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1 4 Physics of Quantum Computing

Now is the time to take stock of what the previous chapters have shown.
Simon’s algorithm solved the first task that could be proved beyond
polynomial-time classical algorithms, though it was relative to a hidden func-
tion. Shor’s algorithm is concrete and solves factoring, but factoring hasn’t
been proved to lie outside deterministic polynomial time. Grover’s algorithm
can search among N items in O(W) time, but where N is exponential in the
number of qubits used to encode the search results. These are all advances
over what is known or believed to be possible classically—and the quantum
algorithms are available now.

Thus, in this chapter we take time to discuss how to achieve these advances
physically. That is to say, what is involved in building a physical quantum
computer? We will adopt the Dirac notation from physics to describe quan-
tum states. We feel it important also to discuss interpretations of results that
separate the quantum and classical worlds. Our own standpoint is that compu-
tational complexity holds a key not only to the separations but also to the inter-
pretations. Complexity is central to the argument over quantum supremacy,
which is perhaps better called by the mellower term quantum advantage:

How can we tell when a quantum device has achieved a task
that no classical device can feasibly emulate?

The goal of demonstrating quantum advantage has come to a boil in the six
years since our first edition, with major companies, university centers, consor-
tia, and smaller contenders all vying to be the first to achieve it definitively.
We lay groundwork for understanding the physical side of this question and
introduce notation and concepts that will serve the advanced algorithms in the
rest of this text. We begin with a treatment of quantum reality that emphasizes
how complex linear algebra is built around basic observable outcomes.

14.1 Coherence and Cards

If you wish to observe the suit of a face-down playing card, you can turn it
over. The suit can be hearts , diamonds <{), clubs %, or spades #. Those are
the basic outcomes. We distinguish them as basis elements by putting around
them special notation invented by Paul Dirac: |}, [), |#), | 4).

If a magician holds a standard playing card up to you so you cannot see the
suit, you still have no doubt that it has one of those four suits. The magician
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may trick you into thinking it has a different suit from when you saw it before,
but it has a definite suit. It is a classical card. It does not change its suit or
anything about its state. The deck is not magic.

The essence of quantum mechanics—for the finite discrete systems we
consider—is that nature does provide special cards whose state is indetermi-
nate. In this instance they behave as described by a vector v of four complex
numbers (a, b, c,d) such that |a|?> + |b]? + |c|> + |d|*> = 1 according to some
postulates, of which the first two are as follows:

(a) If you turn the card over, you get hearts with probability ||, diamonds
|b|%, clubs |c|?, and spades |d|>.

(b) The magician can wave a wand over the card in the form of a 4 x 4
complex unitary matrix M. The card then behaves as described by the
vector v = (d’,b’,c’,d’) such that My =v'.

These rules mean that the vector describes the state of the card, which can
be written schematically as

k) =al?)+b|0) +c|®) +d|4).

The |-) form, called a ket, signifies a column vector. We have used ©, >, &, &
rather than numbers inside the kets to emphasize that complex linear algebra
can be built around all manner of basic observable outcomes.

These ideas extend to any number k of basis elements, not just k =4. A
qubit is defined by having k = 2, a qutrit by k = 3, and our cards are just
called quarts. Whatever the arity, the probability rule (a) is similar. It is called
the Born rule after Max Born. The behavior of (a) and (b) on the whole is
called coherence, a term derived from physical waves. There is a third rule,
which in our special case takes the following form:

(c) If the observation in (a) gives hearts, then the card behaves as described
by (1,0,0,0), which is the description of the basis vector |7} itself.
If diamonds, then the state becomes (0,1,0,0) = [{); if clubs, then
(0,0, 1,0) = |#); if spades, then (0,0,0,1) = |4).

We will cover the general form of postulate (c) in section 14.5. Why quantum
systems behave this way is called the measurement problem. We will duly
touch on aspects that are commonly said to be counterintuitive and mysterious
and “magic,” but we will try to convince you that they are simply natural.

Indeed, to see quantum behavior all one needs are a few pieces of polarizing
filter, such as used in sunglasses and cheaply available. Figure 14.1 shows two
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pieces held with a tweezer in front of the LCD screen being used to write this
chapter.

Figure 14.1

Three-polarizer paradox, illustrating the Born rule.

The diamond-oriented filter is between the horizontal filter and the screen.
The corners of the horizontal filter are blocking all light from the screen. If
the diamond filter were removed, the whole horizontal filter would block. The
paradox is, how does putting another barrier between the horizontal filter and
the light source enable light to get through in the center? To explain this, we
use some new notation and a little trigonometry.

14.2 Dirac Notation

How do we get numbers out of the basis symbols? This requires first defin-
ing the bra form to go with ket. If |x) = (a, b, c,d) as a column vector, then
(x| is the row vector (a*,b*,c*,d*), where * means complex conjugate. The
point—note that bras and kets have points—is that making a “bra-ket” of basic
outcomes gives 1 for like symbols and 0 otherwise. In our playing-card exam-
ple,
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In general, a bra followed by a ket is an inner product. With |x) as above and
14) =e|V) +f10) + g |%) +h|4), we have

A gy ={lk)=¢€"a+fb+g'c+h*d.

Having shown this, we will go back to writing inner products as (4, x).

A ket followed by a bra is an outer product. When we do this with basis
elements we don’t get O or 1; instead, we always get a new dimension marker.
For example,

) (Al = ae™ |9} (V1 +af* |V) (Ol +ag™ |V) (#] + ah™ | V) (4]
+ 0" [O) (VI +bf7 [O) (Ol + bg™ [O) (] + ™ [O) (4]
+ ce” |#) (V] +cf" | %) (Ol +cg™ | %) (%] + ch™ | %) (4]
+ de” |#) (V] +df* |#) (O] +dg" |#) (%] +dh™ | 4) (4].

It is usual to arrange the coefficients into a matrix:

ae* af* ag* ah*

be* bf* bg* bh*
ce* cf* cg*t ch*
de* df* dg* dnh*

k) (Al =

When we take an outer product of a vector with itself, there is a special
significance when we multiply the resulting matrix by another ket-vector and
use associativity:

() (k) 12) = |x) (kD 1) = |K) (K, ) = c k),

where c is the scalar value (x, ). Thus, |x) (x| is an operator that when applied
to another vector gives the projection of that vector onto the span of |«). It is
generally not unitary: the projection is not one to one. We say more about
projections when defining measurements formally in section 14.5.

The bra-ket notation widens to accommodate operators. The abstract form

(] M |2)

is sometimes called the triple product but is really just ordinary matrix-vector
multiplications to get a scalar. If we identify an n-qubit quantum circuit C with
the unitary operation it computes, and if we consider basic inputs x,z € {0, 1}",
then

(z Clx)
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gives the amplitude of the event of C on input x giving output z. In terms
of the length-2" complex state vector obtained after giving x as input to C,
it is the complex value in position z. Note that z is on the left since we apply
operators to column vectors on the right, though this is opposite to our tendency
to picture circuits as running from left to right.

Complex conjugation flips ket and bra and reverses the right-to-left sequence
order. If C breaks into unitary operators as C = U,,U,— - - - Uy, then

@ Cl)" = (& UnUn-1--Urlx)" = (x| (UnUp-1---U1)*|2)
= (x|U7---U,_Ulz).
We complete our treatment of Dirac notation by noting that |«x)|1) stan-
dardly denotes the tensor product |«x) ® |4). We defined tensor products in
chapter 3, so we simply remark here that, in our running example, |x) |A) is

a vector of length 16 rather than a 4 x 4 matrix. In presenting Shor’s algorithm
and before, we wrote a functional superposition state as a function:

aly] = { 7 i@ =y

0 otherwise.

Now we write it as

1
> ).
\/ﬁ xe{0,1}"

The meaning is the same; the choice depends on how it will be used.

14.3 What Are Qubits?

We have talked about qubits all through this text. In chapter 3 we derived them
from linear algebra and Euclidean distance. Above in section 14.1 we gave
postulates for their behavior—now this means having k£ = 2 with numbers a, b
such that |a|? + |b|?> = 1. But what is a qubit? Nature provides multiple entities
that behave as qubits. We emphasize qubits, plural, because one needs a source
of multiple qubits in the same initial state to verify that their behavior conforms
to the stated probabilities of the Born rule.

What was the first physical device to provide proof? Historically it was a
magnetic device built by Otto Stern and Walter Gerlach in 1922. It beamed
silver atoms through a magnetic field that, despite the atoms not being elec-
trically charged, deflected them according to their spin—that is, each atom’s
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angular momentum. If the angular momentum values were classical values on
a continuous scale, then the pattern of atoms landing on a detector would be
continuous. Instead, there are just two landing places, one of them “down” ({,)
the other “up” (1), as shown in figure 14.2.

