
Nature-Inspired Machine Learning

Marissa Dominijanni

University at Buffalo

2019 May 03

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 1 / 76

Euclidean Neural Maps

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 2 / 76

Motivation

Self-organizing maps (SOM) are a class of neural network models
which utilize competitive learning and self-organization to learn
dimensionality reduction

SOM have a fundamental limitation in terms of the dimensionality of
the feature space they can work with

We propose a new model called a Euclidean neural map (ENM) with
the intent of tractably generalizing SOM to high-dimensional datasets

An ENM is parameterized by a set of “neural particles” which float in
the output space and “bend space” around themselves orthogonally
to the output space with the same dimensionality as the feature space

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 3 / 76

Self-Organizing Maps

SOM is trained in an unsupervised manner to perform feature
extraction, the process of discovering latent variables

Neural network model in which neurons are not organized into layers,
but instead are connected to each other, typically in a Cartesian grid

Grid of neurons can also be connected in order to form an n-torus

Structure seeks to mimic the topology of neurons found in the brain

Each neuron contains a weight vector the same length as the
dimensionality of the input space, position of the neuron corresponds
to the value in the output space

Iterate each time t up to a maximum of lambda

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 4 / 76

Self-Organizing Maps (cont.)

Best Matching Unit (BMU) is computed as minimizing the distance d
between the provided input x and the neuron weight w:

u = arg min
v

d (wv − x)

SOM update rule typically takes the following form:

wv ←− wv + (p− wv) θ (v, u, t)α (t)

α (t) = α0 exp

(
− t
λ

)
σ (t) = σ0 exp

(
− t
λ

)
θ (v, u, t) = exp

(
−
‖u− v‖22
2σ2 (t)

)

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 5 / 76

Self-Organizing Maps – Learning Procedure

1 Randomize the weight vectors of each neuron in the map, and set
t = 0

2 Randomly draw a sample x ∼ P
3 Compute the BMU as u = arg minv‖wv − x‖

2
2

4 For each neuron v, update the weight as

wv ←− wv + (p− wv) θ (v, u, t)α (t)

5 Set t = t+ 1

6 If t < λ, goto step 2, otherwise stop

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 6 / 76

Comparison Between SOM and ENM

Principal goal of ENM is to remain close to the original SOM model
while eliminating issues of exponentially increasing complexity,

I MNIST dataset has 784 input dimensions (pixels) and 10 output
dimensions (digits)

I In an SOM with 10 neurons along each output dimension, 10 billion
neurons and 7.84 trillion parameters would be required

We seek to do this by reducing the number of neurons (“neural
particles” in ENM terminology) required to represent a near-to
equivalent amount of information

Attempt to achieve this by using a comparatively small number of
neural particles which “float” in a continuous output space, rather
than defining a discrete output space defined by each neuron

Capitalize on the notion that the activation of a BMU in an SOM
should generally exert an influence which exponentially decays to
surrounding neurons, so a few neural particles can “sculpt” an
approximation

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 7 / 76

Comparison Between SOM and ENM (cont.)

Unlike in an SOM, neural particles are not evenly distributed in a
range of the output space, but instead travel to “areas of activation”
so more dynamic areas are more complexly represented

The aforementioned continuous output space in an ENM (versus the
discrete one in an SOM) means that inference cannot be performed
by exhaustive search, but instead must be solved for via mathematical
optimization (gradient descent in our implementation)

Design decision which sacrifices this is also what allows the reduced
number of parameters

An ENM defines neural particles which can be thought of as exerting
a field and is defined over an unbounded continuous space

If the optimization procedure to find the BMU fails to find the global
optimum, then the behavior of an ENM fundamentally diverges from
that of an equivalent SOM, which could result in undefined behavior

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 8 / 76

Growing Neural Gas

https://papers.nips.cc/paper/893-a-growing-neural-gas-network-learns-topologies.pdf

Growing neural gas (GNG) is another existing model which seeks to
solve the high-dimensional intractability issue of SOM

Unlike SOMs with topology fixed in the output space and morphed to
fit in the input space, GNG topology is dynamically generated

Follows the principle of Hebbian learning: if two neurons fire in
tandem then the connection between them is strengthened

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 9 / 76

https://papers.nips.cc/paper/893-a-growing-neural-gas-network-learns-topologies.pdf

Growing Neural Gas – Learning Procedure

1 Generate two nodes a and b at random values in RS
2 Draw a random sample ξ ∼ P and find two nodes v1 and v2 such

that v1 is closest to (and v2 is second closest to) ξ
3 For each edge e connected to v1, increment its age αe by 1
4 Increment the error for the BMU: εv1 ←− εv1 + ‖wv1 − ξ‖

2
2

5 Move v1 and its neighbors towards ξ by ηb and η respectively:
wv ←− wv + ε (ξ − wv)

6 If an edge connects v1 and v2, set its age to zero, e (v1, v2)←− 0.
Otherwise create such an edge with an age of zero.

7 For each edge e ∈ E, if αe > αmax remove it. If after removing said
edges any nodes have a degree of zero, remove them.

