Nature-Inspired Machine Learning

Marissa Dominijanni

University at Buffalo

2019 May 03

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03

1/76

Euclidean Neural Maps

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 2/76

Motivation

@ Self-organizing maps (SOM) are a class of neural network models
which utilize competitive learning and self-organization to learn
dimensionality reduction

@ SOM have a fundamental limitation in terms of the dimensionality of
the feature space they can work with

@ We propose a new model called a Euclidean neural map (ENM) with
the intent of tractably generalizing SOM to high-dimensional datasets

@ An ENM is parameterized by a set of “neural particles” which float in
the output space and “bend space” around themselves orthogonally
to the output space with the same dimensionality as the feature space

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 3 /76

Self-Organizing Maps

@ SOM is trained in an unsupervised manner to perform feature
extraction, the process of discovering latent variables

@ Neural network model in which neurons are not organized into layers,
but instead are connected to each other, typically in a Cartesian grid

@ Grid of neurons can also be connected in order to form an n-torus
@ Structure seeks to mimic the topology of neurons found in the brain

@ Each neuron contains a weight vector the same length as the
dimensionality of the input space, position of the neuron corresponds
to the value in the output space

@ lterate each time ¢ up to a maximum of lambda

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 4 /76

Self-Organizing Maps (cont.)

@ Best Matching Unit (BMU) is computed as minimizing the distance d

between the provided input x and the neuron weight w:

u = argmind (w, — x)
v

@ SOM update rule typically takes the following form:

Wy — Wy + (p — wy) 0 (v,u,t) a (t)

o () = agexp <—§>
o (£) = op exp <—;>

e [l
0 (v,u,t) = exp 207 (1)

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning

2019 May 03

5/ 176

Self-Organizing Maps — Learning Procedure

© Randomize the weight vectors of each neuron in the map, and set
t=20

© Randomly draw a sample x ~ P

@ Compute the BMU as u = arg min, ||w, — z|/3

© For each neuron v, update the weight as
Wy — Wy + (p — wy) O (v, u,t) a(t)

Q Sett=t+1
Q If t < A, goto step 2, otherwise stop

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 6 /76

Comparison Between SOM and ENM

@ Principal goal of ENM is to remain close to the original SOM model
while eliminating issues of exponentially increasing complexity,
» MNIST dataset has 784 input dimensions (pixels) and 10 output
dimensions (digits)
> In an SOM with 10 neurons along each output dimension, 10 billion
neurons and 7.84 trillion parameters would be required
@ We seek to do this by reducing the number of neurons (“neural
particles” in ENM terminology) required to represent a near-to
equivalent amount of information
o Attempt to achieve this by using a comparatively small number of
neural particles which “float” in a continuous output space, rather
than defining a discrete output space defined by each neuron
o Capitalize on the notion that the activation of a BMU in an SOM
should generally exert an influence which exponentially decays to
surrounding neurons, so a few neural particles can “sculpt” an
approximation

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 7 /76

Comparison Between SOM and ENM (cont.)

@ Unlike in an SOM, neural particles are not evenly distributed in a
range of the output space, but instead travel to “areas of activation”
so more dynamic areas are more complexly represented

@ The aforementioned continuous output space in an ENM (versus the
discrete one in an SOM) means that inference cannot be performed
by exhaustive search, but instead must be solved for via mathematical
optimization (gradient descent in our implementation)

@ Design decision which sacrifices this is also what allows the reduced
number of parameters

@ An ENM defines neural particles which can be thought of as exerting
a field and is defined over an unbounded continuous space

o If the optimization procedure to find the BMU fails to find the global
optimum, then the behavior of an ENM fundamentally diverges from
that of an equivalent SOM, which could result in undefined behavior

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 8 /76

Growing Neural Gas

https://papers.nips.cc/paper/893-a-growing-neural-gas-network-learns-topologies.pdf

e Growing neural gas (GNG) is another existing model which seeks to
solve the high-dimensional intractability issue of SOM

@ Unlike SOMs with topology fixed in the output space and morphed to
fit in the input space, GNG topology is dynamically generated

@ Follows the principle of Hebbian learning: if two neurons fire in
tandem then the connection between them is strengthened

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 9 /76

https://papers.nips.cc/paper/893-a-growing-neural-gas-network-learns-topologies.pdf

Growing Neural Gas — Learning Procedure

@ Generate two nodes a and b at random values in R

@ Draw a random sample £ ~ P and find two nodes v; and v such
that vy is closest to (and vy is second closest to) &

For each edge e connected to vy, increment its age a, by 1
Increment the error for the BMU: €,, +— €,, + [lwy, — &3

Move v; and its neighbors towards & by 7, and 7 respectively:

Wy — Wy + € (§ — wy)

If an edge connects v; and vy, set its age to zero, e (v1,v2) «— 0.
Otherwise create such an edge with an age of zero.

For each edge ¢ € F, if ae > apax remove it. If after removing said
edges any nodes have a degree of zero, remove them.