The finest point is that, as far as we know, the atoms are identical as they
enter the magnetic field. Some go up, and some go down, in ways we cannot
tell in advance. We can attenuate the beam so that most of the time only a single
atom is traveling through the device. We still cannot tell as it enters which path
it will later take. There may be some unknown factors that determine the path,
but—and this is also important—our methods of preparing the atoms for their
flight are not knowingly biased in regard to them. We say more about possible
“hidden variables” in sections 14.7 and 14.10. The point for now is not what
the atoms “are” but what they do:

e We have a device that allows us repeatedly to sample results by which we
get the outcome 7 with some probability p and | with probability 1 — p.

e We can prepare the atoms to give a known value p, for instance, p = 0.5,
from a configurable set of possible values. We can observe that, when we
shoot many atoms, almost always the frequency of those giving the outcome
1 is close to p.

e The atoms behave as if controlled by complex numbers a,b such that
la|? = p and |b|? = 1 — p. We can also prepare those numbers, but we can-
not examine a flying atom and tell what a and b it has unless we already
know. We can write the state in Dirac notation as

alt) +bl).

e A reason we know that the (a,b) mechanism is operational is that we can
apply operations that are representable as multiplying (a,b) by a2 x 2 com-
plex unitary matrix M to get (a’,b’), so that the resulting atoms give 1" with
probability p’ = |a’|?> and |, with probability 1 — |b’|>.

e A reason we know that the (a, b) notion of “state” is intrinsic is that, if we
take the beam of atoms that go down and feed it into a second Stern-Gerlach
device, we don’t see a split. The beam stays down: they behave as described
by the state (0, 1), which always gives |. This is also shown in figure 14.2.

Happily, one does not need to visit a Stern-Gerlach device to see the Born
rule in action. The polarizing filters shown in figure 14.1 suffice, as does using
a third filter or sunglasses in place of the computer screen. Light emerging
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Figure 14.2

Cascaded Stern-Gerlach devices.

Source

from a filter has waves that oscillate in only one direction in a plane seen head-
on. Let’s set the first filter so that direction is vertical, as it is for the cscreen in
figure 14.1. Now set the next filter at an angle # from the vertical, as shown in
figure 14.3.

Figure 14.3
Born rule for polarized light.

motion through filter

entering light

9
polarized up sin%60 cos’6@

Let us use the Dirac notation |T) for the vertically up polarized state. The
second filter imposes its own basis on the light it allows to pass through. We
can denote its basis by | ~) for the direction at angle § and |\ ) for the axis
orthogonal to 4 (oriented 90 degrees counterclockwise looking through the fil-
ter). When we express the incoming light’s vector |1) using the second filter’s
basis coordinates, we get:

IT) = cos(0)| ) +sin(0) N).
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The second filter effects a measurement with the following physical rules. If
the outcome is | /) then the photon passed through. If it is | N ), however, the
photon was absorbed. The Born rule gives us the probabilities:

Pr(| 7)), i.e., Pr[pass through] = COSZ(H);
Pr(|N)), i.e., Pr[blocked] = sin’(0).

The only thing we lose compared to the Stern-Gerlach device is the ability
to see the phenomenon with individual particles. With a massive number of
photons, however, we can see the probabilities play out with our eyes: the
portion of light passing through is cos?(#). Varying & by twirling the filter in
front of the LCD screen shows how smoothly the trigonometric law operates.
And when 8 = 90°, giving cos(f) = 0, the blocking is quite close to total, as
shown by the black corners shown in figure 14.1. Likewise, sunglasses use
vertical polarization to filter out glare from shiny surfaces, which is mostly
horizontally polarized.

Now we can explain the paradox from figure 14.1. Figure 14.4 shows it
schematically. The light arriving at the first filter is unpolarized, meaning it is
an equal mixture of all polarizations. Relative to figure 14.1, the first filter is
the LCD screen and the middle filter is the diamond one at angle 6 = 45°. By
the Born rule, cos?(45°) = % of the light gets through the diamond. This is
evident by looking at the corners of the diamond compared to the screen. The
horizontal filter is then at an angle 6’ relative to the middle filter.

Figure 14.4

The three-polarizer paradox. Shading indicates portions absorbed or passed through.
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Here we again have 0’ = 45° and again half of the incoming light passes
through. The upshot is that % . % =1 of the light from the screen comes
through. Again this is evident from figure 14.1.

If we twirl the middle filter while holding steady the third filter (i.e., the
horizontal filter in the foreground), then we obtain varying angles 6 and 6’ =
90° — 4. The portion of light coming through is

cos?(0) cos?(0') = cos>(0) sin*(H).

This is maximum when 6 = 8’ = 45° and tails off to 0 both as § — 0° and
6 — 90°. In fact, this tells exactly how an LCD display works in the first place.
For a screen that emits vertically polarized light as shown, the light source at
the back is horizontally polarized, while the screen’s surface is set vertical.
Playing the middle-filter role is a layer of tiny liquid crystals that can be rotated
by electric charges. Each pixel uses three crystals, one stationed in front of a
red element (R), the second green (G), and the third blue (B). Different triads
61,0,,65 of rotation angle for each pixel give different RGB combinations for
the pixel color that our eyes perceive. Zero charge gives 8; = 6, = 63 = 0 and
blocks all light, which is why 000000 is the hexadecimal code for black. Other
LCD displays may use transverse 45 degree angles for source and screen. This
allows a person wearing sunglasses to use the screen in either portrait or land-
scape mode.

Our speaking of | 7),|N) as a “separate basis” may have seemed a fussy
detail. We could have spoken in terms of @ directly without that bit of book-
keeping. However, the great issue between Shor’s algorithm and whether the
factoring problem is in classical polynomial time can be framed as whether
our classical notation can keep up with nature’s inherent efficiency. Thus, the
efficacy of our bookkeeping is an object of analysis.

In linear algebra we can freely transform vectors to other bases. What
our polarized-light example already conveys is that the transformed basis can
become another physically viable measurement target. For example,

L
V2

1
IM+N) and =) =—=(T) =)

I+) = 7

form another frequently used target basis. This is the Bell basis, which was
mentioned first in section 8.3 of chapter 8 and is employed further below begin-
ning in section 14.5.
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Staying with our original basis, if we have a second particle with state
c|T) +d|l), then we can regard our two particles side by side as

@Ity +oll)e(cI)+dIL).

Here the e is a loud use of our usual computer science notion of concatenation.
The corresponding tensor product in Dirac notation is

@M +bN @ (cIM +dI) =ac|t) +ad|TL) +bc|LT) +bd|LL).

Like concatenation, tensor product is not commutative, so it is as if we are
singling out one of the particles as going first. Now we have four basis states
[T, 11405 18T, I4d). The vector (ac, ad, be, bd) over this basis is separable
as defined in chapter 3, that is, decomposable as a tensor product of shorter vec-
tors. It is still a unit vector: you can check that lac|> + |ad|? + |bc|* + |bd|?> =
1.

The final property is that we can freely use unit vectors in the larger space,
as follows.

DEFINITION 14.1 A quantum register of k qubits g1, ..., gi is represented
by complex unit vectors

(ao,...,ak—1)

with K = 2K that obey the k-qubit Born rule that, for each J < K in binary
notation as J = b1 by ... by,

laj> = Prlg1 = |b1) Aga = |b2) A~ A g = |bi)].

Dirac notation allows us to write the whole outcome as
|J) = |b1ba---bi) = |b1) |b2) -+ |bk) = 1b1) ® |D2) @ - ® |by) -

This is more structured than having a single K-level entity with basis states
|0) through |K — 1) because of the tensor products. Now the basis states give
properties of binary strings in {0, 1}¥ and can convey entanglement. Neverthe-
less, the intent is that a quantum register can be treated as a unit. Operations
and entanglements between registers can be singled out for emphasis.

In chapter 7 we showed how to entangle two qubits using one Hadamard
gate and one CNOT gate. Here we exemplify an entangled quantum system
with k = 3 using two Hadamards and a Toffoli gate:
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0) D ?

We started with three separate qubits each in the basis state |0) = (1,0). So
the whole initial state is |000). We first applied the Hadamard gates to the first
and second qubits to put them in the state

1
5 10) + 1IN0 + 1) = [++) -

We still have three separated qubits, collectively in the state |+) ® |+) ® |0),
which can be written |+ 4 0). Then we apply the Toffoli gate, and what we get
is

1

§(|000> =+ [100) + |010) + [111)).

Taking care to compose H® H and TOF right to left, the entire eight-
dimensional computation is

100000O0O 1o101 0 1 0771 1
01000000 01010 1 0 1]]0 0
00100000 1ro1o0o1 0 1 0]]o 1
0001000O0[lfo1ro0o1 0 1 0 1|fol_T1]o
00001000|2[(to10-10-1o0]]0] 2]1
0000O0T1O00 01010 - 0-1]1]o0 0
0000O00O0 1 1ot10-1 01 0]]lo 0
00000010 [01010- 0 1] /[0 1]

The third qubit depends on the conjunction of the first two. It will give out-
come |1) if each of the first two gives outcome |1) in its respective place, but
otherwise the third will give outcome |0). The outcomes |000), |010), |100),
and |111) each have probability 1/4, whereas the other four outcomes cannot
happen.