8 If the number of samples drawn is divisible by λ, insert a new node
halfway between the node with maximum error and its neighbor

9 Decay all errors by multiplying them by the global decay rate of error
10 If a stopping criterion is not yet met, return to step 2 and repeat.

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 10 / 76

Comparison Between GNG and ENM

1 Both GNG and ENM have the goal of implementing an SOM-like
algorithm while avoiding the issue of intractability

2 GNG uses a variable number of nodes, opposed to the fixed number
of neural particles in ENM (“neural gas”, the algorithm GNG is
directly based on also uses a fixed number of nodes)

3 GNG uses explicitly defined connections between nodes, whereas
connectivity is defined implicitly in ENM, where the strength of a
connection is inversely proportional to the distance between them
(this connectivity decays exponentially)

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 11 / 76

Euclidean Neural Maps

Main intuition is to start with an SOM, but change the rigid discrete
output space to a continuous deformable space

ENM is defined by a set of neural particles, each of which
simultaneously exists in both the feature space RS and the output
space RD

Each neural particle exists in the output space, where each neural
particle bends space around itself orthogonally to the output space,
with magnitude and direction determined by its representation in the
feature space

Deformation at a point in the output space corresponds to the unit’s
weight vector in an SOM

Curvature extends to the output space surrounding a neural particle,
decaying exponentially (with width parameterized on a particle-wise
basis) back to its rest state

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 12 / 76

Euclidean Neural Maps (cont.)

Main intuition is to start with an SOM, but change the rigid discrete
output space to a continuous deformable space

ENM is defined by a set of N neural particles, each of which
simultaneously exists in both the feature space RS and the output
space RD

Each neural particle exists in the output space, where each neural
particle bends space around itself orthogonally to the output space,
with magnitude and direction determined by its representation in the
feature space

Deformation at a point in the output space corresponds to the unit’s
weight vector in an SOM

Curvature extends to the output space surrounding a neural particle,
decaying exponentially (with width parameterized on a particle-wise
basis) back to its rest state

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 13 / 76

Euclidean Neural Maps – Parameters & Hyperparameters

Parameters

Q ∈ RN×S Neural particle locations in feature space
Z ∈ RN×D Neural particle locations in output space
K ∈ RN×1 Curvature width of neural particles (used during inference)

Hyperparameters

η and σ affect how the curvature (Q) is updated

ζ and τ affect how the neural particles in Z are attracted to the area
of activation in Z (we call the spread of neural particles in the output
space “coverage”).

ε and υ affect how the neural particles in Z a repelled from each
other in order to control any “clumping”

η, ζ, and ε control the influence width of neural particles

σ, τ , and υ control the step size of the update

λ controls how quickly the curvature learning radius σ is decayed

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 14 / 76

Euclidean Neural Maps – Learning Procedure

1 Randomize the location of each neural particle in the feature space
and output space, and assign a random curvature width in a narrow
range to each neural particle

2 Randomly draw a sample x ∼ P
3 Compute the activation point as

z∗ = arg min
z

∥∥∥∥∥∑
n∈N

[
Q(n) � exp

(
−
∥∥Z(n) − z

∥∥2
2

2K(n)2

)]
− x

∥∥∥∥∥
2

2

4 For each neural particle n ∈ N , update its induced extrinsic curvature
as

Q(n) ← Q(n) − η
(
Q(n) − x

)
exp

(
−
∥∥Z(n) − z∗

∥∥2
2

2σ2

)

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 15 / 76

Euclidean Neural Maps – Learning Procedure (cont.)

5 For each neural particle n ∈ N , update its location in the output
space as:

Z(n) ← Z(n) − ζ
(
Z(n) − z∗

)
exp

(
−
∥∥Z(n) − z∗

∥∥2
2

2τ2

)

+
∑
i∈N

[
ε
(
Z(n) − Z(i)

)
exp

(
−
∥∥Z(n) − Z(i)

∥∥2
2

2υ2

)]

6 Reduce the curvature learning radius to ensure convergence σ ← σ
λ

7 If some stopping criterion is met, halt. Otherwise goto step 2.

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 16 / 76

Two-Spheres Test

Synthetic dataset generated as “carving” two spheres from uniform
random points

562 points in the sphere in the first octant (+,+,+) and 600 in
sphere in the seventh octant (−,−,−)

In first test, neural particles placed within each sphere and labeled as
one-hot vectors with Gaussian noise added to the labels as a “good
start”

In second test, neural particles placed in random positions with
random labels as a regular start

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 17 / 76

Two-Spheres Test (Good Start) – Input Space

Blue – Points in the Dataset

Orange – Neural Particles

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 18 / 76

Two-Spheres Test (Good Start) – Output Space

Blue – Initial Location of Neural Particles

Orange – Final Location of Neural Particles

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 19 / 76

Two-Spheres Test (Good Start) – Activation Pattern

Blue – Activations from First Octant Sphere

Orange – Activations from Seventh Octant Sphere

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 20 / 76

Two-Spheres Test (Random Start) – Input Space

Blue – Points in the Dataset

Orange – Neural Particles

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 21 / 76

Two-Spheres Test (Random Start) – Output Space

Blue – Initial Location of Neural Particles

Orange – Final Location of Neural Particles

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 22 / 76

Two-Spheres Test (Random Start) – Activation Pattern

Blue – Activations from First Octant Sphere

Orange – Activations from Seventh Octant Sphere

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 23 / 76

Sphere-in-Torus Test

Synthetic dataset generated as “carving” a sphere and a torus
centered around the origin from uniform random points