If the number of samples drawn is divisible by A, insert a new node
halfway between the node with maximum error and its neighbor

Decay all errors by multiplying them by the global decay rate of error

60 © © ©6 06060

If a stopping criterion is not yet met, return to step 2 and repeat.

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 10 / 76

Comparison Between GNG and ENM

@ Both GNG and ENM have the goal of implementing an SOM-like
algorithm while avoiding the issue of intractability

@ GNG uses a variable number of nodes, opposed to the fixed number
of neural particles in ENM (“neural gas”, the algorithm GNG is
directly based on also uses a fixed number of nodes)

© GNG uses explicitly defined connections between nodes, whereas
connectivity is defined implicitly in ENM, where the strength of a
connection is inversely proportional to the distance between them
(this connectivity decays exponentially)

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 11 /76

Euclidean Neural Maps

@ Main intuition is to start with an SOM, but change the rigid discrete
output space to a continuous deformable space

@ ENM is defined by a set of neural particles, each of which
simultaneously exists in both the feature space R® and the output
space R”

@ Each neural particle exists in the output space, where each neural
particle bends space around itself orthogonally to the output space,
with magnitude and direction determined by its representation in the
feature space

@ Deformation at a point in the output space corresponds to the unit's
weight vector in an SOM

@ Curvature extends to the output space surrounding a neural particle,
decaying exponentially (with width parameterized on a particle-wise
basis) back to its rest state

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 12 /76

Euclidean Neural Maps (cont.)

@ Main intuition is to start with an SOM, but change the rigid discrete
output space to a continuous deformable space

o ENM is defined by a set of N neural particles, each of which
simultaneously exists in both the feature space R® and the output
space R”

@ Each neural particle exists in the output space, where each neural
particle bends space around itself orthogonally to the output space,
with magnitude and direction determined by its representation in the
feature space

@ Deformation at a point in the output space corresponds to the unit's
weight vector in an SOM

@ Curvature extends to the output space surrounding a neural particle,
decaying exponentially (with width parameterized on a particle-wise
basis) back to its rest state

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 13 /76

Euclidean Neural Maps — Parameters & Hyperparameters

Parameters

Q € RV*S Neural particle locations in feature space

Z € RV*P Neural particle locations in output space

K € RV*! Curvature width of neural particles (used during inference)
Hyperparameters

@ 7 and o affect how the curvature (Q) is updated

@ (and 7 affect how the neural particles in Z are attracted to the area
of activation in Z (we call the spread of neural particles in the output
space ‘“coverage”).

@ ¢ and v affect how the neural particles in Z a repelled from each
other in order to control any “clumping”

@ 17, ¢, and ¢ control the influence width of neural particles

@ o, 7, and v control the step size of the update

@)\ controls how quickly the curvature learning radius ¢ is decayed

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 14 / 76

Euclidean Neural Maps — Learning Procedure

© Randomize the location of each neural particle in the feature space
and output space, and assign a random curvature width in a narrow
range to each neural particle

@ Randomly draw a sample z ~ P

© Compute the activation point as

7 _ ,|?
Z Q(n) @eXp (_HZHQ)] —

2
neN QK(TL)

2

z* = arg min
z

2

@ For each neural particle n € N, update its induced extrinsic curvature

as
Zm — |2
QM @ _y (Qm) . x) exp <_H202H2>

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 15 / 76

Euclidean Neural Maps — Learning Procedure (cont.)

© For each neural particle n € N, update its location in the output
space as:

(n) _ *||?
20 20 ¢ (20— Y exp <_HZH2>

272
w _ g |2 — 2]
-l-i%:v e(Z()—Z()>eXp< o -2

@ Reduce the curvature learning radius to ensure convergence o <

@ If some stopping criterion is met, halt. Otherwise goto step 2.

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 16 / 76

Two-Spheres Test

Synthetic dataset generated as “carving” two spheres from uniform

random points

@ 562 points in the sphere in the first octant (4, +, +) and 600 in
sphere in the seventh octant (—,—, —)

@ In first test, neural particles placed within each sphere and labeled as

one-hot vectors with Gaussian noise added to the labels as a “good

start”

@ In second test, neural particles placed in random positions with
random labels as a regular start

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 17 / 76

Two-Spheres Test (Good Start) — Input Space

Data and Particles in Feature Space (Epoch=0) Data and Particles in Feature Space (Epoch=15)
3 3,

° N\
Ny v v
Blue - Points in the Dataset
Orange — Neural Particles

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 18 / 76

Two-Spheres Test (Good Start) — Output Space

Output Space (with Repulsion) . Output Space (without Repulsion)

3 3

2 2

1 w 1 ~

0 * . 0 . ’ \n\.