The next property is that we don’t have to measure all the qubits but can
measure just some of them or even measure in a different way—that is, in a
different basis. This needs its own section for definitions, but let’s continue our
example here. Suppose we measure the third qubit and get the outcome |0).
This outcome had probability 3/4, but what can we say about the state of the



LRQmitbook2 2020/9/16 16:25 Page 154 #172

154 Chapter 14 Physics of Quantum Computing

system now? The answer is that its state becomes

1 1
—=(|000) 4 [100) + [010)) = —=(]00) + [10) + [01)) ® |0) .
ﬁ(l ) +1100) +1010)) ﬁ(l )+ 110) +101)) ®10)

It is, moreover, still entangled: the state %(l()()) =+ |10) 4 |01)) cannot be writ-
ten as a tensor product of single-qubit states.

Where did the 3 come from? The Dirac notation helps us track the possibil-
ities more compactly than an 8-vector with three entries 1/+4/3 = 0.57735 . ..
might, but it leaves even more puzzlement on why than the two-qubit entangle-
ment in chapter 7.

14.4 Transformations and the Bloch Sphere

In the last section we represented a qubit as
al0)+511),

where a and b are complex numbers. Although we referred to (a,b) as the
state, there is an equivalence relation under which nature makes no distinc-
tions. Define (a, b) and (¢, b") to be equivalent if there is a unit complex num-
ber ¢ such that @’ = ca and b’ = cb. Then |d'|* = |a|? and |V'|*> = |b|?, so the
probabilities are the same, but the difference in complex phase is the same
between o’ and b’ as between a and b. So if we take (a,b) as representing this
equivalence class, we may as well assume that the phase of a is zero, which
means that a is a nonnegative real number. Let ¢ be the phase angle of b.

This leaves the two real numbers b1, by used to write b = by + byi. They are
constrained by the requirement that 1 = lal? + |b|> = a® + b% + b%. So we can
represent the entire quantum state by the following:

e A real number between 0 and 1, without loss of generality of the form a =
cos(0/2), where0 <60 <=

e The phase angle ¢, which makes b = ¢ sin(6,/2)

The angle @ is a latitude, and the angle ¢ is a longitude. Thus, we have
mapped states in one-to-one fashion to points on the surface of a sphere. This
is called the Bloch sphere after Felix Bloch. The latitude is reckoned down
from the north pole, so the north pole is § = 0 and the south pole is § = «.
Thus, we have the following:
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e The north pole is @ = 0, so a = cos(0) = 1 and sin(0) = 0 so b = 0, making
@ immaterial. So the north pole is [0).

e The south pole has @ = 7, s0 a = cos(z/2) = 0 and b = ¢/?. The longitude
is immaterial at the pole, so this is |1).

— L — oo L i = i
e The equator has a = 7 andb=e 7 If we view ¢ = 0 at far right, then

the state |[+) is there and the state |—) = Lz(|0) — [1)) is at the far left.

Figure 14.5

The Bloch sphere with axes and corresponding operators.

0)

" Axis fixed
by H gate

1)

It is important to note the difference from our usual way of representing the
orthogonal vectors (1,0) and (0, 1) in the (real number) plane. Those are at
90 degrees from each other, whereas |0) and |1) on the Bloch sphere are 180
degrees apart. Still, we can put rectangular coordinates on the sphere. The axis
going from |—) on the left to |+) on the right can still be called the x-axis.
Let us call the other equatorial axis, going from Lz( 1,i) in front to Lz( 1,—1i)
in back, the y-axis, and the vertical one through the poles the z-axis. This is
shown in figure 14.5.

The NOT gate flips the poles. It also sends % (1,9 to %(i, 1), but remem-

ber that up to equivalence the latter is the same as iz(l, —1i), so we have inter-
changed our equatorial front and back. Thus, the effect on the Bloch sphere is
a 180-degree rotation around the x-axis. This is why the gate is called oy, or
simply X.
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The gate Y also flips the poles and this time swaps |+) and |—) while fixing
our front and back points. This means it rotates 180 degrees around the y-axis.
The gate Z fixes the poles and rotates 180 degrees around the z-axis, turning
the equator. The gate S is an equatorial rotation by 90 degrees (note =2z )
and T by 45 degrees.

Now consider the point & = 7, ¢ = 0, which is at 45 degrees north on the
prime meridian. The corresponding state vector is |7) = (cos (%), sin (%)). It
takes some labor with trigonometric identities to see that this is fixed by the
Hadamard matrix H. Since H sends the north pole to |+), this means that
H rotates the Bloch sphere 180 degrees around the diagonal axis through the
center and |#). This is also shown in figure 14.5. In fact, every 2 x 2 unitary
matrix gives a rotation on the Bloch sphere.

Another fact about the Bloch sphere is that latitude gives the probability.
Here we count latitude as 1 at the north pole, 0.5 at the equator, and O at the
south pole. For angle 6 away from the north pole, the latitude is w. Bya
standard trigonometric identity, this is cos”(#/2), which means it is ®, which
means it is the probability of getting |0).

Connected to this is that points inside the Bloch sphere have statistical mean-
ing. The center of the sphere equals 0.5 |0) + 0.5|1) and represents the uniform
classical probability distribution over the two basic outcomes. A general dis-
tribution p |0) + (1 — p)|1) has latitude p by the above reckoning. Hence we
reach this interpretation:

e The points on the z-axis through the poles give all the purely classical dis-
tributions on {|0),|1)}.

e The points on the surface of the sphere give all the “purely quantum” distri-
butions on {|0), [1)}.

e All other points inside the sphere have the form p = p(@,¢) + (1 — p)(x —
6,7 4+ ¢) and hence represent classical distributions between a pure state
|y) and its antipode on the surface, which is the pure state orthogonal to

[w).

All classical distributions over points on the surface—except the distribution
giving probability 1 to one point—yield a point inside the sphere. Those are the
mixed states of one qubit. The sphere plus the points inside are called the Bloch
ball. Points on the surface are typified by the spin states discussed above, while
we discuss below the physical meaning of points inside.
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The idea behind the Bloch sphere extends to qutrits, quarts, indeed d-ary
qudits for any d, and to systems of more than one qubit or qudit. The geometry
is not as neat as a sphere, however, except that the analogue of the Bloch ball
is always a convex body. This enables the definition of mixed state to be the
same for all systems, as follows:

DEFINITION 14.2 A mixed state is a convex combination of pure states.

In section 14.6 we give a canonical representation for mixed states, after
first discussing measurements of pure states in section 14.5. Before moving
on, however, we need to discuss some points about notation.

We have promoted the idea that the Dirac notation takes a targeted outcome
or attribute 1 and denotes a corresponding quantum state vector by wrapping
a ket around it to make |u). Previously we denoted vectors in boldface, such
as u. In this section, we have taken Greek letters ¢, v/, % that already stood
for quantum state vectors and wrapped kets around them as |¢),|w),|n) to
make them “look more quantum.” Usually this redundancy—which is often
seen in the literature—is harmless. It needs comment to avoid problems in
these contexts, however:

e Duals. Our previous notation denotes the conjugate transpose of a vector
u by u*. In Dirac notation, it becomes (u| without writing a star. Writing
(u*| would be like a double negative. One has to remember to conjugate the
contents when expanding expressions involving (u|.

e QOuter products. We have not needed to consider outer products previously
in this textbook. Thus, we were able to duck the issue that there seems to be
no standard non-Dirac notation for them. Some authorities write # ® v, but
that would cause confusion with tensor products. We have already shown in
section 14.2 how handy Dirac notation is not only for defining outer products
|u#) (v| but also for combining them with inner products and matrices. This
sets up the temptation to write |u) (v| for outer product when u and v already
stand for vectors.

o Vectors as targets. If the objects we seek already are vectors, such as when
trying to solve u = A 'x in chapter 18, then |u) means “a quantum state
that denotes u.” It may not be u itself but a vector in a larger Hilbert space.

We will attend to these issues as they come. They are a reason we avoided
Dirac notation early on. The outer-product convenience leads us to excuse the
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redundancy of writing |u) when it is the same as u. Even in the third case, |u)
will project to u—or to some approximation of u—in a well-defined sense.

With mixed states, however, there is a clear taxonomy: some arise as sin-
gle outer products, and others do not. Outer products are matrices that denote
linear operators. Accordingly, we resume our bold notation for matrices and
operators, writing p for a typical mixed state. We will enunciate early in sec-
tion 14.6 the possibility that outer products and not vectors should be regarded
as the basic quantum elements.

14.5 Measurements of Pure States

The 2 x 2 Hadamard matrix H also effects the change from the standard
[0}, ]1) basis to the basis |+),|—). This works in reverse because H? = I. This
also enables changing our notion of how we measure away from fixing on the
standard basis as this text has done to here. We can define measurement as an
operator, conveniently using the Dirac notation.

To see the idea, consider the standard measurement of |x) = a|0) + b|1).
The probability pg of getting |0) falls out of a triple product of (x| and |x) with
the operator defined as the outer product of |0) with itself—really with (0|,
which is its dual:

(k] -10) (0] - ) = ({x,0))((0,x)) = (a*)(a) = |al?