293 points in the sphere 967 points in the torus

Neural particles placed within the sphere and uniformly spaced along
the circle defined by the major radius and labeled as one-hot vectors
with Gaussian noise added to the labels as a “good start”

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 24 / 76

Sphere-in-Torus Test – Input Space

Blue – Points in the Dataset

Orange – Neural Particles

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 25 / 76

Sphere-in-Torus Test – Output Space

Blue – Initial Location of Neural Particles

Orange – Final Location of Neural Particles

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 26 / 76

Sphere-in-Torus – Activation Pattern

Blue – Activations from the Sphere

Orange – Activations from the Torus

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 27 / 76

Analysis of Results

Stable convergence implies that the model is learning something, just
not what we want it to (desirable final configuration is not stable)

Lack of distinction in the output space between points in each cluster
shows that it is unable to differentiate the two in this manner, even in
the linearly separable case

Lack of normalization means that overlapping neural particle
neighborhoods to may lead to undesired interference, leading to local
curvature with values greatly exceeding the magnitude of the values
in the input space

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 28 / 76

Examples of Prior Work

Comparison of gradient descent based optimization techniques (e.g.
SGD, Adam, RMSProp) on a feedforward neural network

Comparison of machine learning techniques for forensic handwriting
analysis (Bayesian network, perceptron, and convolutional neural
network with concatenated ReLU)

Semi-supervised learning with deep generative models (comparing a
VAE+MLP to a VAE with a second dense layer alongside the code
layer sampled using the Gumbel-Softmax trick)

Comparison of SVM and MLP (using SIFT features) and CNN for
CIFAR-10 classification

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 29 / 76

Theoretical Properties for Neural Networks with Weight Matrices of
Low Displacement Rank; Zhao, Liao, Wang et al.

arXiv:1703.00144

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 30 / 76

Low Displacement Rank Construction

LDR construction is a method of imposing structure on the weights of
a neural network to reduce space and computational complexity

Accomplish this by defining the weight matrix for a layer of a neural
network as a composition of structured matrices (or a single
structured matrix in the case of a square weight matrix)

A structured matrix is a kind of square matrix which can be
procedural constructed from a smaller number of parameters (on the
order of O (n) versus O

(
n2
)

for a non-LDR matrix)

These LDR neural networks can be viewed as using a kind of
parameter sharing scheme

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 31 / 76

Benefits of LDR Neural Networks

Fast matrix-vector multiplication on LDR matrices can reduce
computational complexity from O

(
n2
)

on regular neural networks to
O (n log n) or O

(
n log2 n

)
More traditional methods such as heuristic weight-pruning produce
irregular pruned networks that don’t fit as well with SIMD
computation models

Heuristic weight-pruning requires additional retraining whereas LDR
construction is a “train from scratch” method Up until now LDR
networks perform with the same (or near same) accuracy as their
non-LDR counterparts, but there has been a lack of theoretical
analysis

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 32 / 76

Commonly Used Structured Matrices

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 33 / 76

Matrix Displacement

An n× n matrix M is a structured matrix when its displacement
rank γ is much less than n

More precisely, with proper choice of operator matrices A and B, the
Sylvester displacement, ∇A,B(M) := AM −MB, and Stein
displacement, ∆A,B(M) := M −AMB, of M has a rank γ
bounded by a value independent of the size of M

When determining these operator matrices, let s and t denote vectors
defining Vandermonde and Cauchy matrices respectively

Let Zf represent the f -unit-circulant matrix

Zf = [e2, e3, . . . , en, fe1] =


0 0 · · · f
1 0 · · · 0
...

...
...

...
0 · · · 1 0


Where ej represents the jth standard basis column vector

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 34 / 76

Matrix Displacement Table

A B Structure Rank

Z1 Z0 Circulant ≤ 2
Z1 Z0 Toeplitz ≤ 2
Z0 Z1 Henkel ≤ 2

diag(t) Z0 Vandermonde ≤ 1
diag(s) diag(t) Cauchy ≤ 1

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 35 / 76

Working with LDR Matrices

General procedure of handling LDR matrices can be broken down into
three steps

I Compression – means to obtain a low-rank displacement of the matrices
I Computation with Displacements
I Decompression – converting the results from displacement

computations to the answer to the original computation problem

If we assume one of the displacement operators have a specific
property, we can decompress directly

If A is an a-potent matrix (that is, Aq = aI for some positive integer
q ≤ n), then

M =

[
q−1∑
k=0

Ak∆A,B(M)Bk

]
(I − aBq)−1

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 36 / 76

LDR Neural Networks

For this analysis, assume a feed-forward network with one dense
hidden layer (n input neurons and kn hidden neurons)

These are connected by a weight matrix W ∈ Rn×kn of displacement
rank r � n corresponding to displacement operators (using
zero-padding with the nearest k allows for generalization to n×m)
(A,B)

Let the domain for the input vector x be [0, 1]n and let the output
layer have only one neuron

