
Chapter 16

Quantum Random Walks

Both quantum and classical random walks can be visualized as walks on graphs.

The graphs may be finite or infinite, directed or undirected. First we consider the

classical case.

Classical Random Walks

Classical random walks on graphs are a fundamental topic in computational theory.

The idea of a walk is easy to picture. Suppose you are at a node u ∈V , and suppose

there are edges out of u to neighbors v1, . . . ,vd . In the standard random walk, you

pick a neighbor vi at random, that is with probability 1/d. In a general random walk,

there is a specified probability pu→vi
. Either way, if you choose vi, you go there by

setting u := vi and repeat. There are three main questions about a classical random

walk:

1. Given a node w different from u, what is the expectation for the number of steps

to reach w starting from u?

2. How many steps are expected for the walk to visit all nodes w in the graph, in

case n = |V | is finite?

3. If you stop the walk after a given number t of steps, what is the probability pt(w)
of ending at node w? How does it behave as t gets large?

The questions can have dramatically different answers, depending on whether G

is directed or undirected. To see this, first consider the undirected graph in which

the vertices stand for the integers, and n is connected to n− 1 and to n+ 1. If we

start at 0, what is the expected number of steps to reach node n? Each step is a

coin-flip, heads you move right, tails you move left. Hence reaching cell n means

sometime having an excess of n more heads than tails. Now the standard deviation

77

78 16 Quantum Random Walks

of N-many coin-flips is proportional to
√

N, and it follows that the expected time to

have a deviation of +n is O(n2).
This result carries over to any undirected n-vertex graph. If node y is reachable

at all from node x, then there is a path from x to y of length at most n− 1. It is

possible that some node u along this path may have degree d ≥ 3 with d−1 of the

neighbors further away from y, so that the chance of immediate progress is only 1/d.

However, this entails that the original distance from x to y was at most n− d + 1.

Thus any graph structure richer than the simple path trades against the length, and it

can be shown that the O(n2) step expectation of the simple path remains the worst

case to reach any given node in the same connected component as x. In particular,

this yields a log-space, polynomial-time randomized algorithm to tell whether an

undirected graph is connected.

For directed graphs, however, the time can be exponential. Consider directed

graphs Gn with V = { 0, . . . ,n− 1 } and edges (i, i+ 1) and (i,0) for each i. The

walk starts at u = 0 and has goal node y = n− 1, which we may suppose has both

out-edges going to 0. Now a “tail” sends the walk all the way back to 0, so the event

of reaching y is the same as getting n−1 consecutive heads. The expected time for

this is proportional to 2n. Thus mazes with one-way corridors are harder to solve

than the familiar kind with undirected corridors.

This difference undergirds central open questions in computational complexity.

Random walks can be performed in O(logn) space, needing only O(logn) bits to

store the address of the current node and provide some indices i, j for iterating over

the adjacency matrix of the graph. The graph is given as read-only input that doesn’t

count against space, so in particular one may not mark already-visited nodes. Omer

Reingold [8] completed a decades-long project of showing that the random-walk al-

gorithm for connectivity can be “de-randomized,” that is replaced by a deterministic

algorithm of equivalent efficiency. This classified the undirected connectivity prob-

lem into deterministic logspace, which is called L. Directed connectivity, however,

remains complete for nondeterministic logspace, which is called NL. The NL= L

problem bears some resemblance to NP= P, but has some differences, most notably

that NL is known to be closed under complementation, while belief that NP 6= co-NP

is almost as strong as that in NP 6= P.

There are two main further insights in the road to quantum random walks. The

first is that quite apart from how directedness can make locations difficult to reach

with high probability, it is possible to cancel the probability of being in certain

locations at certain times altogether. The second is like the difference between AC

and DC electricity. Instead of seeing a walk as “going somewhere” like a current,

it is better to view it as a dance back-and-forth on the vertices according to some

eventually-realized distribution. Both insights require representing walks in terms

of actions by matrices, and again we can get much initial mileage from the classical

case.

Random Walks and Matrices 79

Random Walks and Matrices

Classical random walks on graphs G = (V,E) can be specified by matrices A whose

rows and columns correspond to nodes u,v. Here A is like the adjacency matrix of

G, in that A(u,v) 6= 0 only if there is an edge from u to v in G, but the entries on

edges are probabilities. Namely, A(u,v) = pu→v, which denotes the probability of

going next to v if the “walker” is at u. The matrix A is row-stochastic; that is, the

values in each row are nonnegative and sum to 1.