The state after getting that result is of course just |0), but we can say more
generally how it happens:

1 111 0|]|a 1
\/ﬁm) (0||K>=(—1|:0 0:| |:b:|=|:0:|=|0)

Now suppose we want to measure |«x) in the |+),|—) basis. For the outcome
|+) we can imitate the above form:

(el - 1) (] 1) = (e, D ((+,,)) = (@) (@) = lal?
Notice that because |[+) = H|0) = (0| H, this is the same computation as
(k| H|0) (Ol H|x) = (x| H - |0) (0] - Hx) .

The latter gives the same result as measuring H |x) in the |0),|1) basis to get
the probability for the outcome |0). It helps here that H is Hermitian, that is,
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H = H*. The point of the former is that |+) (4| creates an operator. Now we
involve the other outcomes and observe that

10 N 00 _

00 0o 1| °~
1111 111 -

[+ =) (=] = 5[1 1}+5[_1 1}:1.

The property of the outer products summing to the identity is preserved under
any change of basis transformation. This fact undergirds the following abstrac-
tion. A matrix P is positive semidefinite (PSD) if there is a matrix A such that
P = AA*; it is a projection if also P? = P. Matrices of the form |$) (@] are
projections, as we showed in section 14.2.

10) (O] + 1) (1]

DEFINITION 14.3 A projective measurement is given by a set {Py, ..., Py}
of projections such that
m
> Pi=1
j=1

After measuring a (pure) state |¢) the system selects some j with probability
pj = {(¢| P;j |¢) and transits to the state \/%Pj [p).
J

For a schematic example, let us revisit our “quart” system from section 14.1
with [),|<) for the red playing card suits and |#),|#) for the black suits.
Suppose we wish to measure for the outcomes “red,” that is, |?) or |{), versus
“black.” The corresponding projectors are

1 000 0000
P = 0100 ’ Py = 0000
0000 0010
0000 0001

The probability of “red” given |k) = a|V) + b |O) + ¢ |®) +d | #) is

(k| P1 <) = ((a",b",0,0), (a,b,c,d)) = |al* + |b|*.
The probability of “black” is similarly |c|? 4 |d|>. If the outcome is “red,” the
next state is the former of these two, else the latter:

_ alV) +b10) or cl®) +d|)

[red) [black) =
Vlal> + |b]? Ve +1df?
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Alternatively, we could define a measurement with the same P but with P;
singling out clubs and P3 spades. If the outcome is red then the state is the
same as before, but otherwise the state would become definitely |%) or def-
initely |#). The difference from the state |black) might seem arbitrary, with
[black) signifying only ignorance of the “true property” |&) or |#), but the
difference is implied by how we defined the measurement. Whether we could
engineer the measurement to preserve coherence when giving the outcomes
red or black is another matter. In the next section we show what preserving
coherence involves. We could instead try to engineer a measurement whose
outcomes are “major suit” (meaning < or #) versus “minor suit.”

Now consider the corresponding general pure state of a two-qubit system:
|¢) =al00) +b|01) + c|10) 4+ d|11). There is extra structure here from non-
entangled states breaking into tensor products, such as the basis state |00) being
|0)®10)and the casea =b=c=d = & being |[4+) &® |+). The outcome “red”
now equates to “the first qubit is zero” and corresponds to |0) ® |+). The out-
come “major suit” equates to “|00) or |11),” which doesn’t isolate a value for
either qubit, and the corresponding two-qubit state is entangled. It does, how-
ever, isolate a value for the first pair of entries in the Bell basis of rwo qubits
versus the second pair:

|oF) = %(|00>+|11>)
07) = %(IOO)—IIU)
Pty = %(|01>+|10>)
%) = %(|01>—I10>)

Thus, when “major suit” is transformed to this basis, the structure is the same
as with “red” versus “black,” which corresponded to measuring the first qubit
in the standard basis.

Whatever one’s interpretation of the mechanism for producing the next state
after a projective measurement, the physical fact of the projection is undeni-
able. We can revisit the polarizing filter example. Each filter effects on each
of myriad passing photons a projective measurement whose outcomes can be
called “success: pass through” or “failure: absorbed.” The success case projects
the photon onto the filter’s axis. When the angle € of the next filter is 90
degrees, the probability of success is 0. But when the third filter is inserted
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at 6’ = 45 degrees, half of the photons that passed through the first filter suc-
ceed and are then projected along 6’. They then encounter the last filter at 6
which is 45 degrees from &', and again there is a 1/2 probability of success.
The actual wave dynamics are more complicated, but the results are accurately
described by this simple figuring of repeated measurements.

14.6 Mixed States and Decoherence

We reintroduce our old friends Alice and Bob. Well, for now just Alice—Bob
will be way off in the distance. She buys a qubit from a vendor who says it is
in the pure |+) state, having been prepared from |0) by applying H. To back
up the claim, the vendor measures a slew of other similarly prepared qubits in
the |0),|1) basis, and Alice sees that the outcomes have close to a 50-50 split.

Alice wishes to measure it in the |+),|—) basis. Actually, what she intends
is to apply H to it and measure in the standard basis. She expects to receive the
result |0). There are two ways she can be disappointed. Our point will be how
they are alike.

First, the qubit might instead be in the mixed state of a 50-50 classical split
between |0) and |1). This would produce the same statistics from the vendor.
We can calculate expressly what will happen when Alice applies H to it and
measures. To motivate the representation of mixed states, we first note a con-
sequence of the last section about measuring pure states that follows from the
identity

el (18) (1) 1) = (] () (1) 1h).
which in turn follows from associativity and the scalar multiplication of (x, ¢)
and its dual (¢, x) being commutative:

Every measurement of a pure state |x) involves only the outer product
|x) (x]. Hence, |x) (x| embodies all knowledge we can gain about the state.

The consequence is that the density matrix, defined as follows, gives all
quantum information about pure states as well as mixed states.

DEFINITION 14.4 The density matrix of a mixed state given as a convex
combination of pure states |¢x) with nonnegative real coefficients p; summing
to 11is

p= > prlbe) (el
k
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A density matrix p designates a pure state if and only if p> = p. A second
important fact about density matrices p is that they are always Hermitian: p* =
p. This is because

(1) (D)™ = Ul ) UPe)™ = i) (Prel

for each k. Hence, they can be decomposed in a canonical way according to
the following theorem.

THEOREM 14.5 For every N x N Hermitian matrix A, we can find an
orthonormal basis of eigenvectors uy,...,uy with associated real eigenvalues
Al,..., AN such that

A=iluy) (il + -+ An lun) (unl. (14.1)

If each /; is unique, then so are the u;. If some eigenvalue is duplicated,
for example, 4j, =--- = 4;,, then all ways of picking an orthonormal basis
{uj,,...,u; } for the corresponding eigenspace give the same sum |u;, ) (u;, | +
oy, ) (u, .

Proof. 1f there is just one distinct eigenvalue 4, then A is multiplication by A.
Then 4 being real and the uniqueness of the sum (14.1) are clear. So suppose
the eigenspace W of A; is not the whole space. Now consider any vectors x in
W and y in the orthogonal complement W of W. Because A is Hermitian,

(x,Ay) = (Ax,y) = Aj(x,y) = 0.

Thus W+, as well as W, is closed under A, so we may consider the restric-
tions of A to each space. Since they have lower dimension and each has fewer
distinct eigenvalues, the proof follows by induction—in particular, that all the
eigenvalues are real. O

For an example of using the spectral theorem, we compute square roots of
the Pauli matrix

The eigenvalues are +1 with eigenvector ¢ = % (1,i) and —1 with eigenvec-

tor ¢p_ = % (1, —i). Recall that complex numbers inside (-| are conjugated. We

can first verify

(+1)|¢+><¢+|+(—1>|¢_><¢_|=%([1 "li]—[_li J): Y.
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Now we can get a square root by using any square roots of the eigenvalues.
The choice 12 = 1 and i2 = —1 gives

2 i1 —i 1 21140 1+4i

inf4 _ 1+
L

Note that we can take out a factor of \/; =¢ > and what is left is

1 (1 -1
V2|1 1
which is like the Hadamard matrix rotated 90 degrees left. Its transpose is

likewise a square root and is also sometimes labeled “Y!/2>_pote also that
while Y is Hermitian, none of its square roots is Hermitian.

14.6.1 Trace and POVM

The trace Tr(p) of p, defined as the sum of its diagonal entries, is > ;p; = 1.
To apply a unitary linear transformation A to p is not simply to multiply A
through the sum as >, p;A|¢;) (¢;| but, rather, to apply the so-called double
action:

ApA™ = piAlgi) (il A" = D pilAd:) (Adil

Because A is unitary, the double action preserves the trace.
The definition of measurement that is considered canonical for mixed states
is similar to definition 14.3.

DEFINITION 14.6 A positive operator valued measure (POVM) is given
by aset {Ej,..., E,} of PSD matrices such that

S EE -1
j=1

The probability of outcome j on measuring a mixed state p = >, p; |¢;) (¢i] is
pj = Tr(Ejp),
and if a matrix M; is known such that E; = M; M;, then the next state is
_ Mom;
Dj

/
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The last point contains a subtlety. By E; being PSD there exists a matrix M;
such that E; = M; M;, but it is not unique. The matrices M; need to be specified
in order to engineer the measurement for continued operations with p’ but if
only the act of sampling outcomes according to the distribution {p;} is needed,
then they can be dispensed with in the analysis. The denominator is p; not
/Pj because the outer products used in p already multiply pairs of amplitudes.
The index j is not the same as i: the POVM may have many more (or fewer)
components than the representation of the mixed state.