Network can then be expressed as

y = GW ,θ(x) =
kn∑
j=1

αjσ
(
wᵀ
jx+ θj

)
Where σ (·) is the activation function, wj is the jth column of W ,
and αj , θj ∈ R for j = 1, . . . , kn

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 37 / 76

Representation Property

Let A,B be two n× n non-singular diagonalizable matrices (i.e. a
matrix with an inverse, nonzero determinant, where an invertible
matrix P exists such that P−1AP is diagonal) satisfying:

I Aq = aI for some positive integer q ≤ n and a scalar a 6= 0
I (I − aBq) is nonsingular
I Eigenvalues of B have distinguishable absolute values

Let S be the set of matrices M such that the ∆A,B(M) has rank 1

SA,B =
{
M ∈ Rn×n | ∃g,h ∈ Rn,∆A,B(M) = ghᵀ}

Then for any vector v ∈ Rn, there exists a matrix M ∈ SA,B and an
index v ∈ {1, . . . , n} such that the ith column of M equals vector v

This family of matrices S then is said to have representation property

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 38 / 76

Discriminatory Functions

A function σ(u) : R→ R is called discriminatory if the zero measure
is the only measure µ that satisfies the following property:∫

In

σ (wᵀx+ θ) dµ(x) = 0,∀w ∈ Rn, θ ∈ R

That is, for a measure µ, if the above integral is zero, then µ = 0

We say that σ is sigmoidal if

σ(t)→

{
1 as t→ +∞
0 as t→ −∞

Any bounded, measurable sigmoidal function is discriminatory

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 39 / 76

Universal Approximation Theorem for LDR Neural
Networks

For any continuous function f(x) defined on In, ε > 0, and any
A,B ∈ Rn×n satisfying the requirements established by the representation
property of S, then there exists a function G(x) in the form of

y = GW ,θ(x) =
∑kn

j=1 αjσ
(
wᵀ
jx+ θj

)
so that its weight matrix consists

of k submatrices with a displacement rank of 1 and

max
x∈In

|G(x)− f(x)| < ε

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 40 / 76

Error Bounds on LDR Neural Networks

For LDR matrices defined by O(n) parameters (n number of rows and
the same order number of columns), the corresponding structured
neural network is achieving integrated squared error of order O

(
1
n

)
with n parameters

This is asymptotically equivalent to results previously determined for
general neural networks, implying that there is essentially no loss
when restricting to LDR matrices

Functions we want to approximate are those defined on an n-ball
Br = {x ∈ Rn : |x| ≤ r} such that

∫
Br
|x||f(x)|µ(dx) ≤ C, where µ

is an arbitrary measure normalized such that µ(Br) = 1, call this set
of functions ΓC,Br

Consider the following set of bounded multiples of a sigmoidal
function composed of linear functions:

Gσ = {ασ(yᵀx+ θ) : |α| ≤ 2C,y ∈ Rn, θ ∈ R}

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 41 / 76

Error Bound of One Hidden Layer Neural Network

For every disk Br ⊂ Rn, every function ΓC,Br , every sigmoidal
function σ, every probability measure, every normalized measure µ,
and every k ≥ 1, there exists linear combination of sigmoidal function
fk(x) of the form:

fk(x) =

k∑
j=1

αjσ
(
yᵀj + θj

)
such that ∫

Br

(f(x)− fk(x))2 µ(dx) ≤ 4r2C

k

yj ∈ Rn and θj ∈ R for every j = 1, 2, . . . , N

Coefficients of the linear combination may be restricted to satisfy∑k
j=1 |cj | ≤ 2rC

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 42 / 76

Extending to LDR Neural Networks

Fix operator (A,B) and define:

Sσ ={
kn∑
j=1

αjσ
(
yᵀjx+ θj

)
: |αj | ≤ 2C,yj ∈ Rn, θj ∈ R, j = 1, . . . , N,

and
[
y(i−1)n+1 | y(i−1)n+2 | · · · | yin

]
is an LDR matrix,

∀i = 1, . . . , k}

Br ⊂ Rn, every function in ΓC,Br , every sigmoidal function σ, every
normalized measure µ, and every k ≥ 1, there exists a neural network
defined by a weight weight matrix consisting of k LDR submatrices
such that: ∫

Br

(f(x)− fkn(x))2 µ(dx) ≤ 4r2C

k

Coefficients of the linear combination may be restricted to satisfy∑k
j=1 |ck| ≤ 2rC

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 43 / 76

Training LDR Neural Networks

Need to reformulate gradient computation for LDR neural networks

Computation for propagating through a fully-connected layer can be
written as

y = σ (W ᵀx+ θ)

Where σ(·) is the activation function, W ∈ Rn×kn is the weight
matrix, x ∈ Rn is the input vector, and θ ∈ Rkn is the bias vector

If Wi is an LDR matrix with operators (Ai,Bi) satisfying previously
stated conditions, then it is determined by two matrices
Gi,Hi ∈ Rn×r as:

Wi =

[
q−1∑
k=0

Ak
iGiH

ᵀ
i B

k
i

]
(I − aBq

i)
−1

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 44 / 76

Fitting Backpropagation

In order to fit backprop, we need to compute derivatives ∂J
∂Gi

, ∂J
∂Hi

,

and ∂J
∂x for any objective function J = J(W1, . . . ,Wk)

In general, given a = W ᵀx+ θ, we have (where 1 is a column vector
of ones):

∂J

∂W
= x

(
∂J

∂a

)ᵀ ∂J

∂x
= W

∂J

∂a

∂J

∂θ
=
∂J

∂a
1

Let Ĝik = Ak
iGi, Ĥik = Hᵀ

i B
k
i (I − aBq

i)
−1

, and Wik = ĜikĤik,
then:

∂J

∂Wik
=

∂J

∂Wi

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 45 / 76

Fitting Backpropagation (cont.)