It follows that A2 is also a row-stochastic matrix, and gives the probabilities of

pairs of steps at a time. That is, for any nodes u and w,

A2(u,w) = ∑
v

A(u,v)A(v,w) = ∑
v

pu→v pv→w.

Since the events of the walk going from u to different nodes v are mutually exclusive

and collectively exhaustive, this sum indeed gives the probability of going from u

to w in 2 steps. The same goes for A3 and paths of three steps, and so on for Ak, all

k ≥ 0.

A probability distribution D on the nodes of G is stable under A if for all nodes

v,

D(v) = ∑
v

D(u)A(u,v).

Intuitively this says that if D(v) is the probability of finding a missing parachute

jumper at any location v, then the probability is the same even if the jumper has had

time to do a random step according to A after landing. Mathematically this says that

D is an eigenvector of A, with eigenvalue 1; the eigenvector is on the left, giving

DA = D.

If G is connected, finite, undirected graph that is not bipartite, there is an integer

k such that for all ℓ ≥ k, and all x,y ∈ V , there is a path of exactly ℓ steps from x

to y. It follows that for for any matrix A defining a random walk on G, all entries

of Ak and all higher powers are nonzero. It then further follows—this is a hard

theorem—that the powers of A converge pointwise to a matrix A∗ that projects onto

some stationary distribution. That is, for any initial distribution C, CA∗ = D, and

moreover the sequence Ck =CAk converges pointwise to D. This goes even for the

distribution C(u) = 1, C(v) = 0 for all v 6= u, which represents our random-traveler

initially on node u.

When A is the standard random walk, the limiting probability is D(u)= deg(u)/2|E|.
Non-uniform walks A may have other limiting probabilities, but they still have the

remarkable property that any initial distribution is converged pointwise to D. The

relation between ε > 0 and the power k needed to ensure ||CAℓ−D|| ≤ ε for all

ℓ ≥ k, where || · || is the max-norm, is called the mixing time of A, while the k for

maxu,v |D(v)−Aℓ(u,v)| ≤ ε for all ℓ≥ k is called the hitting time.

If G is bipartite, there is still a stationary D, but not all C will be carried toward

it—any distribution with support confined to one of the two partitions will alternate

between the partitions. When G is directed, similar behavior occurs with period 3

80 16 Quantum Random Walks

in a directed triangle, and so on. However, provided that for every u,v and prime p

there is a path from u to v whose number of steps is not a multiple of p, the above

limiting properties still hold for every random walk on G, and the notions of mixing

and hitting times are still well-defined. In an undirected graph, for constant ε , the

hitting time of any walk is polynomial, but in a directed graph even the standard

walk may need exponential time, as the directed graphs in the last section show.

The analogy here is that the stationary distribution D is like “AC current” in

that you picture a one-step dance back and forth but the overall state remains the

same. This differs from the “DC” view of a traveler going on a random walk. What

distinguishes the quantum case is that via the magic of quantum cancellation we can

often arrange for D(v) to be zero for many undesired locations v, and hence pump

up the probability of the “traveler” being measured as being at a desired location u.

An Encoding Nicety

To prepare for the notion of quantum random walks, we consider the probabilities

p as derived from a set C of random outcomes. In the background is a function

h(u,c) = v that specifies the destination node for each outcome c.

To encode the standard random walk in which the next node is chosen with equal

probability among all out-neighbors v of u, we simply take |C| to be the least com-

mon multiple of the out-degrees of all the vertices in the graph. Then for each vertex

we assign outcomes in C to choices of neighbor evenly. This is well-defined also for

classes of infinite graphs of bounded degree. Indeed the infinite path graph remains

a featured example, taking C = { 0,1 } and thinking of c as a “coinflip.” We could

extend this formalism to allow arbitrary distributions on C, but uniform suffices for

the main facts and applications

Now we make a matrix A′ whose rows index pairs u,c of nodes and random

outcomes. We can write this pair without the comma. So we define

A′(uc,v) = 1 if h(u,c) = v

and A′(uc,v) = 0 otherwise. Now each row has one 1 and n− 1 0s. We can,

however, obtain the stochastic matrix A above via

A(u,v) =
1

|C|∑c

A′(uc,v).

If we had a non-uniform distribution on C, we could use a weighted sum accord-

ingly. Note also that our functional view of matrices makes this undisturbed by the

possibility that V , and hence A and A′, could be infinite.