Recall from the Bloch sphere that a mixed state of a single qubit—no matter
how many pure states were averaged to produce it—has a canonical represen-
tation as a binary distribution of two pure states. All of its representations give
the same p, and it follows from the above that there is no quantum experiment
that can distinguish those representations. The p is all we know.

Returning to our example, we can now compute what Alice will measure. If
her qubit is really the mixture

1 05 O
=5100{01+ 7 |1>(1|=[0 0'5i|7

then after applying the Hadamard gate she will have

1 1
o = HoH=_- 11 05 0 11
V2|11 0 05 1 -1
1105 05 1
2005 05| |1 -1
Alice’s final standard-basis measurement then gives:
05 0 1
0) with probability (0] o' 0) =[1 0] —0.5;
|0)  with probability (0] p" |0) o osllo

05 o] [o
1) with probability (1 ’1=[0 1] —05.
|1) with probability (1| p° |1) o osl |1

So Alice will be disappointed—her final qubit is not |0), and she will fail to
get that outcome half the time.

14.6.2 Partial Traces

Now let us unfold a different scenario involving only pure states. Bob visited
the store just before Alice and bought a few |0) qubits to take on a trip to Alpha
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Centauri. Unknown to anyone, one of them got entangled with the qubit later
sold to Alice via a silent CNOT operation. Occurrences like this are common
in our world. When it happens to the vendor’s spare-sample qubits, he is mea-
suring half of a Bell pair %QO) + |1)), which still gives the 50-50 statistics
he expects. But even without Bob measuring his entangled qubit, Alice does
not get the |0) result she expects, because when she takes her qubit home and
applies H, she finds herself measuring the first qubit of the following two-qubit

circuit: 10) . . 9

0) D ?
The CNOT affects the first qubit so that the two H gates on do not cancel.
Instead, the final H ® I maps the Bell pair to

101 0

L0101i[1001]=1[111—1].

Alio-1 0|l A 2
01 0 -1

This state |x) remains entangled, but Alice does not always get |0) when she
measures its first qubit in the standard basis. The projectors for this are

1 000 0000

0100 0000
{Po,P1} = ,

0000 0010

0000 0001

For outcome |0) the probability is
1 1
(x| Po |k) = Z((l,l,O,O),(l,l,l,—l)) =3

So Alice is equally disappointed in this scenario. Note, incidentally, that this
determination is irrespective of whether Bob measures his qubit. If he did and
got |0), then it means that Alice walked out of the store with |0) (not |+) as
she believed) and that her applying H changed it to |+). If Bob got |1), then
Alice will have H|1) = |—), but again, her measurement in the standard basis
will give 50-50 odds.

There are other ways that Alice’s distribution of results would hinge on what
Bob saw, but since there is no communication from Bob—he could be near
Alpha Centauri before he examines his qubit—it does not affect Alice’s under-
standing of her distribution. What is remarkable is that quantum mechanics
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provides a characterization of Alice’s distribution that paints Bob out of the
picture, without needing to care what he does.

The relevant operation—the last quantum primitive we treat here—is the
partial trace. If we have an underlying product Hilbert space H =X ® Y of
dimension d; - d> and a tensor product U = V ® W, then the partial trace Try
over Y maps U to VTry W. Because such products linearly span the space of
all (unitary) linear operators on H, we have uniquely specified Try in a basis-
invariant manner. Relative to the standard basis, the trick isto tile ad;d> x did>
matrix M with copies of the d>-dimensional identity matrix, add up the entries
of M that fall on the diagonal of each copy, and output the resulting d; X d|
matrix as Try(M).

Let us now trace out Bob from the pure state x. We first form

1 1 1 -1
1{f1 1 1 -1
o) frel = 5 s
411 1 1 1
-1 -1 -1 1

where we have bolded the entries that are added pairwise. The resulting 2 x 2

1{2 0l _fo5 0
410 2|1 |0 o5

This is a density matrix. It is the same as the density matrix we computed for
Alice in the first scenario. This is not an accident.

matrix is

THEOREM 14.7 For every mixed state p of n qubits, we can build a pure state
|} of 2n qubits such that p = Try(|x) (x|), where Y is the space of the added
qubits.

To prove this, use theorem 14.5 to write p as a sum ) _; 4; |¢;) (¢;|, where the
|¢;) form an orthonormal basis of the space X of the original n qubits. Then,
taking Y to be another copy of X, we can define

=D iilgi) i)

Verifying p = Try(|x) (x|) is exercise 14.9. The upshots of all this are as fol-
lows:

e Every mixed state is potentially the trace-out of a pure state.
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e The holder of one part of an entangled system cannot observe any change to
her system resulting from actions by other parties on their parts, as long as
there is no other communication among them.

The combination of these two allows us to treat mixed states as complete
known entities rather than incomplete results from lack of knowledge. When
further interactions connect the parties, however, differences resulting from
their actions can be observed. The next section gives a prime example.

The main significance for us now is how entanglement with Bob destroyed
coherence from Alice’s point of view. Specifically, it prevented the interference
that makes two consecutive Hadamard gates cancel. The result is that, with
some frequency, Alice will experience a wrong value from her qubit.

14.6.3 Depolarizing and Dephasing

Errors in a single qubit during the course of a computation can be modeled
as unwanted interactions with the environment. The analysis has informative
symmetry when the errors of a bit flip (i.e., multiplication by X), phase flip
(multiplication by Z), or both (multiplication by Y ignoring global phase) are
considered equally likely with probability 1—37 With reference to the Bell basis
in section 14.5, the action on the entangled pair |®™) is given by the density
matrix evolution |®1) (O] — p’ where

= (1=p)|oT) (T + §(|T+> (PF) 4+ 107 (DT +1¥7) (P

I
= (1=p1eh) @1+ (5).
where p’ = %p and ;{ is the density matrix for the useless point at the center
of the Bloch sphere for the two-qubit system. This presumes that p < 4—31; note
that p = % produces the complete mixture of the Bell basis. The fidelity of p’
to the original state is given by

F=(0F| p |[0F)=1—p.

With reference to Alice’s Bloch sphere, this action contracts any point inward
by a factor of p’. Since the Bloch sphere is typified by spin polarization, the
action is called depolarization.

There is a second basic way that Alice’s qubit can lose fidelity. Suppose
she buys both a |[4) and a |—) and asks for each to be supplied as a point
on a Bloch sphere. Customer service at the back of the store puts the spheres
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in a special shielding bag for Alice to take to checkout. Alas, the path to the
cash register goes through the sections selling beam generators and measuring
devices, which are crowded with many Bobs. As Alice pushes past them they
jostle her bag so that her qubits jiggle on their spheres. The pure |+) state
becomes the average of all the jiggles—which is a point inside the sphere,
hence a properly mixed state. If the first jiggle is a rotation by # around the
z-axis of its Bloch sphere, then the original density matrix

_1 1 1
P+=311 1
becomes

, L2 0 |1 1| e 0 | 1| 1 €
P+=351 0 2|1 1 0 92| 20e 1 1|

The effect on her |—) is similar. When the bobbing about the z-axis is modeled
as a Gaussian scattering process with variance 44, the expected values of her
mixed states become

s 1 et s 1 1 —e
P+=%0e1 1|0 P-T2|en1 1 |

The more this happens, the more the off-diagonal elements tend toward zero.
This happens equally to p, and p_, losing the distinction between them. If
it goes all the way to zero, then she is left with py = %I in both cases, and
any further operation UpyU* = %UU* = po has no effect. In general, we can
represent the effect on a state p as a mixture

Fp+(1-F)D,

where D is a diagonal matrix of unit trace and again F, 0 < F < 1, is the
fidelity. The Bloch sphere again contracts, this time toward the z-axis like a
deflating American football on its tip. This is dephasing.

The bit-flip and phase-flip errors can be targeted by quantum error-
correcting codes provided the overall error rate p is small enough. This is
the import of the quantum fault tolerance theorem, whose beautiful the-
ory is beyond our scope in this text. The threshold for p has not been met,
and the codes impose substantial overhead, so the current era is one of noisy
intermediate-scale quantum (NISQ) devices that try to complete useful com-
putations before the fidelity is completely lost.
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14.7 The CHSH Game

Alice and Bob enter now on equal footing. They are still incommunicado with
each other, but they may have several points of common contact:

A referee, Ralph, communicates with each of them separately.

They can have reached prior agreements before going incommunicado. We
might also allow them to confer between frials that involve communications
with Ralph.

They can observe the same source of classical random bits—that is, they
share a coin.

In the quantum case they may (instead) share an entangled Bell pair
—5(100) + [11)).

In the CHSH game, named for John Clauser, Michael Horne, Abner Shi-

mony, and Richard Holt in the paper Clauser et al. (1969), a trial goes as fol-

lows:

1.