If we let a = Wik, W = Ĝᵀ
ik, and x = Ĥik, then:

∂J

∂Ĝik

=

[
∂J

Ĝᵀ
ik

]ᵀ
=

[
Ĥik

∂J

∂Wik

]ᵀ
=

(
∂J

∂Wik

)ᵀ

Ĥᵀ
ik

∂J

∂Ĥik

= Ĝik
∂J

∂Wik

If we let a = Ĝik, W =
(
Ak
i

)ᵀ
, and x = Gi, then:

∂J

∂Gi
=

q−1∑
k=0

(
Ak
i

)ᵀ(∂J

∂Ĝik

)
=

q−1∑
k=0

(
Ak
i

)ᵀ(∂J

∂Wik

)ᵀ

Ĥᵀ
ik

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 46 / 76

Fitting Backpropagation (cont.)

If we let a = Ĥik, W = Hᵀ
i , and x = Bk

i (I − aBq
i)
−1

, then:

∂J

∂Hi
=

q−1∑
k=0

Bk
i (I − aBq

i)
−1
(

∂J

∂Ĥik

)ᵀ

=

q−1∑
k=0

Bk
i (I − aBq

i)
−1
(

∂J

∂Wik

)ᵀ

Ĝik

Using these derivations, ∂J
∂Gi

and ∂J
∂Hi

can be computed given ∂J
∂Wik

,

which itself is equal to ∂J
∂Wi

Given the nature of backprop, ∂J
∂Wi

can be calculated from the

previous layer and ∂J
∂x will be propagated to the next layer if required

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 47 / 76

Overview of Training LDR Neural Networks

For practical purposes, matrices Ai and Bi can be chosen such that
fast multiplication methods exist (e.g. diagonal matrices, permutation
matrices, banded matrices)

The space complexity of Wi is then O(2n+ 2nr) with displacement
rank r, rather than O

(
n2
)

2n comes from Ai and Bi, and 2nr from Gi and Hi

Time complexity of W ᵀ
i x is O(q(3n+ 2nr))) versus O

(
n2
)

with a
dense matrix

When Wi is a Toeplitz matrix, the space complexity is O(2n) as its
defined by 2n parameters and since matrix-vector multiplication can
be accelerated with FFT, time complexity becomes On log n

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 48 / 76

Tropical Geometry of Deep Neural Networks; Zhang, Naitzat, Lim

arXiv:1805.07091

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 49 / 76

Tropical Algebra

Replacing +, · with max,+ (denoted ⊕,� in tropical algebra) results
in a system of algebra very similar to standard algebra

Operates on the tropical semiring T := {R ∪ {−∞} ,⊕,�}
Extend this to tropical power, such that x�a ≡ a · x
Tropical monomials can therefore be constructed where � (standard
addition) replaces · (standard multiplication)

Tropical polynomials are then the maximum of a set of tropical
monomials (⊕ replaces +)

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 50 / 76

Tropical Rational Functions

In standard algebra, we define a rational function as any function
defined by an algebraic fraction (that is, a fraction where the
numberator and denominator are polynomials)

Logically extends to tropical polynomials by taking the tropical
quotient, � (equivalent to standard difference), of two tropical
polynomials

Since a tropical polynomial f can be written f � 0, the semiring of
tropical polynomials is therefore a subset of the semifield of tropical
rational functions

Each tropical polynomial defines a convex function (as ⊕ and �
preserve convexity)

Each tropical rational function is therefore a DC (difference-convex)
function
F : Rd → Rp, x = (x1, . . . , xd) 7→ (f1(x), . . . , fp(x))

I Is a tropical polynomial map if f1, . . . , fp are tropical polynomials
I Is a tropical rational map if f1, . . . , fp are tropical rational functions

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 51 / 76

Tropical Hypersurfaces

The tropical hypersurface T (f) of a tropical polynomial f is the set
of points x at which the value of f at x is attained by at least two
monomials in f

The cells between the tropical hypersurface each represent a
monomial of f , and the hypersurface itself represents the points at
which the values of monomials of adjacent cells are equal

f(x, y) = x⊕ y f(x, y) = x⊕ y ⊕ 0 f(x, y) = x�2 ⊕ 3� x⊕ y

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 52 / 76

Newton Polygons of Tropical Polynomials

The Newton polygon ∆(f)
for a tropical polynomial
f(x) is defined by the
convex hull of the tropical
exponent tuples of the
monomials of f(x)