We do one more notational change that already helps with the classical case by

making the matrix square again. We make the same random outcome part of the

column value as well, by defining:

Quantum Random Walks 81

B(uc,vc′) = 1 if h(u,c) = v and c′ = c,

with B(uc,vc′) = 0 otherwise. Then B acts like the identity on the C-coordinates,

and acts like A′ on the V -coordinates, that is on the nodes. Now the stochastic matrix

A is given by

A(u,v) =
1

|C|∑c

B(uc,vc).

The sum on the right-hand side goes down the diagonal of the C-part, much like

the trace operation does on an entire matrix. It is called a partial trace operation, and

is generally important in quantum mechanics. In the classical case, all this does is

get us back to our original idea of entries A(u,v) being probabilities, but it will help

in the quantum case where they are amplitudes, meaning complex numbers whose

squared norms are probabilities.

Quantum Random Walks

The reason we need the added notation of C in the quantum case is that on the

whole space V (G)⊗C, quantum evolution is an entirely deterministic process. It is

because the action on C is unknown and unseen before being implicitly “traced out”

that gives the effect of a randomized walk.

Definition 16.1. A quantum random walk on the graph G is defined by a matrix U

with analogous notation to B above, but where U is unitary, and allowing the action

UC of U on the C coordinates to be different from the identity.

Indeed, in the case |C| = 2, by making UC have the action of a 2× 2 Hadamard

matrix H, we can also simulate the action of flipping the coin at each step. Again

the action of H itself is deterministic, but because measurement involves making a

choice over the entries of H, the end effect is nondeterministic. Here is an example

that packs a surprise.

Let G be the path graph with seven nodes, labeled u =−3,−2,−1,0,1,2,3. Our

state space is V (G)⊗{0,1}. To flip a coin, we apply the unitary matrix C = I⊗H

where I is the 7-dimensional identity matrix. To effect the outcome b, we apply the

14× 14 permutation matrix P that maps (u,0) to (u− 1,0) and (u,1) to (u+ 1,1).
Since we will apply this only three times to a traveler beginning at 0, it doesn’t

matter where (−3,0) and (3,1) are mapped—to preserve the permutation property

they can go to (3,0) and (−3,1), respectively, thus making the action on V (G)
circular. Our walk matrix is thus A = PC. We apply A3 to the quantum basis state

η0 that has a 1 in the coordinate for (0,0) and a 0 everywhere else.

In three steps of a classical random walk on G starting at the origin, the probabil-

ities on the nodes (−3,−1,1,3) respectively are (1
8
, 3

8
, 3

8
, 1

8
) according to the familar

binomial distribution. (Those on the even nodes are zero since G is bipartite.) This

is arrived at by summing over paths, each path being a product of three entries of the

82 16 Quantum Random Walks

-1 -1 -1 -1 -1 -1

-1

1

0

-2 -3 0 1 2 3

Fig. 16.1 Expanded graph G′ of quantum walk on path graph G.

walk matrix. Since each nonzero entry is 1
2
, the middle values come about because

there are three different ways to go from 0 to +1 in three steps, and likewise form 0

to −1.

In the quantum random walk, there is also a sum over paths, with each path being

a product of three entries in the matrix A, but there are three differences. First, the

entries have
√

2 rather than 2 in their denominators—they will be squared again

when going from amplitudes to probabilities at the end. Second, the numerators can

be −1 and +1. Third, and the unseen part under the hood, the paths being summed

by Nature fork not only in the G part, but also in the C part of the space. That is

to say, each coin outcome, which is represented by a column of the ordinary 2× 2

Hadamard matrix,

H =

[

1 1

1 −1

]

,

has two ways of reaching that outcome, via the first or second row. When the coin

outcome is 0 for “tails,” both entries contribute a numerator of +1, but when the

outcome is 1, one path contributes a +1, and the other −1.

Hence the walk is really taking place in a 14-node graph G′ that includes the

coinflips. This graph has directed edges from (u,0) and (u,1) to (u− 1,0) for the

outcome “tails,” say wrapping around to (3,0) in the case u=−3. And for “heads” it

has edges from (u,0) and (u,1) to (u+1,1), again wrapping around, with the crucial

difference that the rightward edges from (u,1) (representing a previous outcome of

heads) have multiplier−1. The other edges have +1. Now the three-step paths from

(0,0) in G′, and their multiplier values, are:

(0,0) → (1,1)→ (2,1)→ (3,1) : 1 ·−1 ·−1 = 1

(0,0) → (1,1)→ (2,1)→ (1,0) : 1 ·−1 ·1 =−1

(0,0)→ (1,1)→ (0,0)→ (1,1) : 1 ·1 ·1 = 1

(0,0)→ (1,1)→ (0,0)→ (−1,0) : 1

(0,0)→ (−1,0)→ (0,1)→ (1,1) : 1 ·1 ·−1 =−1

(0,0)→ (−1,0)→ (0,1)→ (−1,0) : 1

(0,0)→ (−1,0)→ (−2,0)→ (−1,1) : 1

(0,0)→ (−1,0)→ (−2,0)→ (−3,0) : 1

Quantum Random Walks 83

Thus there are six, not four, different destinations. The crux is that the two paths

that reach destination (1,1) have multipliers of 1 and−1 and hence cancel, while the

two paths with destination (−1,0) both have multipliers of 1 and hence amplify. The

14-dimensional vector representing the quantum state of the outcome of the walk,

given the initial vector which had a 1 in place (0,0) and nothing else, becomes this

when arranged in a 2×7 grid:

φ0 =
1√
8

(

0 0 1 0 0 0 1

1 0 2 0 −1 0 0

)

.

Finally, to obtain the probabilities while “tracing out” the unseen coin, we sum the

squares in each column. The final classical probability vector, giving the probability

of finding the “traveler” at each of the original seven nodes of G after a measure-

ment, is

(
1

8
,0,

5

8
,0,

1

8
,0,

1

8
),

in marked contrast to the classical outcomes. What happened, and why the loss of

symmetry?

It is at least reassuring that the bipartiteness of G showed through, giving zero

probability again on the even-numbered vertices. But the leftward bias flies in the

face of fairness when flipping a coin. The Hadamard matrix is used all the time

to introduce quantum nondeterminism, so why does it give off-center results? The

reason is that the −1 entry biases against “heads,” causing cancellations that do not

happen for “tails.”

These cancellations can be harnessed for a rightward bias by starting the traveler

at (0,1) rather than (0,0). That is, unknown to the traveler or any parties observing

just the original graph G, we are starting the coin in an initial state of “heads” rather

than “tails.” In the G⊗C space this means the initial state η1 has a 1 in the coordinate

for (0,1) and a 0 everywhere else. From (0,1), some relevant 3-step paths are:

(0,1)→ (1,1)→ (2,1)→ (1,0) :−1 ·−1 ·1 = 1

(0,1)→ (1,1)→ (0,0)→ (1,1) :−1 ·1 ·1 =−1

(0,1)→ (−1,0)→ (0,1)→ (1,1) : 1 ·1 ·−1 =−1

(0,1)→ (−1,0)→ (0,1)→ (−1,0) : 1 ·1 ·1 = 1

(0,1)→ (1,1)→ (0,0)→ (−1,0) :−1 ·1 ·1 =−1.

These show a mirror-image amplification and cancellation, and give the 14-vector

φ1 =
1√
8

(

0 0 1 0 −2 0 −1

1 0 0 0 1 0 0

)

.

These amplitudes give the classical probabilities (1
8
,0, 1

8
,0, 5

8
,0, 1

8
) on G, now biased

to the right.

You might hence think that you can cancel the biases by starting the system up

with the coin in the “half-tails, half-heads” state

84 16 Quantum Random Walks

η2 =
1√
2
(η0 +η1).

This is like saying Schrödinger’s cat has half a tail, or rather the square root of half

a tail. By the linearity of quantum mechanics—remember A3 is just a matrix—the

final state you get now is

φ2 =
1√
2
(φ0 +φ1)

=
1

4

(

0 0 2 0 −2 0 0

2 0 2 0 0 0 0

)

.

Note that we got some more cancellations—that is to say the two walks interfered

with each other—and those were both on the right-hand side, so we have bias to the

left again with probabilities (1
4
,0, 1

2
,0, 1

4
,0,0). In particular, the rightmost node is

now unreached.

We can finally fix the bias by making the second random walk occur with a

quarter-turn phase displacement. This means starting up in the state

η3 =
1√
2
(η0 + iη1).

This state is like Schrödinger’s cat with half a tail and an imaginary head. Again by

linearity the final state is φ3 = (φ0 + iφ1)/sqrt2, so that

φ3 =
1

4

(

0 0 1+ i 0 −2i 0 1− i

1+ i 0 2 0 −1+ i 0 0

)

.