Ralph generates two bits a, b € {0, 1} uniformly at random, sends a to Alice,
and sends b to Bob.

Alice and Bob each say “yes” or “no” in separate replies to Ralph.

3. Alice and Bob win if their answers differ when @ = b = 1 and agree other-

wise. They play cooperatively.

In the classical case they have a simple way to win 75% of the time: they

both always say no. (Or they both always say yes.) They win unless Ralph’s
two random coins both give 1. The main question is, can they do better?

14.7.1 Classical Case

In the classical setting, the answer is no. After observing the shared coins,
Alice can have only four different behaviors S4 in any trial:

YY: Say yes regardless of whethera=0ora =1
YN: Sayyestoa=0,notoa=1
NY:Saynotoa=0,yestoa=1

NN: Say no to both
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Bob has the same options for his behavioral strategy Sp. Bob and Alice can
agree on a fixed behavior or on how outcomes of their shared coins map to
behaviors for each, so that each may know the behavior the other has elected.
As in the case of the 75%-assuring strategy NN, one can even know the other’s
response ahead of time. What cannot be known, however, is the value of the
other’s bit from Ralph. The basic fact is this:

For any pair (S4,Sp) € {YY,YN,NY,NN}?, there is a combi-
nation (a,b) € {0, 1}? that causes Alice and Bob to lose.

Since that combination comes with probability at least 0.25 from Ralph,
the success probability cannot be raised above 0.75. No scheme of how each
can interpret results from their shared classical randomness changes this. In
particular, nor can an oracle Ozzie, controlling the shared “random” bits, guide
Alice and Bob to winning responses with any higher effectiveness. We interpret
this after covering the quantum case.

14.7.2 Quantum Case

It seems at first that sharing the Bell pair has no more use than sharing the
classical random coins. If Alice does a standard measurement of her qubit
of the pair and sees |0), this means Bob will also certainly see |0) when he
measures, but so what—it is the same with a shared coin, likewise when both
see |1). They can do things to bias the outcomes away from 50-50, but the
classical Alice and Bob can do the same by mapping results of multiple shared
coins differently for each. The subtle difference is that Alice and Bob can rig
how their shared qubit behaves in ways that change the odds each experiences.

For intuition, let us revisit the use of polarizing filters as measuring devices.
Let us suppose that north-south linear polarization of the entangled qubits
means |1) and that east-west means |0). Alice and Bob each have a sheet of
polarizing filter that each can orient in his or her chosen direction. They do
not have to use the same direction, and each can choose a direction based on
the bit from Ralph—this is key. We equip each with detector sensitive enough
to register a single photon. (Such detectors are available commercially, though
getting 95% or even 90% success rate still comes at a premium.) As viewed by
Ralph, we suppose that his messages arrive to Alice and Bob simultaneously,
that Alice’s shared qubit comes through her filter a designated time interval
later (granting enough time for her to choose an orientation), and that Bob’s
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qubit goes through his filter a microsecond later. Moreover, Alice will say yes
if and only if she gets a ping from her detector, and Bob will do likewise. Thus,
we can make their responses involuntary so that the whole trial concludes—
pending only Ralph receiving and judging the responses—at the instant Bob
measures. Since light travels just under 300 meters in a microsecond, spacing
Alice and Bob more than that apart ensures that no communication between
them can physically occur in the microsecond between their measurements.
Thus, everything about strategy comes down to Alice’s and Bob’s orienta-
tions of their filters. First suppose Alice aligns hers north-south (we’ll just say
N). Then she will get a ping if the Bell pair comes through as |11), nothing if
|00). If she aligns east-west (E), then she always gets a ping on |00), nothing
on |11). If she aligns it southwest-northeast (NE), then either basic outcome
becomes a 50-50 coin flip on whether it registers a ping. The key physical
point about the measurement the filters perform was discussed in section 14.5:

If Alice gets a ping from her NE axis, the photon becomes polarized NE.
Because Bob’s qubit is entangled, his photon has the same property. Con-
versely, when Alice gets no ping, both photons snap to the NW axis.

We will later redo the quantum analysis without relying on this property of
physics—and this will in turn explain why the physical behavior happens as
mathematical consequence. For now we go to a finer angle and suppose Alice
orients her filter axis 22.5 degrees rather than 45 degrees up from east. On the
compass this is east-northeast, ENE. If the shared qubits come through as |00),
then Alice’s chance of getting a ping will be

JI2+1
”):%:o.sssss...

— 22
p = cos (8

Now picture Bob doing this instead. If Alice holds her filter E and gets a ping,
the shared qubits will be (or were or are) in state |00), and Bob will get a ping
with the same 0.85355 ... probability. But if Alice gets no ping, then the qubits
are |11) and Bob’s filter—which is close to orthogonal to the north axis with
[1)—will have only a 1 — p chance of letting his photon through. Either way,
there is a 0.85355... chance that Bob and Alice get the same result, whether
“ping” or “no ping.”

If Alice instead holds her filter NE, then Bob’s angle will be 22.5 degrees
“under” rather than “over,” but the analysis is much the same. If Alice gets a
ping, then Bob’s photon becomes NE and his NNE setting again lets it through



LRQmitbook2 2020/9/16 16:25 Page 172 #190

172 Chapter 14 Physics of Quantum Computing

with 0.85355 ... probability, so with that probability his answer will agree. If
Alice gets no ping, then the photons are aligned NW (to SE) and Bob’s ENE
is again almost orthogonal, so with 0.85355... probability he gets no ping.
Thus, ENE for Bob makes him likely to agree whether Alice chooses E or NE.
But now suppose Bob chooses north-northeast (NNE) instead, while Alice has
chosen E. Now their filters are oriented 67.5 degrees part, so when one gets a
ping, the other likely does not—so likely their answers will disagree. We want
this to happen when and only when Ralph has sent a = b = 1. Thus, we have
hit on a winning strategy:

e Alice chooses NE if a = 0, else she chooses E.
e Bob chooses ENE if he gets b = 0, else he chooses NNE.

Figure 14.6
Basis-choice strategy for Alice and Bob in CHSH game.

Bk

If Ahce gets a =0, her NE axis is at 22 5 degrees from both options for
Ralph, so with probability 0.85355... their answers agree and they win. If
Bob gets b = 0, then his ENE axis is likewise close to both of Alice’s options,
so again with probability 0.85355... their answers agree which is what they
need to win in this case too. But if Ralph sends 1 to both, their axes are E and
NNE respectively, 67.5 degrees, so with probability 0.85355... their answers
are different, which is what they then need to win. This is shown in figure 14.6.

So their theoretical winning probability in all cases is 0.85355.... Even
if their detectors each err on 6% of the photons (independently), they will still
win on more than 0.88 * 0.85355 = 0.751 ... of the trials, which beats the 75%
classical maximum. In fact, physical runs of this game using highly accurate
detectors have produced a win rate in valid trials of over 84%.

=<

For a second look at the quantum case, we will put away the polarizing
sheets and stay in the standard basis for measurements. The only “snap” or
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“collapse” will be to [00) or |11), but this will not give us anything new to
think about because we’ve already granted that those are the possibilities.

What Alice and Bob choose to do instead is apply different 2 x 2 operators
A and B to their halves of the pair. Of course, these will be the same change-
of-basis operators as in our intuitive description, but it will be fun to see the
workings. The general rotation by +8 in the plane with |0) at (1,0) (i.e., “east™)
and |1) at (0, 1) is

Ry(260) = cos()] — isin(0) Y = [005(9) ‘Sin(ﬁ)].

sin(d) cos(d)

The “20” is because in the Bloch sphere this is a rotation of 26 (clockwise)
around the y-axis. Without further ado, here are the strategies:

o Alice applies R, (%) to her qubit if she gets a = 0 from Ralph, else she does
nothing.
e Bob applies Ry, (%) to his qubit if he gets b = 0, else he applies Ry, (3%)

Both then measure in the standard basis and say no on |0), yes on |1). If
Alice gets a = 1, then the two computations resulting from Bob’s actions are

cos(g) —sin(g) 0 0 1 cos(§)

Y sin(g)  cos(§) 0 0 110 :L sin(g)
0 0 cos(§) —sin(§) | V2|0 2| -sin(})

0 0 sin(g) cos(g) 1 cos(g)

cos(%’) —sin(%”) 0 0 1 cos(%”)

he1: sin(%”) cos(%”) 0 0 L 0 :L sin(*%”)
0 0 cos(%’) —sin(%”) V210 V2 —sin(%’)

0 0 sin(%”) cos(%”) 1 cos(%’)

2

When b = 0 the outcomes agree with probability cos (¥) = 0.85355... as
before. When b = 1, bringing out the case of both getting 1 from Ralph, their
joint result is [01) or |10) with that probability, whereupon their answers dis-
agree and they win. When a = 0 the math is a little different. Alice applies

10-1 0 1 1
1 (o1 01| 1 (0| 1]
V2l1 o1 ol 2o 21

01 0 1 1 1
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Bob then applies the same matrices as above, getting:

cos(g) +sin(g) «/icos(% - cos(5-)

b=0- 1| sin(§) — C?S(%) _ 1 \/Es%n(% -7 _ 1 Sil.l(%)
2 | cos(§) —sin(§) 2 ﬁsm(% -9 V2 | sin(%)

sin(g) + cos(g) V2cos(E — %) cos(5F)

where we used Ptolemy’s angle identities to replace the sums. The rest is the
same as before, and when b = 1, the symmetry of the sums and differences
under replacing ¢ by %’T gives the same result: probability 0.85355... that
Alice and Bob will win by their answers agreeing.

