CSE396 Problem Set 2 Answer Key Spring 2017

(1) For each of the following regular expressions r, design both an NFA N such that
L(N) = L(r) and a DFA M such that L(M) = L(r). You are not expected to convert N
into M by the text’s procedure (which won’t be covered until Tuesday) but rather to design
N and M by strategy—and in particular, your M needs to have explanatory comments on
its states (even if you do use the conversion). You can skip comments on the NFA—making
it “resemble” r for direct readability is a point of the problem—but for full credit, your NFA
should have fewer instructions than any DFA you could possibly think to build. This implies
that you should try to economize by not using so many (or any) e-arcs compared to the general-
and-abstract proof of the r-to-N conversion in the text and lecture. All the expressions and
languages are over 3 = {a,b}. (3 x (6 +9) = 45 pts.)

o = (ab)*(ba)*.
e = (aUb)*(aba U bba).

e = (abaUb)a*. Answers in words:

(a) The NFA has accepting states s, f with an e-arc from the start state s to f. It then
has instructions (s, a, p), (p, b, s) carrying out the initial (ab)* loop, and (f,b, q), (¢, a, f)
doing the other loop, where p and ¢ bring the numbers of states to 4 to go with the 5
instructions.

The DFA has these 4 states but instead of (s, €, f) it has (s, b, ¢), with the comment that
an initial b (or any b after a bunch of ababab ... repeats) commits you to being in the
middle of the “ba” cycle. Thus far it is tied with the NFA in the number of instructions,
but you need to add 3 more going to a dead state and 2 more there to call it a DFA, for
a total of 10.

(b) The NFA has self-loops on both a and b at the state state with instructions
(s,a,s),(s,b,s). Then it has arcs on a and b going to a new state q. There are two
more states r, f with instructions (¢, b,r) and (7, a, f), making a total of 4 states and 6
instructions. No e-arcs were needed.

The DFA has the idea that the regular expression is really (aUb)*(aUb)ba = (aUb)ba =
(e UDb)(aUb)*ba. The benefit of re-factoring it this way is now we see the idea of just
having (s, a,q), (s,b,q) as the options at the start state and allowing you to loop at ¢
if needed. Now the game at ¢ becomes “strings that end in ba.” Run your instructions
(q,b,7) and (r,a, f) out like class showed with other examples, but don’t make f a
“nirvana” state because this is “ends-with ba” not “has-a ba.” So getting another char
in state f knocks you back either to r (on a b) or all the way back to ¢ (on an a). And
getting another b in the midpoint state r preserves your progress and keeps you there;
likewise an a at state ¢ makes no progress but doesn’t kill you. So in fact there’s no
dead state. But you do need 8 instructions, the other 4 being (¢, a,q), (r,b,7), (f,a,q),
and (f,b,r), which are 2 more than the NFA has.

(¢c) The NFA has one edge (s,b, f) going right to the final state f and one “detour”
(s,a,p),(p,b,q),(q,a, f), then finally a loop (f,a,f). This design actually has no



nondeterminism—nor € arcs. So to get the DFA, just add a dead state and route
the “missing” arcs to it. Unlike (a), this DFA isn’t even “morally different” from the
NFA—but it still counts as having more instructions.

(2) (a) Describe in precise words a procedure by which you can take any NFA N =
(@Q,%,6,s, F) and produce an NFA N’ = (@', %, s, F') such that L(N') = L(N) but F’
consists of a single state f. That is to say, without loss of generality, we could have defined
NFAs in the text to have only one accepting state from the get-go.

(b) Now revisit your answer and try to do it without adding any extra e-arcs. You may
make one assumption—if you need to—which is that ¢ ¢ L(N). Can you do it now? (12 +
12 = 24 pts., for 69 on the set)

Answer: (a) Given any NFA N = (Q, X, 0, s, F'), add a new state f and arcs (q, ¢, f) from
every state ¢ € F'. The re-define F' to be F’ = just {f}. The resulting NFA N’ has just the
one accepting state and makes L(N') = L(N) because: if x is processed by N from s to a
final state ¢ then we can take one more null step to complete processing the same = - € = x
from s to f. So L(N) C L(N’). And conversely, if € L(N’), then the only way we could
have processed = from s to f in N’ was to have gone through some final state ¢ of N before
the final e-jump. So N can process = from s to ¢, so x € L(N), so L(N') C L(N) since z is
general, so L(N’) = L(N) by both halves of the proof.

OK, the proof wasn’t needed but it’s good to read, also in 20 years we may have credential-
entry super-CAPTCHA protocols that are more like proofs. And if you want to be really
wonky, you could write N' = (@', %, ¢, s', F') where Q' = QU {f}, s = s, F' = {f}, and—
drumroll please—

d =0U{(q,¢e f):qe F}.

(b) Now the idea is that we want to “look ahead” by 1 char: If ¢ lets you go from some state
p to some state ¢ € F', then you camn add an extra option to go to the new f again. That is,
add f and add (p, ¢, f) for every state p and char ¢ such that N can process ¢ to a state in F'.
Now there’s a little subtlety: An instruction (p, ¢, q) might not have g € F directly—instead
it might be that you get from ¢ to a state r € F' via e-arcs. This is another example where
my “can process” lingo is useful. Then L(N') = L(N) because L(N') C L(N) is like before,
and L(N) C L(N') because for every € L(IN) with final character ¢, N’ can process that
final char directly to f instead.

Ah but—this statement needs there to BE a final char ¢ in z. If z = € and ¢ € L(N) this
logic doesn’t hold deuterium oxide. In fact, without the restriction € ¢ L(N), the whole thing
can become impossible. Here is the simplest counterexample I know: Take L = {z : #1(z) # 1
(mod 3) }. (It doesn’t matter if the alphabet is { 0,1} or just {1}.) Then € € L and we can
make an easy DFA for L with 3 states that go in a cycle on 1s, which “Is-A” NFA N. Now
we're not allowed to add any e-arcs to N, so we must keep s as an accepting state. We can
try to re-route and re-design the rest of the machine, even changing some old arcs, but we’re
killed by this reasoning if we try to keep s as the only accepting state: All options from s
on 1 have to go to rejecting states since 1 ¢ L. But 11 € L so you’d have to bring 11 back
to s. But then 111 gives you only the previous rejecting states as options, which breaks the
fact that 111 € L. So it can’t be done and hence the extra clause really was needed for the
original proof.