Taking the squared norms and adding each column gives the probabilities

1

16
(0+2,0,2+4,0,4+2,0,2+0) = (

1

8
,

3

8
,

3

8
,

1

8
)

again, at last modeling the classical random walk.

A more-robust wat to fix the bias is to use a fully-balanced matrix other than

Hadamard for the quantum coin-flip action. A suitable unitary matrix is

J=
1√
2

[

1 i

i 1

]

If we take higher powers Ak, whether A= P(I⊗H) or A= P(I⊗J) or whatever, the

circular connectivity of G guarantees that the uniform classical distribution giving

probability 1
7

to each node of G is approached. It is stable as the induced classical

distribution.

The Big Factor 85

The Big Factor

If instead we extend the graph G beyond seven nodes, we come immediately to the

surprise of greatest import. Let G have n = 9 nodes, labeled −4 to 4, and define G′

as before including wrapping at the endpoints. Extend P to be 18×18 accordingly,

keep H as the action on the coin space, and consider walks of length 4. Labeling the

16 basic walks of length 4 by HHHH through TTTT gives us a shortcut to compute

the destination (m,a) and multiplier b ∈ { 1,−1 } for each walk w:

• m is the number of H in w minus the number of T.

• a is 0 if w ends in T, 1 if w ends in H.

• b is −1 if HH occurs an odd number of times as a substring of w, 1 if even.

For example, HHTT, HTHT, and THHT all come back to (0,0), and their respective

multipliers are −1, 1, and −1. Importantly, this implies there is a cancellation at the

origin, leaving −1 there. Similar happens with HTTH, THTH, and TTHH ending

at (0,1), leaving 1, while HTTT, THTT, and TTHT all hit (−2,0) with weight 1,

reinforcing each other to leave 3 there. The full 2× 9 vector for the quantum state

after the walk is:

φ0 =
1

4

(

0 0 1 0 1 0 −1 0 −1

1 0 3 0 −1 0 1 0 0

)

.

For initial state (0,1) we have the same rules, except with Hw in place of w. This

yields

φ1 =
1

4

(

0 0 1 0 −1 0 3 0 1

1 0 1 0 −1 0 −1 0 0

)

.

Again (φ0 + iφ1)/sqrt2 results from superposing the initial states with a 90-degree

phase shift on the latter. Taking the squared norms of its entries gives

1

32

(

0 0 2 0 2 0 10 0 2

2 0 10 0 2 0 2 0 0

)

.

Summing the columns finally yields the classical probabilities

(
1

16
,0,

3

8
,0,

1

8
,0,

3

8
,0,

1

16
).

This is the surprise: the five nonzero numerators differ from (1
16
, 1

4
, 3

8
, 1

4
, 1

16
)

which is the classical walk’s binomial distribution. The quantum coin-flip distri-

bution is flatter in the middle, with more weight dispersed to the edges.

As n increases, this phenomenon becomes more pronounced: the locations near

the origin cumulatively have low probability, while most of the probability is on

nodes at distance proportional to n. This phenomenon persists under various quan-

tum coin matrices. The general reason is that the many paths under the classical

“H-T” indexing that end close to the origin tend to cancel themselves out, while the

fewer classical paths that travel do enough mutual reinforcement that the squared

norms compensate for the overall count.

86 16 Quantum Random Walks

The effect is that unlike the classical distribution, which for n steps has stan-

dard deviation proportional to
√

n, the quantum distributions have standard devi-

ation fully proportional to n. In fact reasonable schemes make them approach the

uniform distribution on [− n√
2
, n√

2
], whose standard deviation is

√

1
6
n > 0.4n, which

is a pretty big factor of n. Thus the quantum traveler does a lot of boldly going where

it hasn’t been before.

Search in Big Graphs

We have seen that at least on the path graphs, a quantum random walk does a good

and fast job of spreading amplitude fairly evenly among the nodes, rather than lump-

ing it near the origin as with a classical random walk. When the graph G is bushier

and has shorter distances than the path graph, we can hope to accomplish such

spreading in fewer steps. Then if we are looking for a node or nodes with special

properties, we can regard the evened-out amplitude as the springboard for a Grover

search. If the graph’s distances relative to its size are small, then we can even tol-

erate the size becoming super-polynomial—provided the structure remains regular

enough that the action of a coin with d basic outcomes can be applied efficiently at

any node of degree d.

At this point in the last main section of our final main chapter, we finally skirt

full details. However, we can leverage the foregoing ideas well enough to explain a

“meta-theorem” that underlies how quantum random walks serve as an algorithmic

toolkit. For motivation we discuss the following problem, whose solution by Andris

Ambainis [2] is most credited for commanding attention to quantum walks.