The dual-subdivision δ(f) is
∆(f) “lifted” by the
constant portion of each
monomial (denoted P(f)),
and the upper faces thereof
(denoted UF (P(f))) are
projected down back to the
original space

(
1� x21

)
⊕
(
1� x22

)
⊕ (2� x1 � x2)

⊕ (2� x1)⊕ (2� x2)⊕ 2

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 53 / 76

Linear Regions of Tropical Maps

Linear region of F ∈ Rat(d,m) is a maximal connected subset of the
domain on which F is linear, with the number of linear regions
denoted N (F)

A tropical polynomial map F ∈ Pol(d,m) has convex linear regions
but a tropical rational map F ∈ Rat(d, n) generally has non-convex
linear regions

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 54 / 76

Transformations of Tropical Polynomials

Tropical power acts in such a way that it scales a polytope P(f),
changing its volume, while maintaining its shape

P
(
f�a

)
= aP(f)

for a ∈ N and f ∈ Pol(d, 1)

Tropical product between two polytopes P(f) and P(g) is summing
their vertices (denoted V(·)) via the Minkowski sum, and determining
the convex hull thereof

P(f � g) = Conv (V(P(f)) + V(P(g)))

for f, g ∈ Pol(d, 1)

Tropical sum between two polytopes can then be thought of as the
convex hull of the union of these vertices

P(f ⊕ g) = Conv (V(P(f)) ∪ V(P(g)))

for f, g ∈ Pol(d, 1)

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 55 / 76

Neural Network Assumptions

Set three assumptions of feedforward neural networks
I Weight matrices A(1), . . . , A(L) are integer-valued
I Bias vectors b(1), . . . , b(L) are real-valued
I Activation functions σ(1), . . . , σ(L) are of the form
σ(`)(x) := max

{
x, t(`)

}
where t(`) ∈ Tn` is a threshold vector

The activation function assumed is equivalent to ReLU when t(`) = 0
and the identity function when t(`) = −∞
There is no loss of generality in restricting the weights A(1), . . . , A(L)

to integers since:
I Real weights can be approximated arbitrarily closely by rational weights
I Denominators can be “cleared” in rational weights by multiplying them

by the LCM of their denominators to obtain integer weights
I Scaling of all weights and biases by the same positive constant does

not change the workings of a neural network

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 56 / 76

Tropical Algebra of Neural Networks

Deep feedforward neural networks are generally non-convex, whereas
tropical polynomials are always convex

Since most non-convex functions are the difference of two convex
functions, we can intuit that a feedforward network is the difference
between two tropical polynomials (i.e. a tropical rational function)

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 57 / 76

Layer Decomposition

Consider the output from the first layer of the neural network:

ν(x) = max {Ax+ b, t}

Decompose A as a difference of two non-negative integer matrices,
A = A+ −A− such that:

a+ij = max {aij , 0} a−ij = max {−aij , 0}

We can then see that each coordinate is a difference of two
polymonials since:

max {Ax+ b, t} = max {A+x+ b, A−x+ t} −A−x

And for deep networks, this decomposition can be applied recursively

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 58 / 76

Recursive Decomposition

Let A, b, t parameterize the (`+ 1)th layer

Let the `th layer be given by the following tropical rational functions:
ν(`) = F (`) �G(`) (each coordinate of F (`) and G(`) is a tropical
polynomial in x

Then the preactivation and output of the (`+ 1)th layer are given by:

ρ(`+1) ◦ ν(`)(x) = H(`+1)(x)−G(`+1)(x)

ν(`+1)(x) = σ◦ρ(`+1) ◦ ν(`)(x) = F (`+1)(x)−G(`+1)(x)

Where:

F (`+1)(x) = max
{
H(`+1)(x), G(`+1)(x) + t

}
G(`+1)(x) = A+G

(`)(x) +A−F
(`)(x)

H(`+1)(x) = A+F
(`)(x) +A−G

(`)(x) + b

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 59 / 76

Tropical Characterization and Equivalence of Neural
Networks

A feedforward neural network under the aforementioned assumptions
is a function ν : Rd → Rp whose coordinates are tropical rational
functions, i.e. ν(x) = F (x)�G(x) where F and G are tropical
polynomial maps, thus ν is a tropical rational map

Let t(1), . . . , t(L−1) = 0 and t(L) = −∞, and let ν : Rd → R be a
ReLU feedforward network with integer weights and linear output,
then ν is a tropical rational function

ν : Rd → R is then a tropical rational function iff ν is a feedforward
neural network satisfying the aforementioned assumptions

A tropical rational function f � g can be represented as an L-layer
neural network with

L ≤ max {dlog2 rfe, dlog2 rge}+ 2

layers, where rf and rg are the number of monomials in f and g

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 60 / 76

Decision Boundaries of a Neural Network

Focus on the binary classification problem, with a neural network
ν : Rd → Rp and a score function s : R→ R, where if s (ν (x))
exceeds a decision threshold c, it belongs to one class, otherwise it
belongs to the other class
Decision boundary B :=

{
x ∈ Rd : ν(x) = s−1(c)