El 1

2 2

3 3

4 4

4 2 0 2 4 4 2 0 2 4
Blue - Initial Location of Neural Particles

Orange — Final Location of Neural Particles

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 19 / 76

Two-Spheres Test (Good Start) — Activation Pattern

, Output Space (Initial, with Repulsion) , Output Space (Final, with Repulsion)

-

Blue — Activations from First Octant Sphere
Orange — Activations from Seventh Octant Sphere

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 20 / 76

Two-Spheres Test (Random Start) — Input Space

Data and Particles in Feature Space (Epoch=0) Data and Particles in Feature Space (Epoch=15)
3 3

Blue — Points in the Dataset

Orange — Neural Particles

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 21 /76

Two-Spheres Test (Random Start) — Output Space

R Output Space
4
2
0
2
-4
s . . ‘
6 4 2 0 2 4 6
Blue - |Initial Location of Neural Particles
Orange — Final Location of Neural Particles

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 22 /76

Two-Spheres Test (Random Start) — Activation Pattern

Output Space (Epoch=0)

Output Space (Epoch=15)

10 5 0 5 1‘0 10 5 0 5 10
Blue - Activations from First Octant Sphere
Orange — Activations from Seventh Octant Sphere

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 23 /76

Sphere-in-Torus Test

@ Synthetic dataset generated as “carving” a sphere and a torus
centered around the origin from uniform random points

@ 293 points in the sphere 967 points in the torus

@ Neural particles placed within the sphere and uniformly spaced along
the circle defined by the major radius and labeled as one-hot vectors
with Gaussian noise added to the labels as a "“good start”

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 24 / 76

Sphere-in-Torus Test — Input Space

Data and Particles in Feature-Space (Epoch=0)

2
.
o
. /
F2
a—
-4 -3 -2 1 0 1 772’7773"777TA
Blue -
Orange —

Data and Particles in Feature-Space (Epoch=15)

Points in the Dataset

Neural Particles

2019 May 03

Nature-Inspired Machine Learning

Marissa Dominijanni (University at Buffalo)

25 / 76

Sphere-in-Torus Test — Output Space

4 Output Space ('with Repulsion) 4 Output Space (without Repulsion)

3 ' 3

2 2

1 * 1 td

0 - : 0 -

1 . 1

-2 2

3 3

-44 3 2 1 0 1 2 3 4 4»4 3 -2 1 0 1 2 3 4
Blue - |Initial Location of Neural Particles

Orange — Final Location of Neural Particles

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 26 / 76

Sphere-in-Torus — Activation Pattern

Cgutpul Space (Initial, with Repulsion) Cs)utput Space (Final, with Repulsion)

Out)
5

55 0 5 55 0 5
Blue - Activations from the Sphere
Orange — Activations from the Torus

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning

2019 May 03

27 / 76

Analysis of Results

@ Stable convergence implies that the model is learning something, just
not what we want it to (desirable final configuration is not stable)

@ Lack of distinction in the output space between points in each cluster
shows that it is unable to differentiate the two in this manner, even in
the linearly separable case

@ Lack of normalization means that overlapping neural particle
neighborhoods to may lead to undesired interference, leading to local
curvature with values greatly exceeding the magnitude of the values
in the input space

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 28 / 76

Examples of Prior Work

e Comparison of gradient descent based optimization techniques (e.g.
SGD, Adam, RMSProp) on a feedforward neural network

@ Comparison of machine learning techniques for forensic handwriting
analysis (Bayesian network, perceptron, and convolutional neural
network with concatenated RelLU)

@ Semi-supervised learning with deep generative models (comparing a
VAE+MLP to a VAE with a second dense layer alongside the code
layer sampled using the Gumbel-Softmax trick)

e Comparison of SVM and MLP (using SIFT features) and CNN for
CIFAR-10 classification

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 29 / 76

Theoretical Properties for Neural Networks with Weight Matrices of
Low Displacement Rank; Zhao, Liao, Wang et al.

arXiv:1703.00144

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 30/ 76

Low Displacement Rank Construction

@ LDR construction is a method of imposing structure on the weights of
a neural network to reduce space and computational complexity

@ Accomplish this by defining the weight matrix for a layer of a neural
network as a composition of structured matrices (or a single
structured matrix in the case of a square weight matrix)

@ A structured matrix is a kind of square matrix which can be
procedural constructed from a smaller number of parameters (on the
order of O (n) versus O (n?) for a non-LDR matrix)

@ These LDR neural networks can be viewed as using a kind of
parameter sharing scheme

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 31/ 76

Benefits of LDR Neural Networks

@ Fast matrix-vector multiplication on LDR matrices can reduce
computational complexity from O (n?) on regular neural networks to
O (nlogn) or O (nlog?n)

@ More traditional methods such as heuristic weight-pruning produce
irregular pruned networks that don't fit as well with SIMD
computation models

@ Heuristic weight-pruning requires additional retraining whereas LDR
construction is a “train from scratch” method Up until now LDR
networks perform with the same (or near same) accuracy as their
non-LDR counterparts, but there has been a lack of theoretical
analysis