Element distinctness: Given a function f : [n]→ [n], test whether the elements

f (x) are all distinct, i.e. f is 1-to-1.

The best-known classical method is to sort the objects according to f (x), then

traverse the sorted sequence to see if any entry is repeated. If we consider evalua-

tions f (x) and comparisons to take unit time, then this takes time proportional to

n logn.

If we wish to apply Grover search, then we are searching for a colliding pair

(x,y), y 6= x, such that f (x) = f (y). We can implement a Grover oracle for this test

easily enough, but the problem is that there are
(

n
2

)

= order-n2 pairs to consider.

Thus the square-root efficiency of Grover search will merely cancel the exponent,

leaving O(n) time, which is no real savings considering that the encodings of x,y
and values of f really use O(logn) bits each.

The idea is to make a bigger target for the Grover search. Let r > 2 and consider

subsets R of r-many elements. Call R a “hit” if f fails to be 1-to-1 on R. It might

appear that testing this involves recursion, but (i) we will expend r quantum steps

to prepare a superposition of quantum states that include the values f (ui) for every

r-tuple (u1, . . . ,ur) ∈ R, in a way that the hit check for every R is recorded, and even

General Quantum Walk For Graph Search 87

apart from this, (ii) if we count only queries—that is linearly superposed evaluations

of f —then the test incurs no extra cost. Thus the preparation time S for the walk is

reckoned as proportional to r.

However, now we have order-nr many subsets, which seems to worsen the issue

we had with Grover search on pairs. This is where quantum walks allow us to exploit

three compensating factors:

1. The subsets have a greater density of “hits”: any r− 2 elements added to a col-

liding pair make a hit. Hence the hit density is at least

(

n−2
r−2

)

(

n
r

) =
r(r−1)

n(n−1)
≈

(r

n

)2

.

In general we write E for the reciprocal of this number.

2. Rather than make a Grover oracle that sits over the entire search space, we can

make a quantum coin that needs to work only over the d neighbors of a given

node.

3. If we make a degree-d graph that is bushy enough, we can diffuse amplitude

nearly-uniformly over the whole graph in a relatively small number of steps.

The walk steps in the last point represent an additional time factor compared

to Grover search, but the other two points reduce the work in the iterations. This

exposes the issues for search in big graphs. Now we are ready to outline the imple-

mentation.

In thinking about the element-distinctness example for motivation in what fol-

lows, note that the vertices of the graph G are not the individual elements x,y but

rather the (unordered) r-tuples of such elements, corresponding to sets R. The adja-

cency relation of G in this case is between R and R′ that share r−1 elements, so that

R′ is obtained by swapping one element for another. This defines the so-called John-

son graph Jn,r. Although all our examples are on Johnson graphs, the formalism in

the next section applies more generally.

General Quantum Walk For Graph Search

The first idea in formulating quantum walks generically is that the coin space need

not be coded as { 1, . . . ,d } but can use a separate copy of the node space. Then

the expanded graph G′ becomes the edge graph of G. We still reference nodes

X ,Y,Z . . . in our notation; the capital letters come from thinking of G as a big graph

as above. The previous node X of a walk now at node Y is preserved as with the

previous coin state in the current state (X ,Y). Execution of a step to choose a next

node Z is achieved by changing (X ,Y) to (Y,Z). This can be done by treating the

first coordinate as the “coin space” and replacing X by a random Z to make (Z,Y),
then either permuting coordinates to make (Y,Z) explicitly, or leaving (Z,Y) as-is

and being sure to treat the other coordinate with Y as the coin space next.

88 16 Quantum Random Walks

The second idea is that the goal of the search is to concentrate amplitude on

one or more of the “hit” nodes. This is the reverse of the notion of a walk starting

from that node or nodes, which would diffuse out to uniform probability. Reversal,

however, is “no problem” for quantum computation. Hence we can start up in a

stationary distribution of the classical walk on G, which by the first idea will extend

naturally to the quantum walk since G′ uses a copy of the nodes of G. For a d-regular

graph, the uniform distribution is stationary.

Of course we cannot expect that a generic walk will run in reverse to every pos-

sible start node, since that would not be invertible. The third idea is to combine the

diffusion step with a Grover-type sign flip upon detecting that the current node is a

hit. This will drive amplitude onto the hit nodes. Accordingly we define a unitary

operator U on our doubled-up grpah space by

U[XY] =−1 if X or Y is a hit, U[XY] = 1 otherwise.

