Bayesian inference of the apparent (intrinsic) value of chess players:

Given a FEN position and a move m chosen by a human player <FEN-pos, m>, we apply the Bayesian rule for the posterior probability.
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Given a set of matches with opponents of similar Elo rating, we extract all FEN positions and their relative chosen moves. We iteratively apply the Bayesian rule to the list of <FEN-pos, m>, where the apriori probability at step k is the posterior probability at step (k-1).
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The initial values of the apriori probability are uniformly distributed.

The probability the chess engine E(c) makes a given move m: Prob[m, E(c)]

We run the analysis of a given FEN position (board configuration plus the active color) with a reference chess engine E to obtain a list of best moves and their heuristic score in centi-pawns, which corresponds to the estimated advantage of the position the move will lead to. The analysis is carried out up to a given maximum depth (in all experiments d_max=10). The outcome of the analysis is a list of moves and their scores, {<m_j, v_j>}.
We define the likelihood that a stochastic chess engine E(c) makes a move m_j as follows:
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In the experimental tests the parameter K is 0.01. (Comment: in the future we could consider the value K as an additional variable, in a more generic multivariate analysis.)
The likelihood that a stochastic chess engine E(c) makes a move that is not considered by the reference chess engine is zero. (Comment: this is happening when the player chooses a move that the chess engine did not consider at all. We discard these cases. We are considering if we should include them by determining the proper score of the move by looking at the analysis of the next position.)
Hence, the probability that a stochastic chess engine E(c) makes a given move m_j is:
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We have adopted an adaptive range detection for a more efficient computation of the probability distribution of the apparent “c” value. Parameters delta_c, c_min and c_max have been introduced to allow the discretization of the values of c. These parameters are adjusted during execution to allow a refinement (better precision) of the values of c. An iterative process starts from a wide range with coarse precision. At each iteration the range is narrowed down and the precision increased. This allows a more efficient computation in terms of runtime and memory requirements.
Analysis of apparent “c” value for players in different Elo range
Data

2200 Elo data: all players in the Elo interval [2190-2210].
2300 Elo data: all players in the Elo interval [2290-2310].
…

2700 Elo data: all players in the Elo interval [2690-2710].
Each set contains about 30000 FEN positions. Only the 2700 Elo range set has only 13796.
[image: image5.emf]Prob. of E(Toga-10, c) for different Elo ranges
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Conclusion: the Bayesian model is able to detect the difference between groups of players in different Elo range.

Training analysis 
These are snapshots at different iteration steps in order to verify the evolution of the probability distribution of the apparent “c”. The test has been carried out on the 2400 Elo data. The FEN positions have been processed in their natural order (as they appear in the sequence of matches-moves).

[image: image6.emf]2400 Elo range: apparent "c" evolution
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[image: image7.emf]2400 Elo range: avg_c
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[image: image8.emf]2400 Elo range: std_dev
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Here, the FEN positions have been shuffled: just to check that the order of the input data does not matter.

[image: image9.emf]2400 Elo range: apparent "c" evolution
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[image: image10.emf]2400 Elo range: avg_c
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[image: image11.emf]2400 Elo range: std_dev
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Analysis of apparent “c” value considering the result of the match
From each match we have extracted the Player-Match list of <FEN position, chosen move> of both players and associated that with the outcome (1, ½, 0). Then we apply the Bayesian inference process to each of the Player-Match lists to get a probability distribution of the “c” value. The average “c” value (apparent “c”) is computed as a weighted average. Finally we apply some statistics.
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Data: 2400 Elo group 

Number of Player-Match: 1204 (= 2 x number of matches)
Overall avg on 1204 player-matches regardless of the result: 1.2109419419270069
      N.
average “c”


variance


std dev

  1:
313
1.2301796141964334
0.0038770931130714405
0.06226630800899826
1/2:
578
1.2339048028068376
0.002117194764287764
0.04601298473570003
  0:
313
1.1493000089913117
0.004705386015206956
0.06859581630979368
For each match, we compute the difference between the apparent “c” of the two opponents.
We average the result over all matches in each category (1, ½, 0).
avg diff   1:
0.08087960520512068
avg diff 1/2:
0.0
avg diff   0:
-0.08087960520512068

Conclusion: the Bayesian model is able to detect the difference between players in the same Elo range.
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