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 32 /76

Commonly Used Structured Matrices

Circulant (cn_lﬂmod n)” 0 Cauchy (1/(ul yl))” -0
Cg Cpop = € €
% 1/(uo — ¥o) 1/(uo = yn-1)
51 Co Cn-1 C2
: 6 cg 1/(ur = ¥0) 1/(uy = yn-1)
CRP : :
Cnei Cnez G G 1/(n-1 — ¥o) 1/(un—1 —}’n—1)
n-1 j
Toeplitz (t _])” -0 Hankel (h“i)i,j:o Vandermonde (v)” -0
tr t, tn ho M hn-1 v pn-1
ty to : hl h2 hn 0 (7’1—1
P e ;3 : U1 e
§ H H t_q H : H : i
n-1
th-1 >t b hp-1 hy han—2 1 vny Vn-i
Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03

33/ 176

Matrix Displacement

@ An n x n matrix M is a structured matrix when its displacement
rank «y is much less than n

@ More precisely, with proper choice of operator matrices A and B, the
Sylvester displacement, V4 g(M) := AM — M B, and Stein
displacement, Ay g(M) := M — AM B, of M has a rank ~y
bounded by a value independent of the size of M

@ When determining these operator matrices, let s and ¢ denote vectors
defining Vandermonde and Cauchy matrices respectively

@ Let Z; represent the f-unit-circulant matrix

0 0 - f

1 0 ... 0

Zf:[627837"‘76n7f61]: : . .
o .- 1 0

Where ¢; represents the 4t standard basis column vector

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 34 /76

Matrix Displacement Table

A B Structure Rank
yAl Zy Circulant <2
Al Z Toeplitz <2
Zy Al Henkel <2
diag(¢) Zy Vandermonde <1
diag(s) diag(t) Cauchy <1

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 35/ 76

Working with LDR Matrices

@ General procedure of handling LDR matrices can be broken down into
three steps

» Compression — means to obtain a low-rank displacement of the matrices

» Computation with Displacements

» Decompression — converting the results from displacement
computations to the answer to the original computation problem

@ If we assume one of the displacement operators have a specific
property, we can decompress directly

e If A is an a-potent matrix (that is, A? = aI for some positive integer
q < n), then

q—1
M = |> AFA4 p(M)B*| (I —aB?)™!
k=0

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 36 / 76

LDR Neural Networks

@ For this analysis, assume a feed-forward network with one dense
hidden layer (n input neurons and kn hidden neurons)

@ These are connected by a weight matrix W € R™*" of displacement
rank r < n corresponding to displacement operators (using
zero-padding with the nearest & allows for generalization to n x m)
(A,B)

@ Let the domain for the input vector & be [0,1]" and let the output
layer have only one neuron

@ Network can then be expressed as
y=Gwpe(x Zaj (w}m—i—ﬁj)

Where o (-) is the activation function, wj is the jth column of W,
and aj,0; € Rfor j =1,...,kn

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 37 /76

Representation Property

e Let A, B be two n X n non-singular diagonalizable matrices (i.e. a
matrix with an inverse, nonzero determinant, where an invertible
matrix P exists such that P~' AP is diagonal) satisfying:

» A7 = al for some positive integer ¢ < n and a scalar a # 0
» (I — aB?) is nonsingular
» Eigenvalues of B have distinguishable absolute values

@ Let S be the set of matrices M such that the A4 (M) has rank 1
Sap={MeR"”"|3g,h € R", Ay p(M) =ghT}

@ Then for any vector v € R", there exists a matrix M € S5 g and an
index v € {1,...,n} such that the i*" column of M equals vector v

@ This family of matrices S then is said to have representation property

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 38 /76

Discriminatory Functions

@ A function o(u): R — R is called discriminatory if the zero measure
is the only measure 4 that satisfies the following property:

/ o(wTe +0)du(x) =0,Yw € R",0 € R

n

That is, for a measure p, if the above integral is zero, then p =0

@ We say that o is sigmoidal if

1 ast— 400
o(t) —
0 ast— —o0

@ Any bounded, measurable sigmoidal function is discriminatory

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 39 /76

Universal Approximation Theorem for LDR Neural
Networks

For any continuous function f(x) defined on I,,, € > 0, and any
A, B € R™ "™ satisfying the requirements established by the representation
property of S, then there exists a function G(x) in the form of

y=Gwgelx) = Z;CZI oo (ijsc + 0;) so that its weight matrix consists
of k submatrices with a displacement rank of 1 and

max |G(x) — f(x)] <€

xel,

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 40 / 76

Error Bounds on LDR Neural Networks

e For LDR matrices defined by O(n) parameters (n number of rows and
the same order number of columns), the corresponding structured
neural network is achieving integrated squared error of order O (1)
with n parameters

@ This is asymptotically equivalent to results previously determined for
general neural networks, implying that there is essentially no loss
when restricting to LDR matrices

@ Functions we want to approximate are those defined on an n-ball
B, = {x € R" : |z| <r} such that [, |z[|f(x)|u(dx) < C, where p
is an arbitrary measure normalized such that p(B,) = 1, call this set
of functions I'c B,

@ Consider the following set of bounded multiples of a sigmoidal
function composed of linear functions:

Gy ={aoc(yTx+0): |a] <2C,y e R",0 € R}

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 41/ 76

Error Bound of One Hidden Layer Neural Network

@ For every disk B, C R", every function I'c p,, every sigmoidal
function o, every probability measure, every normalized measure p,
and every k > 1, there exists linear combination of sigmoidal function
fr(x) of the form:

k

fi(z) = Z%’O'(y} + 9j>

j=1

such that 20
/ (f(z) — fu(x))” pldz) < rk

T

o y;cR"and 0; c R forevery j=1,2,...,N

@ Coefficients of the linear combination may be restricted to satisfy
k
Zj:l lcj| <2rC

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 42 /76

Extending to LDR Neural Networks

e Fix operator (A, B) and define:
kn
So =(D_ajo (yla+0;) 1oyl S2C,y; €R™,0; €Rj=1,..., N,
j=1

and [y(i—l)n+1 | Y(i-1)n+2 |- ’ym] is an LDR matrix,
Vi=1,...,k}

e B, C R", every function in I'c p,, every sigmoidal function o, every
normalized measure u, and every k > 1, there exists a neural network
defined by a weight weight matrix consisting of k¥ LDR submatrices
such that:

4r2C
k

o Coefficients of the linear combination may be restricted to satisfy
S ler| < 2rC

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 43 / 76

/ (F(@) — fun(@))? plda) <

r

Training LDR Neural Networks

@ Need to reformulate gradient computation for LDR neural networks

@ Computation for propagating through a fully-connected layer can be
written as
y=0c(WTx +0)
Where o(-) is the activation function, W € R™**" is the weight
matrix, & € R” is the input vector, and 0 € R " is the bias vector

o If W, is an LDR matrix with operators (A;, B;) satisfying previously
stated conditions, then it is determined by two matrices
G, H; € R"" as:

q—1

W, = [Z AfGiHZTBf] (I —aBY)™!
k=0

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 44 / 76

Fitting Backpropagation

@ In order to fit backprop, we need to compute derivatives 886:] 8% ,

and g—i for any objective function J = J(W1, ..., Wy)

@ In general, given a = WTx + 6, we have (where 1 is a column vector

of ones):
oJ OJ\T oJ oJ oJ oJ
7 (22 A v ¥ 24
ow da ox da 00 Oa
o Let ézk = AfGl, ﬁzk = HZTBZk(I — aBg)il, and W;, = ézkﬁzkv
then:
oJ 0J
oWy, OW;

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 45 / 76

Fitting Backpropagation (cont.)

olfweleta=W;y W= G”Ik and ¢ = Hj;,, then:

.
0J 0J o T aJ \T -

— = — = H’L _— = e HT

Gy, [GIJ [ka"Vz‘J (3VVm> i

0 _ . 0

o Ifweleta= le W = (Af)T, and x = G, then:

q—1 q—1 T
oJ _ (Al-“) T T(0J fITk
0G; ! oW, !
i k=0 6le =0 ik
Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03

46 / 76

Fitting Backpropagation (cont.)

o If we let a = Hy,, W = HJ, and = BF (I —aBY)™", then:

q—1
— oJ \T
=Y "BF(I-aB! 1< : >
o 2 BT —aBY
q—1
. aJ \T -
=N"BF(I-aBY)! Gi
fa-aB™ () G
k=0
@ Using these derivations, aac{ and aé can be computed given 88—‘]

which itself is equal to a%{,

e Given the nature of backprop, 733~ can be calculated from the
previous layer and % will be propagated to the next layer if required

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 47 / 76

Overview of Training LDR Neural Networks

@ For practical purposes, matrices A; and B; can be chosen such that
fast multiplication methods exist (e.g. diagonal matrices, permutation
matrices, banded matrices)

@ The space complexity of W; is then O(2n + 2nr) with displacement
rank 7, rather than O(n?)

@ 2n comes from A; and B;, and 2nr from G; and H;

o Time complexity of W is O(q(3n + 2nr))) versus O(n?) with a
dense matrix

e When W; is a Toeplitz matrix, the space complexity is O(2n) as its
defined by 2n parameters and since matrix-vector multiplication can
be accelerated with FFT, time complexity becomes Onlogn

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 48 / 76

Tropical Geometry of Deep Neural Networks; Zhang, Naitzat, Lim

arXiv:1805.07091

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 49 / 76

Tropical Algebra

@ Replacing +, - with max, + (denoted @, ® in tropical algebra) results
in a system of algebra very similar to standard algebra

@ Operates on the tropical semiring T := {RU{—o0},®, O}
@ Extend this to tropical power, such that 2% =a -z

@ Tropical monomials can therefore be constructed where ® (standard
addition) replaces - (standard multiplication)

@ Tropical polynomials are then the maximum of a set of tropical
monomials (& replaces +)

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 50 / 76

Tropical Rational Functions

@ In standard algebra, we define a rational function as any function
defined by an algebraic fraction (that is, a fraction where the
numberator and denominator are polynomials)