Now let pX ,Y give the probability of going from X to Y in the standard classical walk

on G, and p∗Y,X the probability in the reverse walk. For a stationary distribution π of

the forward walk on V (G), p∗Y,X obeys the equation πY p∗Y,X = πX pX ,Y . The walk is

reversible if in addition p∗X ,Y = pX ,Y . On a regular graph π is uniform distribution,

so a reversible walk gives pY,X = p∗Y,X = pX ,Y and hence is also symmetric. But we

can define the following “right” and “left” reflection operators even for a general

walk:

VR[XY,XZ] = 2
√

pX ,Y pX ,Z−δY,Z

VL[XZ,Y Z] = 2
√

p∗Z,X p∗Y,Z−δX ,Y .

Here δY,Z is the Dirac delta functon giving 1 if Y = Z and 0 otherwise. If W 6= X

then VR[XY,WZ] = 0, and similarly VL[XZ,YW] = 0.

We can define these operators more primitively by coding the walk directly. Let

Y0 be some basis state in the coin space—usually it is taken to be the node coded by

the all-zero string but this is not necessary. Take PR to be any unitary operator such

that for all X and Y ,

PR[XY,XY0] =
√

pX ,Y .

For Z 6= Y0, PR[XY,XZ] may be arbitrary, but PR[XY,WZ] = 0 whenever W 6= X .

Among concrete possibilities for PR, we could let Y0 be the state coded by the all-

1 string instead and control on it, so that the action on Z 6= Y0 is the identity, or

define PR[XY,XZ] =
√

pX ,Y⊕Y0⊕Z . It turns out not to matter. Define the projector

and reflection about Y0 by

General Quantum Walk For Graph Search 89

Π0[XY,WZ] =

{

1 if W = X ∧Y = Z = Y0

0 otherwise;

J0[XY,WZ] = 2Π0[XY,WZ]−δXY,WZ

=











1 if X =W ∧Y = Z = Y0,

−1 if X =W ∧B = D 6= Y0,

0 otherwise.

Lemma 16.1. VR = PRJ0P
t

R
. Hence VR is unitary, and similarly for VL.

Proof. For any W,X ,Y,Z, with lines without W multiplied by a tacit δX ,W ,

(PRJ0P
t

R)[XY,WZ] = ∑
A,B

∑
C,D

PR[XY,AB]J0[AB,CD]Pt

R[CD,WZ]

= ∑
B,D

PR[XY,XB]J0[XB,XD]Pt

R[XD,XZ]

= ∑
B

PR[XY,XB]J0[XB,XB]PR[XZ,XB]

= ∑
B

PR[XY,XB]PR[XZ,XB]

{

1 if B = Y0

−1 if B 6= Y0

= 2PR[XY,XY0]PR[XZ,XY0]−∑
B

PR[XY,XB]PR[XZ,XB]

= 2
√

pX ,Y pX ,Z−δY,Z (since PR is unitary)

= VR[XY,WZ].

Since our U is also similar to the U in Chapter 15, the following blends Grover

search with the quantum walk.

Definition 16.2. The generic quantum walk derived from the classical walk P =
(pX ,Y) on the graph G is the walk on V (G)⊗V (G) defined by iterating the step

operation

WP = VLVR,

and the generic search algorithm iterates

MP = VLVRU.

There are allowable variations. Provided G is not bipartite, it is OK to omit a

check for Y being a hit in the definition of U. That is, if we define

UL[XY] = −1 if X is a hit, UL[XY] = 1 otherwise;

UR[XY] = −1 if Y is a hit, UR[XY] = 1 otherwise.

then it suffices to iterate WPUL without checking whether we found a hit in the Y

coordinate. Or perhaps more elegantly, we can iterate VLULVRUR. We do not know

90 16 Quantum Random Walks

whether the concrete effects on implementations have been all worked out in the

recent literature, likewise with particular choices for PR and the analogous PL, but

asymptotically there is no difference. All of them, however, involve similar left-right

alternation, in line with the above analogy to AC electricity.

The “generic” walk idea allows extending the nodes of G with other data. That

is, if we have a string DX of data associated to a node X , and want to use states

A(XDX) in place of A(X) so as to encode the data in extra indices, we can re-

create all the above encoding of operators with XDX in place of X . Everything goes

through as before, technically because we will have pXDX ,Y DY
= 0 whenever Y DY

does not match the data update when going from node X with DX to node Y .

