users u
with the highest Pu values.

(a) Of the data structures (i) vector/array, (ii) linked-list, (iii) red-black tree, or (iv) hash-
table, which one(s) are most suitable for the users? Are any of them poor , meaning
usual access time more than O(logU) per user lookup?

(b) Would FlexArray have any advantages here? What if many users closed their accounts
and got erased?

(c) Of the same data structures (i)–(iv), which one(s) are most suitable for the cards? Which
ones are poor , this time meaning more than O(logM) time per lookup in average case,
where there are M cards?

(d) Suppose you read the N bids from the file into a linked list. Is that enough, or should
you subsequently store copies of (or pointers to) bids in instances of a User class?

(e) Using the C++ Standard Template Library interface, write code to iterate through a
list<Bid> object called bids, look up the user number by a method size_t getUser()

of the Bid class, and store the bid with the corresponding user in a vector uvec using a
method void addBid(const Bid& bid) of the User class.

(f) Which method(s) in part (e) should be const? [Exam extra-credit (4 pts.): how might
one be “legally const” without being “morally const”?]

(g) Give an algorithm for computing the top-k list. A pseudocode sketch is fine—you may
name some C++ functions such as sort or make_heap but need not write exact C++
code. Finally and most important, give an asymptotic formula for your algorithm’s
running time in terms of the number U of users, M of cards, N of bids, and k. (Times
that are within logarithmic factors of optimal will not lose credit, and depending on
your choices and any reasonable assumptions, not all of U,M,N, k might appear.)

1Or if they did, the numbers would not be consecutive.

3



(5) (30 pts.)
Do One of the following two programming tasks, your choice. One is “low-level” with

pointers and indices, the other “high-level” with iterators.

I. Inside the FlexArray class, revise the body of at(size t i) so that it loops backwards
from the end, rather than forward from the first node as on Assignment 6. Here you need to
assume that the ChunkNode<T> nodes are in a doubly-linked list, with prev as well as next

fields. The effect is that now the rear item and elements near it can be retrieved in O(1) time.
Then say how you could combine it with the project version to get a body for at that would
run in O(1) time for the elements at either end, thus meeting requirements of the C++ deque

class in particular (which is what FlexArray emulates).

XOR

II. Give code for a function

template <typename T>

void merge(FlexArray<T>& source, FlexArray<T>& target) { ... }

which empties all the items out of source and appends them onto target. Use iterators
and the iterator versions of insert and erase; note that your code might apply to any STL-
compliant container class with the same interface of public methods, not just FlexArray. Also
note that unlike Problem (3), item 10., you may not assume that the two FlexArray objects
have the same value of their capacity parameter.

End of Exam

4


