
CSE396 Problem Set 3 Answer Key Spring 2017

(1) Convert the following two NFAs N1 and N2 into equivalent DFAs. Both have Σ = {a, b}.
For each one, say how many more (or less?) states and instructions the DFA has, whether it
is possible for the NFA to “die,” and whether it is possible for a string to activate all 3 states
of N1 at the same time. (18 + 18 + 9 = 45 pts.)

N1 has states {1, 2, 3}, instructions δ1 = {(1, a, 2), (1, a, 3), (1, b, 2), (2, a, 3), (3, b, 1), (3, b, 2)},
start state 1, and F1 = {2}.
N2 has δ2 = {(1, ε, 2), (1, a, 3), (2, a, 2), (2, b, 4), (3, b, 2), (3, b, 4), (4, a, 4), (4, b, 1)}, Q2 =
{1, 2, 3, 4}, s2 = 1, F2 = { 2 }.

Answer: There are no ε-arcs, so my δ
¯

is the same as the text’s treatment of δ as a function:δ¯(1, a) = {2, 3} δ
¯
(1, b) = {2}

δ
¯
(2, a) = {3} δ

¯
(2, b) = ∅

δ
¯
(3, a) = ∅ δ

¯
(3, b) = {1, 2}

 .
Start is just S = {1}. Expanding by breadth-first search (BFS), we get:

∆({1}, a) = δ
¯
(1, a) = {2, 3} (new state)

∆({1}, b) = δ
¯
(1, b) = {2} (new state)

∆({2, 3}, a) = δ
¯
(2, a) ∪ δ

¯
(3, a) = {3} ∪ ∅ = (new)

∆({2, 3}, b) = ∅ ∪ {1, 2} = {1, 2} (new)

∆({2}, a) = δ
¯
(2, a) = {3} (old)

∆({2}, b) = δ
¯
(2, b) = ∅ (new but dead)

∆({3}, a) = δ
¯
(3, a) = ∅ (old and dead)

∆({3}, b) = δ
¯
(3, b) = {1, 2} (old)

∆({1, 2}, a) = δ
¯
(1, a) ∪ δ

¯
(2, a) = {2, 3} (old)

∆({1, 2}, b) = {2} ∪ ∅ = {2} (old)

∆(∅, a) = ∆(∅, b) = ∅

All new states have been expanded, so the DFA is closed. It has 6 states and 12 arcs,
double what the NFA had in each. The state {1, 2, 3} was never reached, and this means
there is no string that activates all 3 states of N at once. (Indeed, we can’t even get 1 and 3
on simultaneously. Looking at N1 tells why: you can only get to 1 on a b and to 3 on an a.)
But ∅ is reachable, most immediately by the straing bb, which causes (all processing in) the
NFA to die. The set F ′ of final states in the DFA comprises all sets that include the accepting
state 2 of the NFA, so F ′ = {{2}, {1, 2}, {2, 3}}.

For N2, the ε-arc (1, ε, 2) (which is the only one) carries the meaning “whenever 1 then
also 2” and makes the start state S2 of the DFA M2 equal {1, 2}, not just {1}. Since 2 is



accepting while 1 is not listed as such (though it could be), you need to include 2 to reflect
that ε is in L(N2) so you need the start state of the DFA M2 to be accepting.

The ε-arc also makes my δ
¯

different from the text’s δ as a function, so we chug it out:
δ
¯
(1, a) = {3} δ

¯
(1, b) = ∅

δ
¯
(2, a) = {2} δ

¯
(2, b) = {4}

δ
¯
(3, a) = ∅ δ

¯
(3, b) = {2, 4}

δ
¯
(4, a) = {4} δ

¯
(4, b) = {1, 2}

 .
Most important here is that on δ

¯
(4, b) we included state 2 not just 1 by the rule, “whenever

1, then also 2.” Now the rest is automatic by BFS:

∆(S, a) = δ
¯
(1, a) ∪ δ

¯
(2, a) = {2, 3}

∆(S, a) = δ
¯
(1, b) ∪ δ

¯
(2, b) = ∅ ∪ {4} = {4}

∆({2, 3}, a) = {2} ∪ ∅ = {2} (new again)

∆({2, 3}, b) = {4} ∪ {2, 4} = {2, 4} (and again)

∆({4}, a) = {4} (self-loop in DFA too here)

∆({4}, a) = {1, 2}
∆({2}, a) = {2} (and self-loop here)

∆({2}, b) = {4}
∆({2, 4}, a) = {2.4} (different way to get a self-loop)

∆({2, 4}, b) = {1, 2, 4} (this counts as a new state)

∆({1, 2, 4}, a) = {3} ∪ {2} ∪ {4} = {2, 3, 4} (ditto!)