@ Logically extends to tropical polynomials by taking the tropical
quotient, @ (equivalent to standard difference), of two tropical
polynomials

@ Since a tropical polynomial f can be written f @ 0, the semiring of
tropical polynomials is therefore a subset of the semifield of tropical
rational functions

e Each tropical polynomial defines a convex function (as @ and ©®
preserve convexity)

e Each tropical rational function is therefore a DC (difference-convex)

function
. Tod —
o F:R* - RP, x = (z1,...,2q) = (fi(z),..., fp(x))
» Is a tropical polynomial map if fi,..., f, are tropical polynomials
» Is a tropical rational map if f1,..., f, are tropical rational functions

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 51/ 76

Tropical Hypersurfaces

@ The tropical hypersurface T (f) of a tropical polynomial f is the set
of points @ at which the value of f at x is attained by at least two
monomials in f

@ The cells between the tropical hypersurface each represent a
monomial of f, and the hypersurface itself represents the points at
which the values of monomials of adjacent cells are equal

f@y)=zay fl,y)=2dyd0 f[f(z,y)=2?d30zdy

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 52 /76

Newton Polygons of Tropical Polynomials

@ The Newton polygon A(f)
for a tropical polynomial Upper envelope of polytope
f(x) is defined by the L
convex hull of the tropical
exponent tuples of the
monomials of f(x)

@ The dual-subdivision §(f) is
A(f) “lifted” by the
constant portion of each
monomial (denoted P(f)),
and the upper faces thereof

(denoted UF (P(f))) are (leoz) e (1e3) ® (201 @)

pr.OJ.ected down back to the D20 G20 1) B2
original space

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 53 /76

Linear Regions of Tropical Maps

o Linear region of F' € Rat(d, m) is a maximal connected subset of the
domain on which F is linear, with the number of linear regions
denoted N (F)

@ A tropical polynomial map F' € Pol(d, m) has convex linear regions
but a tropical rational map F' € Rat(d,n) generally has non-convex
linear regions

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 54 / 76

Transformations of Tropical Polynomials

@ Tropical power acts in such a way that it scales a polytope P(f),
changing its volume, while maintaining its shape

P(f7) = aP({)

for a € N and f € Pol(d, 1)

@ Tropical product between two polytopes P(f) and P(g) is summing
their vertices (denoted V(-)) via the Minkowski sum, and determining
the convex hull thereof

P(f ©g) = Conv (V(P(f)) + V(P(9)))

for f,g € Pol(d, 1)
@ Tropical sum between two polytopes can then be thought of as the
convex hull of the union of these vertices

P(f ®g) = Conv (V(P(f)) UV(P(9)))
for f,g € Pol(d, 1)
Nature-Inspired Machine Learning 2019 May 03 55/ 76

Neural Network Assumptions

@ Set three assumptions of feedforward neural networks
» Weight matrices AV, ... A(®) are integer-valued
» Bias vectors b1, ... b(L) are real-valued
» Activation functions o), ..., o5 are of the form
o9 (z) == max {z,t} where t) € T™ is a threshold vector
o The activation function assumed is equivalent to ReLU when ¢() = 0
and the identity function when) = —o00
@ There is no loss of generality in restricting the weights A1), ..., A
to integers since:

» Real weights can be approximated arbitrarily closely by rational weights

» Denominators can be “cleared” in rational weights by multiplying them
by the LCM of their denominators to obtain integer weights

» Scaling of all weights and biases by the same positive constant does
not change the workings of a neural network

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 56 / 76

Tropical Algebra of Neural Networks

@ Deep feedforward neural networks are generally non-convex, whereas
tropical polynomials are always convex

@ Since most non-convex functions are the difference of two convex
functions, we can intuit that a feedforward network is the difference
between two tropical polynomials (i.e. a tropical rational function)

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 57 / 76

Layer Decomposition

o Consider the output from the first layer of the neural network:
v(z) = max {Azx + b, t}

@ Decompose A as a difference of two non-negative integer matrices,
A= A4 — A_ such that:

a;; = max {a;j,0} a; = max {—a;j,0}

@ We can then see that each coordinate is a difference of two
polymonials since:

max {Az + b, t} =max{Ayx+bA_x+t} —A_x

And for deep networks, this decomposition can be applied recursively

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 58 / 76

Recursive Decomposition

o Let A, b, ¢ parameterize the (¢ + 1) layer

o Let the ¢*" layer be given by the following tropical rational functions:
v = F) o G (each coordinate of F¥) and G is a tropical
polynomial in z

e Then the preactivation and output of the (£ + 1) layer are given by:

p(g+1) op® () = H(Z—H)(x) — G(l-l—l)(a:)
y(£+1)(x) _ Uop(e+1) o y® () = F(ZJrl)(m) _ G(€+1)(x)
@ Where:

G (z) = AL GO (x) + A_FO (2)
H% () = AL FO(2) + A_GY(z) + b

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 59 / 76

Tropical Characterization and Equivalence of Neural
Networks

@ A feedforward neural network under the aforementioned assumptions
is a function v: R? — RP whose coordinates are tropical rational
functions, i.e. v(z) = F(z) © G(x) where F' and G are tropical
polynomial maps, thus v is a tropical rational map

o Let t(), ... ¢~V =0 and t) = —00, and let v: R — R be a
RelLU feedforward network with integer weights and linear output,
then v is a tropical rational function

e v: RY — R is then a tropical rational function iff v is a feedforward
neural network satisfying the aforementioned assumptions

@ A tropical rational function f @ g can be represented as an L-layer
neural network with

L < max {[log,], [logy ry 1} +2

layers, where 7, and r4 are the number of monomials in f and g

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 60 / 76

Decision Boundaries of a Neural Network

@ Focus on the binary classification problem, with a neural network
v: R® — RP and a score function s: R — R, where if s (v (x))
exceeds a decision threshold ¢, it belongs to one class, otherwise it
belongs to the other class
e Decision boundary B := {z € R?: v(z) = s7'(c)} partitions the
input space into two disjoint sets, where connected regions above ¢
are positive regions and below c are negative regions
o Let v: RY — R be an L-layer network satisfying our assumptions with
t(l) = —00 and let s: R — R be injective with ¢ in its range, if
v = f @ g with tropical polynomials f and g then:
» B divides R? into at most N (f) positive and A (g) negative regions
» BCT ((s7He)@g)® f)
Where N/ (-) represents the number of linear regions and 7(+) the
tropical hypersurface
@ s71(c) ® g @ f is not necessarily linear on every positive or negative
region so T thereof may divide a positive or negative region into
multiple linear regions

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 61/ 76

Zonotopes as Building Blocks of Neural Networks

@ The number of regions of 7(f) divides space into is equal to the
number of vertices in §(f)

o Let fz(e (Z), hgz) be the tropical polynomials produced by the 7"
node in the ¢*" layer, then P(fi(z)>,77<gy)),77(hgz)) C RéH!

* P(a”

° P(f(1)> is a line segment (single max operation between points is
applied)

and P() are points (no max operation is applied)

° P(gi()) and P(l()) are zonotopes (weighted Minkowski sum
between line segments)

e Fort>1, P(fi(g)) = Conv [73(9@(@) © tz@) U P(hy))}

@ For/>1, P(gi(ul)) and P(hl(-“l)) are weighted Minkowski sums

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 62 / 76

Geometric Complexity of Deep neural Networks

@ Use the number of linear regions N (-) as our measure of complexity

o Let v: R? — R be an L-layered real-valued feedforward neural
network satisfying our assumptions, t&) = —co, and ny > d for all
(=1,....L—1

@ Then v = v(&) has at most

linear regions, where d is the dimensionality of the input space and n,
is the width of the ¢t" layer

e ifd<ny,...,np_1 <mn, then N(v) is bounded by O(nd(L_l))

@ We can therefore say that the number of linear regions of the neural
network grows polynomially with width n and exponentially with
depth L

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 63 / 76

Appendix A: Detailed Learning Procedure for Growing Neural Gas;

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 64 / 76

Growing Neural Gas — Learning Procedure

@ Generate two nodes a and b at random values in R®

@ Draw a random sample £ from the probability distribution being
learned as £ ~ P

© Find two nodes v; and vy such that v is closest to (and v is second
closest to) & as determined by finding the v € V' which produces the
first and second smallest ||w, — §H§

@ For each edge e connected to vy, increment its age c by 1
@ Increment the error for the BMU:

2
€y S €y T me - g”Q
@ Move v; and its neighbors towards £ by 7, and 1, respectively:

Wy, — Wy, + € (§ — Wy,) for best matching unit
Wy,, — Wy, + € (§ —wy,) for neighbors n of BMU

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 65 / 76

Growing Neural Gas — Learning Procedure (cont.)

@ If an edge connects v; and v, set its age to zero, e (v, v2) +— 0.
Otherwise create such an edge with an age of zero.

© For each edge ¢ € E, if e > apmax remove it. If after removing said
edges any nodes have a degree of zero, remove them.

© |If the number of samples drawn is an integer multiple of A, insert a
new node by finding the node with the maximum error and its
neighbor, generate a new node halfway between the neighbor and the
unit with maximum error, insert edges between the new node and the
others (removing the original) and reduce the accumulated errors of
the two existing nodes

@ Decay all error values by multiplying them by the global decay rate of
error:
Vn € N, €, <— N4en

@ If a stopping criterion such as model size or a performance metric is
not yet met, return to step 2 and repeat.