A corollary of this is that the quantum probabilities cannot be modeled by
classical random coins. This is easier to see in one sense: the success probabil-
ity 0.85355... is not a rational number. Note that preparing the Bell pair used
only one Hadamard gate for nondeterminism. Alice’s operator Ry, (%), when
she uses it, is equivalent to one of the square roots of Y found in section 14.6,
which has the same entries as H. Bob’s operator is not quite the same as the
sequence HTH (the difference is explored in the exercises) but we can convey
the essential point by referring to it. The amplitude of

L | S A ]

is o = $(1 + w) where & = ¢"/4. The probability is

o] = cos? (%) — 0.85355...

again. If the two H gates could be modeled by classical random coins, the most
extreme probability less than 1 they could give would be 0.75. If they gave rise
to a larger finite number of classical fair coins, the denominator of a would be
a power of 2. It is nevertheless possible to analyze the logic of the quantum
circuit using one binary classical variable for each H gate, as we will remark
in chapter 19.

14.8 Quantum Supremacy

The CHSH game represents one kind of quantum supremacy. It is provable
and has been demonstrated to high precision. It is however for an interactively-
defined problem rather than a straight-up computational task. It does “scale up”
to cases of many Alice-Bob interactions and multiple parties and is emblematic



LRQmitbook2 2020/9/16 16:25 Page 175 #193

14.8  Quantum Supremacy 175

of important applications in quantum communication theory. We have seen
computational tasks where quantum algorithms beat classical ones, but where
one of the following is true:

e they do not scale up to higher input sizes n;
o they scale up but are defined with regard to an oracle function F; or

e they scale up without an oracle function, but their classical intractability has
not been proven, nor has there been a convincing demonstration of quantum
advantage that scales up.

Hence, the search for a demonstration that overcomes these objections has
ramped up in recent years. In October 2019 a supremacy claim was made by
a team of researchers led by Google (Alphabet, Inc.) and the University of
California at Santa Barbara (see Arute et al., 2019). The principle is elementary
enough to cover here and also illustrates a few discussion points in this chapter.

Every quantum circuit C with n qubit lines induces a probability distribution
D¢ overz € {0,1}" by

Dc(z) = |{z| € 10"

We could postulate extra ancilla qubit lines and make the input |0™) with m >
n, but the reported experiment does not do so. Since C could have initial NOT
gates on some lines, it does not matter that the input is fixed as |0") rather than
sampled. Sampling the output is the game.

Next we consider probability distributions D’ that are generated uniformly
at random by the following process:

Fori=1toR=2"
(a) choose a z € {0, 1} uniformly at random; then
(b) increment its probability D’ (z) by [—le.

Here we intend r to be the number of binary nondeterministic gates in the
circuit. In place of Hadamard the circuits actually use the V-gate, that is, the
square root of NOT, which is also written ~/X or X'/2, plus the gate Y'/? in
section 14.6 and the gate wW'/2in problem 14.7 below. The difference matters
to technical analysis of the distributions D¢, but the interplay between quantum
nondeterministic gates and classical random coins remains in force. Now we
can state the task first in general terms and then more particularly:
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Given randomly generated quantum circuits C as inputs,
distinguish D¢ with high probability from any D’.

The specific task involves a number J > 0 and moderately large integer k
that are set by the terms of the experiment in order to be technologically fea-
sible for quantum devices even amid decoherence errors and yet concretely
infeasible for classical computation.

Given randomly generated C, generate samples z1,...,2% €
{0, 1}" such that 1 (Dc(z1) + -+ - Dc(zx)) = 1 + 9.

A baseball analogy may help, in which we take r =n, so R=N =2",to
sharpen differences. We are distributing N units of probability among N “bat-
ters” z € {0, 1}". A batter who gets two units hits a double, three units makes
a triple, and so on. The key distinction is between the familiar batting average
and the slugging average, which averages all the bases scored with hits:

e The chance of making an out—that is, getting no units—is (N%I)N , which
is approximately % =0.367879....

e The chance of hitting a single is also about %, leaving 1 — % as the frequency
of getting an extra-base hit—which makes z a “heavy hitter.”

e From k batters chosen uniformly at random, their expected batting average
willbe 1 —1 =0.632....

e Their expected slugging average, however, will just be 1: they expect k units
to be distributed among them.

Thus, with respect to a random D', and without any knowledge of D/, a
chosen team of k hitters cannot expect to have a joint slugging average higher
than 1. Moreover, for any fixed 6 > 0, the chance of getting a slugging average
higher than 1 + ¢ tails away exponentially in k (provided N also grows).

With respect to D¢, however, a quantum device can do better. Google’s
device programs itself given C as the blueprint, so it just executes C and mea-
sures all qubits to sample the output. Finding its own heavy hitters is what a
quantum circuit is good at. The probability of getting a hitter who hits a triple
is magnified by 3 compared to a uniform choice. Moreover, C will never output
a string with zero hits—a “can’t miss” property denied to a classical reader of
C. For large N the probability distribution approaches xe™ and the slugging
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expectation is approximately

o0 X=00 o0 X=00 00
/ e = —xze_x] + 2/ xe ¥ =0-— 2xe“’{| + 2/ e =2.
0 x=0 0 x=0 0

That is, a team z1, ...,z drafted by sampling from random quantum circuits
C expects to have a slugging average near 2. If C works perfectly, the average
will surpass 1 4+ J whenever 0 < d < 1 with near certainty as N grows.

The practical challenge is that the implementation of C is not perfect. The
consequence of an error in the final output is severe. The heavy-hitter outputs
z of a random C are generally not bit-wise similar. Suppose the imperfect C’
outputs 7 which differs in just one bit from a true output z of C. Then 7’ is a
random sample of n strings at distance 1 from z, but with regard to the true D¢
the expected slugging weight reverts to being near 1. Moreover, joint distribu-
tions of (C, v) with a large error (bit flip or half-circle phase flip) at point v lose
the “can’t miss” property, because a z, output by C for one v may have zero
probability of being output by C with alternate error v'. Related phenomena
are actually observed physically in disturbances of coherent “speckle” patterns
of laser light.

Google’s circuits have up to r = 20n, so R > N. Then the “can’t miss”
aspect of the quantum advantage is less sharp, but the xe™ approximation
is closer. By the randomness and scale of their circuits, they can model the
effect as a simple loss of fidelity F' as represented in section 14.6.3, so that
they effectively sample from the distribution

Fl{z] C |0”>|2—|—(1—F)1%. (14.2)

Available reports say that their fidelity is driven below 0.01 but stays above
0.001 in trials. This bounds the range of their experimentally realized ¢ sepa-
ration. That it is separated from zero is, however, highly significant. The tech-
nology that enables setting ¢ and framing the size n = 53 qubits with 20 layers
of binary gates and randomly chosen unary gates is the first of three planks in
proving quantum supremacy by this means.

The second plank is to verify that outputs (z1,...,zx) from the imperfect
simulation really do have a slugging average higher than 14 J with respect
to the true circuits C; that were presented. This part is done classically, by
computing a statistical test that with high probability can be passed only by
sets with sufficiently many heavy hitters z;. The computation for each z; is
expensive, and this is why the separation needs to succeed with a moderate
value of k. The point that must be met is that with z; in hand the test is feasible,
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but a classically random search would take too long to amass enough such z;
that could pass the test.

The third—and most contentious—plank is to demonstrate that no feasible
classical computation can sufficiently improve on the classical random analy-
sis to pass the tests with more than negligible probability. The sensitive point
is that classical algorithms A must be allowed to inspect the blueprints of the
randomly generated quantum circuits C as “white boxes.” A key piece of the-
oretical evidence is that problems related to finding heavy-hitting strings are
asymptotically hard in terms of average-case complexity, not merely in worst-
case complexity. The evidence in question is that the ability of a circuit with
classical random coins to sample from close approximations to the distribution
(14.2) yields a so-called Arthur-Merlin protocol of a kind believed impossible
for a certain level of asymptotically hard problems. There remains the issue of
concrete hardness. The principle behind the asymptotic hardness and worst-to-
average case reduction does arguably take root by n = 53, but their concrete
tests reduced the number of qubits and/or levels, and the largest ones were ded-
icated to verifying modeling assertions underlying the second plank. It may be
relevant to try exhaustive generation of classical codes A that are small clas-
sical circuits or have small specifications. A counter-claim by Pednault et al.
(2019) argues the ability of classical hardware to solve the full n = 53, r = 20
instances within a few days.