∆({1, 2, 4}, b) = ∅ ∪ {4} ∪ {1, 2} = {1, 2, 4} (not new)

∆({2, 3, 4}, a) = {2} ∪ ∅ ∪ {4} = {2, 4}
∆({2, 3, 4}, b) = {4} ∪ {2, 4} ∪ {1, 2} = {1, 2, 4} (closes BFS)

Finally, F ′ = {anything with 2} = {{1, 2}, {2, 3}, {2, 4}, {1, 2, 4}, {2, 3, 4}} = all the states
except {4}. We went from 4 to only 6 states, tons better than the max of 16 (which was
already a max of only 12 thanks to the ε-arc ruling out the 4 combinations that have 1 but
not 2), and from 7 to 12 instructions. We found no dead state in the DFA M2, and this means
N2 never dies.

Nor did we find the “full state” {1, 2, 3, 4} but here’s why the problem set avoided asking
about it for N2: the DFA does have a “nirvana condition.” Once you enter the state {2, 4}
(say by the string ab) you never leave a cluster of three states all of which have 2 so they
all accept. This means too that the DFA is not minimal. You could replace the cluster by
a single “nirvana state” and here’s the kicker: you might as well label it {1, 2, 3, 4}. So even
though there is in fact no way to light up all 4 of the NFA’s states at the same time, the
accept-reject behavior makes things tantamount to saying so, in a “virtual” sense. So even
though a “yes” answer your be technically false, it would be “morally true” so it wouldn’t be
marked wrong—given proper essay-style explanation.



(2) Find regular expressions for the following languages. In all cases you must give some rea-
soning to explain how you got the expression—and it is your job to explain your interpretation
of any element of the description that is possibly ambiguous. It is AOK but not necessary
to sketch a DFA as part of this reasoning, nor demanded that you use the DFA-to-regexp
conversion. (9+9 = 18 pts., for 63 total on the set).

(a) The language of strings over {a, b,#} that have a single # in them, and that either have
at least two a’s immediately before the #, or at least two b’s somewhere after the #.
(The two b’s need not be consecutive like the two a’s.)

(b) The language of strings over {a, b} that do not begin with the substring bba.

Answer: (a) The “or” is the outermost operator and says to build a regexp r of the
form r = (r1) ∪ (r2). Make r1 handle the “at least two a’s immediately before the #” part:
r1 = (a∪b)∗aa#(a∪b)∗. Note how the final (a∪b)∗ says that in this case we “don’t care” what
happens after the # (so long as we don’t get another # which would be bad). Then you just
have to reason out r2 = (a∪b)∗#a∗ba∗b(a∪b)∗. Also good is r2 = (a∪b)∗#(a∪b)∗b(a∪b)∗b(a∪b)∗
but the first one is more economical and fixates on the first two b’s on the right-hand side.
Putting it all together:

r = (a ∪ b)∗aa#(a ∪ b)∗ ∪ (a ∪ b)∗#a∗ba∗b(a ∪ b)∗.

Note that “and” would have been easier: (a ∪ b)∗aa#a∗ba∗b(a ∪ b)∗. If you interpreted the
prose as “xor” then you would still have the same structure r = (r1) ∪ (r2) but you’d have
to negate the condition on the other side of the # rather than use an easy “don’t care.”
Happily in this case the negations are not too painful: ∼ r1 = (a ∪ b)∗(b ∪ ba) ∪ ε ∪ a and
∼ r2 = a∗(b ∪ ε)a∗ and you get:

(a ∪ b)∗aa#a∗(b ∪ ε)a∗ ∪ ((a ∪ b)∗(b ∪ ba) ∪ ε ∪ a)#a∗ba∗b(a ∪ b)∗.

(b) A string x avoids beginning with bba if x:

• begins with a,

• begins with ba,

• begins with bbb, OR:

• IS one of the strings ε, b, or bb.

The last clause is prone to being forgotten. One way to avoid forgetting was to build the
easy “goal-oriented” DFA M for the language of strings that do begin with bba and then
complement it to get a DFA M ′ with five states, call them s, p, q, d, f . Here the dead state d
of M ′ was the “nirvana” state of M while f was the dead state of M . Since all states of M ′

except d are accepting, we get that the language L of M ′ is:

L = Ls,s ∪ Ls,p ∪ Ls,q ∪ Ls,f
= ε ∪ b ∪ bb ∪ (a ∪ ba ∪ bbb)(a ∪ b)∗.

The second line is the required regular expression; it can be “unfactored” into six terms or
factored even a bit more, but this is clear.