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 66 / 76

Appendix B: Detailed Information on LDR Neural Networks;

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 67 / 76

Appendix C: Detailed Information on Tropical Algebra;

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 68 / 76

Tropical Algebra

e Define the tropical semiring as T := (RU {—o0},®,®)
@ Define tropical sum, product, and quotient for two numbers z,y € R:
> Py =max(r,y) xzQy=z+y TxQYy=x-—y
@ Tropical additive identity of 0 and multiplicative identity of —oo
» —cohr=00r=2 —00O®x=-—-00
» Lacks the additive inverse required for (R U {—o0},®,®) to be a ring
@ Operations follow the usual laws of arithmetic: associativity,
commutativity, distributivity
@ Define tropic power in a way analogous to power in the traditional
sense

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 69 / 76

Tropical Power

@ We can define tropical power, analogous to power in a traditional
sense but where multiplication is substituted with tropical
multiplication

@ Given a € Ny and = € R we define this as:
> 2% =20 Orx=a-2
e Extends to RU {—o0} for any a € N as:
—o00 a>0
PRGN
0 a=0x

o T is a semifield since every x € R has a tropical multiplicative inverse
(equivalent to the standard additive inverse), z0(-1 == —z

x € R can be raised to a negative power a € Z by raising its tropical
multiplicative inverse —x to the positive power —a, i.e.

200 — (_x)G(—a)

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 70 / 76

Tropical Monomials and Polynomials

@ A tropical monomial in d variables x1, ..., x4 is an expression of the
form:
cOP" 01" O -'-Q:UE?ad

where c e RU {—o0} and ay,...,aq € N
@ Use multiindex notation for shorthand as cx® where
a=(a1,...,aq) €N and x = (z1,...,24)

@ A tropical polynomial f(x) = f (z1,...,24) is a finite tropical sum of
tropical monomials

> f(x) =z PP

where o; = (a;1,...,ai;q) € N*and ¢; ERU{—00},i=1,...,r

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 71/ 76

Tropical Rational Functions

Define a tropical rational function as the standard difference (or
tropical quotient) of two tropical polynomials f(z) and g(z):

> () —g(z) = f(z) © g(x)

denoted as f @ g where f and g are tropical polynomial functions

Set of tropical polynomials T [x1, ..., x4] forms a semiring under @
and @, and the set of tropical rational functions T (x1, ..., x4) forms
a semifield

A tropical polynomial f = f @ 0 is a special case of tropical rational
functions, therefore T [x1,...,24) C T (2z1,...,2q)

A d-variate tropical polynomial defines a function f: R — R that is
convex as taking max and sum of convex functions preserve convexity

A tropical rational function f @ g: R* = R is a DC
(difference-convex) function

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 72 /76

Tropical Maps

o F:RY - RP x = (1,...,74) = (fi(2),..., fo(2))
» Is a tropical polynomial map if each f;: R? — R is a tropical
polynomial, t =1,...,p
» Is a tropical rational map if fq,..., f, are tropical rational functions

e Pol(d,p) is the set of tropical polynomial maps, so
Pol(d,1) = T [z1,...,x4]

e Rat(d,p) is the set of tropical rational maps, so
Rat(d,1) =T (z1,...,2q)

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 73/ 76

Tropical Hypersurfaces

The tropical hypersurface of a tropical polynomial f(z) is
» T(f) = {z e R : ¢,z = ¢;a% = f(x) for some o; # o}
» Otherwise stated, the set of points x at which the value f(x) is
attained by two or more monomials in f

A tropical hypersurface divides the domain of f into convex cells on
each of which f is linear

@ Cells are convex polyhedra, defined by linear inequalities with integer
coefficients: {x eRY: Ax < b} for A€ Zm*d and b € R™

@ Cell where a tropical monomial c;x%/ attains its maximum is
d. T ; ;
{xeR ejtair > et ajx fora/lzyéj}

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 74/ 76

Minkowski Sum

The Minkowski sum of two sets P; and P, in R is the set:

Pl—i-PQ:{xl—i-xgERd:J,’lGPl,:CQEPQ}

Intuitively described as summing every term in P; with every term in
Py

Weighted Minkowski sum with scalars A1, Ao > 0 is:

MNP+ XoPy = {)\1951 + Aoz € R? . x1 € P,ao € PQ}

Weighted Minkowski sum is commutative, associative, and generalizes
to more than two sets

@ Minkowski sum of line segments is called a zonotope

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 75/ 76

Elementwise Recursive Decomposition

Standard Notation:

FHD(2) = max {H(Hl)(x), G () + t}
G (z) = AL GO (z) + A_FO) (2)
HAY(2) = A, FO@z) + A_GO(x) + b

Elementwise Tropical Notation:

f-(Hl) h(z+1) o (g(éﬂ) @ti)

% i)

g — L@l (ﬁe))@%] ® L(;)l (gj(@)@afj]

pEFD — LQ <f]@))®a¢+j] - Lé

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03

76 / 76

	Euclidean Neural Maps
	Theoretical Properties for Neural Networks with Weight Matrices of Low Displacement Rank
	Error Bounds on LDR Neural Networks
	Training LDR Neural Networks

	Tropical Geometry of Deep Neural Networks
	Tropical Algebra of Neural Networks
	Tropical Geometry of Neural Networks

	Appendix A: GNG Detailed Learning Procedure
	Appendix B: Detailed Information on LDR Neural Networks
	Appendix C: Detailed Information on Tropical Algebra