If all three planks are established, then we will have a lexically defined prob-
lem (given the blueprint of C, find a team of heavy hitters) having a quick
quantum solution but no feasible classical solution. It can still be objected that
the quantum problem is navel-gazing since it is about quantum circuits C and
involves sampling measured outputs in its definition. It is, however, a legiti-
mate search problem with a decision variant: given C and a string zg of length
< n, can zo be extended to a heavy-hitting string? It appears to have appli-
cations beyond the quantum domain that involve certifying randomness for
cryptographic purposes. What we emphasize to bring this chapter full circle is
that the separation is being demonstrated not just in theory but with a physical
device.

14.9 Problems

14.1. Show that the states %(]000) + |100) + 010) + |111)) and ﬁ(mm +
[10) + |01)) in section 14.3 are entangled. )
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14.2. Given a 2 x 2 unitary matrix U, prove that the action on the Bloch sphere
is a rotation of some number ¢ degrees around some axis ¢ through the center.

14.3. Suppose @1, ..., ¢ are such that > |¢;) (¢;| = I. Given a unitary matrix
A, define y; = Ag; for each i. Show that >, |y;) (yi| = 1.
14.4. Verify the statement in section 14.4 that the point § = 7, ¢ =0 is
unchanged by applying H to it.
14.5. Show that for every 2 x 2 unitary matrix U there are real numbers
6,a, 3,0 such that

U=e"T,RyTy.
Thus, every 2 x 2 unitary operation can be decomposed into a rotation flanked
by two twists, multiplied by an arbitrary phase shift by . Write out the decom-
position for the matrix V in problem 3.9. (It does not matter which definition
of T, you use from problem 3.10.)
14.6. Using the measurement formalism in section 14.5 (especially defini-
tion 14.3), verify the measurement outcomes when the third qubit in the circuit

at the end of section 14.3 is measured, including the resulting state when |0) is
observed and the state when |1) is observed.

14.7. Use the spectral method in section 14.6 to calculate a square root of the

matrix
1 1 [ o 1-i
W=—X+Y)= — .
NoASE ﬁ[m 0}

14.8. Verify that if A is unitary, and
o = ApA* =D piAlg:) (4il A" =D |Agy) (Adil.
i i

then Tr(p’) = Tr(p).
14.9. Verify the statement after theorem 14.7 that p = Try (|x) (x]).

14.10. With reference to the first description of the quantum case of the CHSH
game in section 14.7, can Bob win by using an axis pointed NNW as an option?
(Does he thereby emulate a famous quotation from Hamlet in the form: “I am
but mad north-northwest. When the axis is southerly I can tell |0) from [1)”?)

14.11. First calculate B = HTH and note how it differs from the real rotation
matrix

cos(f) —sin(f)

sin(f) cos(f)
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where 6 = 7 /4. Then find a 2 x 2 operator A such that Alice and Bob can win
the CHSH game with Alice using the identity and A in her two cases, and Bob
using B and a related B’ in his two cases.

14.10 Summary and Notes

Besides the claim of achieving quantum supremacy treated in section 14.8, the
year 2019 saw renewed discussion in major physics blogs and even the New
York Times about the nature of quantum mechanics. Some say that the major
differences in interpretation, especially of the physical processes accompany-
ing measurements, are immaterial because no experiments are known that can
possibly separate them. Others, however, have contended that the interpreta-
tion matters to how one conceptualizes quantum computation. In this chapter
we have tried to avoid any one of these positions. We can characterize our posi-
tion as a simple realist one: quantum observables and the Born rule for their
behavior are just what nature gives us.

We have shown physical ways that quantum mechanics differs from classical
mechanics, including the behavior of polarizing filters and the CHSH game.
The discussion of depolarization and dephasing follows Preskill (2015) and
McDonald (2017), which also have a more precise coverage of the postulates
of quantum mechanics. Our coverage of the postulate of how quantum systems
evolve is deferred to chapter 18. Also looking ahead to chapter 18, we have
addressed notational issues in regard to representing vectors in Dirac notation.
Regarding the seeming lack of consensus on notation for outerproducts, the
use of u @ v for this, clashing with tensor products, comes from Wikipedia’s
current article on outer products:

https://en.wikipedia.org/wiki/Outer_product

The first description of the CHSH game draws on O’Donnell (2018). The
supremacy experiment described in section 14.8 exemplifies how noise in cur-
rent technology drives the fidelity down. As discussed by Preskill (2018), the
advanced algorithms covered here require containing this noise to implement.
The supremacy experiment of Arute et al. (2019) grew out of Boixo et al.
(2018), Neill et al. (2018), and Villalonga et al. (2019), with input from Aaron-
son and Chen (2017), Bouland et al. (2018), Markov et al. (2018), and Huang
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et al. (2018); see Pednault et al. (2019) for a counterclaim and also Aaron-
son and Arkhipov (2011), Bremner et al. (2010), Bremner et al. (2016), and
Harrow and Montanaro (2017).

We have given more detail on the CHSH game than is typical of secondary
sources, including attention to special relativity. This gives some extra support
for possible further discussions. One direction is to discuss possible “loop-
holes” in Bell’s-theorem experiments, such as that of Aspect et al. (1982), and
efforts to close them, especially Hensen et al. (2015). The 84% success figure
is from the former, but the latter needed to throw away more malfunctioning
trials. Another direction is to go into the recent extended paradox of Frauchiger
and Renner (2018). We pick up a third direction in section 19.7, at the end of
chapter 19. Here are some remarks that may help these directions and supple-
ment the understanding from this chapter:

The two CHSH scenarios we described ought to be equivalent, but there are
some subtle differences. In the former scenario the polarizing filters effect the
measurements; the detectors register only the results. In the latter, Alice and
Bob apply the corresponding change-of-basis operators before measuring. The
detail in the former that the encounter of Alice’s photon with the film occurs
an instant before Bob’s (at least in Ralph’s reference frame) implies that the
final state of the qubits will be along one of Bob’s axes, pointed ENE or NNE
if he gets a ping, or NNW or WNW if he does not. If Bob measured first,
then the final state would be along one of Alice’s axes: N-S, E-W, NE-SW,
or NW-SE. This might last only until the photons fly into the detectors, but it
is concrete enough to witness that measurement operators need not commute.
In the latter scenario, however, the results were obtained without specifying
an order of measuring. Nor does the order of Alice and Bob applying their
operators (which are both local) matter, and the measurement outcomes are
all in the standard basis regardless of who goes first. Note that even though
their qubits remain entangled, Alice and Bob can get different measurement
results in the standard basis. Between them, all of |00),|01),]10),|11) are
possible. If it were always |00) or |11), their answers would always agree and
they would lose when Ralph sends both 1. In the case where Alice applies
Ry (%) to her qubit, she does instantaneously change the alignment of Bob’s
qubit, so that both his options will be 22.5 degrees away from the new axis.
And Bob’s options, if they came first, would have similar effects on the axis
of Alice’s qubit. The effect may not seem as vivid as in the polarizing-filter
scenario, but it is equally present.
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This kind of instantaneous effect is what famously disturbed Einstein. Here
it is compounded by the apparent difference of Alice or Bob going first by one
microsecond, which is a long interval by computer architecture standards but
too short for information to travel 300 meters. It must be said, however, that
the probabilities and nature of the observations are exactly the same whichever
goes first and in both scenarios. The difference in state described between the
scenarios cannot be detected. Most significant, both scenarios and both orders
yield the same density matrix for Alice’s view of her qubit and the same density
matrix for Bob’s view of his. Therefore we cannot say any quantum informa-
tion, let alone classical information, is exchanged over that time.

There remains the question of whether the behavior of the shared qubits is
foreordained in any one trial. This pertains especially to Alice and Bob get-
ting pings (first scenario) or measuring |0) (second scenario), on which their
responses to Ralph depend. It is possible that physical factors—which could
be represented as variables in equations under a yet-to-be-discovered theory—
could first determine Alice’s outcome and then instantly force Bob’s. What
the above subsections prove, however, is that the totality of those variables
cannot have been observed by both Alice and Bob before the instants of their
measurements. For if they could, then we could equivalently postulate that an
oracle controlling their classical shared coins could impart the values of their
variables. If the quantum behavior came down to such /ocal hidden variables,
then there would be an oracle in the classical setting that enables them to win
over 85% of the trials, but we have proved there is none. There still can be
hidden variables giving a deterministic analysis of the trials, but they cannot
all be local to both Bob and Alice.

Finally, regarding section 14.8, the quantum supremacy claim by the
Google-led team remains under evaluation. We gave more details of the sta-
tistical testing in our Godel’s Lost Letter blog article:

rjlipton.wordpress.com/2019/10/27/quantum-supremacy-at-last/

The size of the experiment is being increased moderately so as to preserve
the feasibility of its execution while putting classical emulation efforts further
out of reach. Very roughly speaking, the tuning-up adds c to the size so that
the effort the team must expend is compounded by a factor of ¢ or ¢2, but the
emulators—apparently—must compound their hardware and/or time by order
exponential in c. We surely have not yet heard the “end of the beginning,” let
alone the end, of arguments over the nature and degree of advantage brought
by physical quantum computers.