}
partitions the

input space into two disjoint sets, where connected regions above c
are positive regions and below c are negative regions
Let ν : Rd → R be an L-layer network satisfying our assumptions with
t(L) = −∞ and let s : R→ R be injective with c in its range, if
ν = f � g with tropical polynomials f and g then:

I B divides Rd into at most N (f) positive and N (g) negative regions
I B ⊆ T

((
s−1(c)� g

)
⊕ f

)
Where N (·) represents the number of linear regions and T (·) the
tropical hypersurface
s−1(c)� g ⊕ f is not necessarily linear on every positive or negative
region so T thereof may divide a positive or negative region into
multiple linear regions

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 61 / 76

Zonotopes as Building Blocks of Neural Networks

The number of regions of T (f) divides space into is equal to the
number of vertices in δ(f)

Let f
(`)
i , g

(`)
i , h

(`)
i be the tropical polynomials produced by the ith

node in the `th layer, then P
(
f
(`)
i

)
,P
(
g
(`)
i

)
,P
(
h
(`)
i

)
⊆ Rd+1

P
(
g
(1)
i

)
and P

(
h
(1)
i

)
are points (no max operation is applied)

P
(
f
(1)
i

)
is a line segment (single max operation between points is

applied)

P
(
g
(2)
i

)
and P

(
h
(2)
i

)
are zonotopes (weighted Minkowski sum

between line segments)

For ` ≥ 1, P
(
f
(`)
i

)
= Conv

[
P
(
g
(`)
i � t

(`)
i

)
∪ P

(
h
(`)
i

)]
For ` ≥ 1, P

(
g
(`+1)
i

)
and P

(
h
(`+1)
i

)
are weighted Minkowski sums

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 62 / 76

Geometric Complexity of Deep neural Networks

Use the number of linear regions N (·) as our measure of complexity

Let ν : Rd → R be an L-layered real-valued feedforward neural
network satisfying our assumptions, t(L) = −∞, and n` ≥ d for all
` = 1, . . . , L− 1

Then ν = ν(L) has at most

L−1∏
`=1

d∑
i=0

(
n`
i

)
linear regions, where d is the dimensionality of the input space and n`
is the width of the `th layer

if d ≤ n1, . . . , nL−1 ≤ n, then N (ν) is bounded by O
(
nd(L−1)

)
We can therefore say that the number of linear regions of the neural
network grows polynomially with width n and exponentially with
depth L

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 63 / 76

Appendix A: Detailed Learning Procedure for Growing Neural Gas;

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 64 / 76

Growing Neural Gas – Learning Procedure

1 Generate two nodes a and b at random values in RS

2 Draw a random sample ξ from the probability distribution being
learned as ξ ∼ P

3 Find two nodes v1 and v2 such that v1 is closest to (and v2 is second
closest to) ξ as determined by finding the v ∈ V which produces the
first and second smallest ‖wv − ξ‖22

4 For each edge e connected to v1, increment its age αe by 1

5 Increment the error for the BMU:

εv1 ←− εv1 + ‖wv1 − ξ‖
2
2

6 Move v1 and its neighbors towards ξ by ηb and ηn respectively:

wv1 ←− wv1 + εb (ξ − wv1) for best matching unit

wvn ←− wvn + εn (ξ − wvn) for neighbors n of BMU

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 65 / 76

Growing Neural Gas – Learning Procedure (cont.)

7 If an edge connects v1 and v2, set its age to zero, e (v1, v2)←− 0.
Otherwise create such an edge with an age of zero.

8 For each edge e ∈ E, if αe > αmax remove it. If after removing said
edges any nodes have a degree of zero, remove them.

9 If the number of samples drawn is an integer multiple of λ, insert a
new node by finding the node with the maximum error and its
neighbor, generate a new node halfway between the neighbor and the
unit with maximum error, insert edges between the new node and the
others (removing the original) and reduce the accumulated errors of
the two existing nodes

10 Decay all error values by multiplying them by the global decay rate of
error:

∀n ∈ N, εn ←− ηdεn
11 If a stopping criterion such as model size or a performance metric is

not yet met, return to step 2 and repeat.

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 66 / 76

Appendix B: Detailed Information on LDR Neural Networks;

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 67 / 76

Appendix C: Detailed Information on Tropical Algebra;

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 68 / 76

Tropical Algebra

Define the tropical semiring as T := (R ∪ {−∞} ,⊕,�)

Define tropical sum, product, and quotient for two numbers x, y ∈ R:
I x⊕ y := max (x, y) x� y := x+ y x� y := x− y

Tropical additive identity of 0 and multiplicative identity of −∞
I −∞⊕ x = 0� x = x −∞� x = −∞
I Lacks the additive inverse required for (R ∪ {−∞} ,⊕,�) to be a ring

Operations follow the usual laws of arithmetic: associativity,
commutativity, distributivity

Define tropic power in a way analogous to power in the traditional
sense

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 69 / 76

Tropical Power

We can define tropical power, analogous to power in a traditional
sense but where multiplication is substituted with tropical
multiplication

Given a ∈ N0 and x ∈ R we define this as:
I x�a := x� · · · � x = a · x

Extends to R ∪ {−∞} for any a ∈ N as:

−∞�a :=

{
−∞ a > 0

0 a = 0x

T is a semifield since every x ∈ R has a tropical multiplicative inverse
(equivalent to the standard additive inverse), x�(−1) := −x
x ∈ R can be raised to a negative power a ∈ Z by raising its tropical
multiplicative inverse −x to the positive power −a, i.e.
x�a = (−x)�(−a)

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 70 / 76

Tropical Monomials and Polynomials

A tropical monomial in d variables x1, . . . , xd is an expression of the
form:

c� x�a11 � x�a22 � · · · � x�add

where c ∈ R ∪ {−∞} and a1, . . . , ad ∈ N
Use multiindex notation for shorthand as cxα where
α = (a1, . . . , ad) ∈ Nd and x = (x1, . . . , xd)

A tropical polynomial f(x) = f (x1, . . . , xd) is a finite tropical sum of
tropical monomials

I f(x) = c1x
α1 ⊕ · · · ⊕ crxαr

where αi = (ai1, . . . , aid) ∈ Nd and ci ∈ R ∪ {−∞} , i = 1, . . . , r

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 71 / 76

Tropical Rational Functions

Define a tropical rational function as the standard difference (or
tropical quotient) of two tropical polynomials f(x) and g(x):

I f(x)− g(x) = f(x)� g(x)

denoted as f � g where f and g are tropical polynomial functions

Set of tropical polynomials T [x1, . . . , xd] forms a semiring under ⊕
and �, and the set of tropical rational functions T (x1, . . . , xd) forms
a semifield

A tropical polynomial f = f � 0 is a special case of tropical rational
functions, therefore T [x1, . . . , xd] ⊆ T (x1, . . . , xd)

A d-variate tropical polynomial defines a function f : Rd → R that is
convex as taking max and sum of convex functions preserve convexity

A tropical rational function f � g : Rd → R is a DC
(difference-convex) function

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 72 / 76

Tropical Maps

F : Rd → Rp, x = (x1, . . . , xd) 7→ (f1(x), . . . , fp(x))
I Is a tropical polynomial map if each fi : Rd → R is a tropical

polynomial, i = 1, . . . , p
I Is a tropical rational map if f1, . . . , fp are tropical rational functions

Pol(d, p) is the set of tropical polynomial maps, so
Pol(d, 1) = T [x1, . . . , xd]

Rat(d, p) is the set of tropical rational maps, so
Rat(d, 1) = T (x1, . . . , xd)

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 73 / 76

Tropical Hypersurfaces

The tropical hypersurface of a tropical polynomial f(x) is
I T (f) :=

{
x ∈ Rd : cix

αi = cjx
αj = f(x) for some αi 6= αj

}
I Otherwise stated, the set of points x at which the value f(x) is

attained by two or more monomials in f

A tropical hypersurface divides the domain of f into convex cells on
each of which f is linear

Cells are convex polyhedra, defined by linear inequalities with integer
coefficients:

{
x ∈ Rd : Ax ≤ b

}
for A ∈ Zm×d and b ∈ Rm

Cell where a tropical monomial cjx
αj attains its maximum is{

x ∈ Rd : cj + aᵀjx ≥ ci + aᵀi x for all i 6= j
}

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 74 / 76

Minkowski Sum

The Minkowski sum of two sets P1 and P2 in Rd is the set:

P1 + P2 =
{
x1 + x2 ∈ Rd : x1 ∈ P1, x2 ∈ P2

}
Intuitively described as summing every term in P1 with every term in
P2

Weighted Minkowski sum with scalars λ1, λ2 ≥ 0 is:

λ1P1 + λ2P2 =
{
λ1x1 + λ2x2 ∈ Rd : x1 ∈ P1, x2 ∈ P2

}
Weighted Minkowski sum is commutative, associative, and generalizes
to more than two sets

Minkowski sum of line segments is called a zonotope

Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 75 / 76

Elementwise Recursive Decomposition

Standard Notation:

F (`+1)(x) = max
{
H(`+1)(x), G(`+1)(x) + t

}
G(`+1)(x) = A+G

(`)(x) +A−F
(`)(x)

H(`+1)(x) = A+F
(`)(x) +A−G

(`)(x) + b

Elementwise Tropical Notation:

f
(`+1)
i = h

(`+1)
i ⊕

(
g
(`+1)
i � ti

)
g
(`+1)
i =

[n

�
j=1

(
f
(`)
j

)�a−ij]� [n

�
j=1

(
g
(`)
j

)�a+ij]
h
(`+1)
i =

[n

�
j=1

(
f
(`)
j

)�a+ij]� [n

�
j=1

(
g
(`)
j

)�a−ij]� bi
Marissa Dominijanni (University at Buffalo) Nature-Inspired Machine Learning 2019 May 03 76 / 76

	Euclidean Neural Maps
	Theoretical Properties for Neural Networks with Weight Matrices of Low Displacement Rank
	Error Bounds on LDR Neural Networks
	Training LDR Neural Networks

	Tropical Geometry of Deep Neural Networks
	Tropical Algebra of Neural Networks
	Tropical Geometry of Neural Networks

	Appendix A: GNG Detailed Learning Procedure
	Appendix B: Detailed Information on LDR Neural Networks
	Appendix C: Detailed Information on Tropical Algebra