These considerations also factor into the initial state of the walk. Let X0 be the

node coded by the all-zero index, Y0 the same but on the right-hand side of indexing

XY , and D0 the data associated to Y0. One possibility for the initial state A0 of the

walk is defined by

A0(XY0) =
√

πX ,

and A0(XY) = 0 for Y 6= Y0. This can be interpreted either as starting at the all-zero

node with the coin in a stationary-superposed state, or having the coin initialized

to “zero” with the walk initially in the classical stationary superposed state. On a

d-regular graph G we always have πX = 1/d. Now if we throw in the data, this

technically means initializing the state

A0(XDXY0D0) =

√

1

d
,

with A(XDY D′) = 0 whenever D 6= DX , Y 6= Y0, or D′ 6= D0. Since getting uniform

superpositions is relatively easy, and the adjacency relation of G is usually simple,

the difficulty in preparing A0 actually resides mainly in determining the associated

data. The same applies to the update cost—the time taken to implement the concrete

VR and VL via extended versions of PR and PL is mainly for producing the data

associated with the node Y traversed from X .

Finally, in the concrete version of the “flip” U, there is the cost of checking

the associated data to see if the current node is a “hit.” In order for these steps

and checks to be done in superposition, they must be coded for accomplishment

by linear transformations. Thus far this is done by jockeying indices. Our point is

not so much to argue that our notation is more intuitive or less cumbersome than

standard notation—such as ∑X |XY0〉〈XY0 | for the projector onto C
V (G)⊗ |Y0〉, or

|X〉|DX 〉 to carry along the associated data—but rather to explore lower-level details

and suggest possible alternate encodings.

In presenting algorithms for some specific problems, this is the point where we

need to skimp on full details in order to highlight the generic intuition. At least it

comes in the last section of the last chapter of our text.

General Quantum Walk For Graph Search 91

Quantum Walk Search Algorithm and Complexity Toolkit

The last factor for efficient quantum walks is that the underlying graph G be suffi-

ciently “bushy” relative to its size N. The formal notion is that G be an expander,

meaning that there is an appreciably large value h(G) such that for all sets T of

at most N/2 nodes, there are at least h(G)|T |-many edges going to nodes outside

T . This entails that there are at least h(G)|T |/d different nodes outside T that can

be reached in one step, but it is separately significant to have many edges that can

diffuse amplitude into these neighboring nodes. An important lower bound on h(G)
is provided by the difference between the largest eigenvalue and the second largest

absolute value of the adjacency matrix of G, which is denoted by ∆(G) and called

the eigenvalue gap. The bound is

1

2
∆(G)≤ h(G).

For a d-regular graph we write D = d/∆(G), which is actually the reciprocal of

the eigenvalue gap (commonly written δ) of the stochastic matrix of the underlying

standard classical walk on G.

From the discussions here and in the last section, we have isolated five important

parameters that affect the performance of concrete implementations of the generic

quantum walk:

1. E: the reciprocal of the density of “hit” nodes in the graph G;

2. D: the degree divided by the eigenvalue gap of G;

3. S: the setup cost for preparing the initial quantum state, including associating to

each graph node any additional data such as function values;

4. U : the update cost of executing each step of the quantum walk;

5. C: the cost of checking locally to see whether a node is a hit, if not already

marked during setup.

The E and D parameters have been expressed in a way that requires no further

use of the size n or degree d of the graph, though they and d are implicitly functions

of n. The following “meta-theorem” expresses how quantum random walks can be

used as an algorithm toolkit for search problems.

Theorem 16.1. For any search problem on a uniform family of undirected graphs

Gn with parameters E(n) and D(n), and any additive cost measure (such as time or

the number of function queries), one can design a quantum walk with setup, update,

and checking phases, such that if the respective costs of these phases are bounded

by S(n), U(n), and C(n) respectively, then the overall cost to achieve correctness

probability at least 3/4 is bounded above by a constant times

S(n)+
√

E(n)(U(n)
√

D(n)+C(n)). (16.1)

92 16 Quantum Random Walks

The proof given by Magniesz et al. [7] has two stages, one involving an extra

factor of logE(n), and then a recursion to eliminate this factor. Also for reasons

stated above, we omit it here.

The way to apply this theorem is to find appropriate graphs on which to model

the search problem at different problem sizes n, get the D(n) and E(n) bounds, and

design additional features associated to the nodes (if needed) to balance out S(n),
U(n), and C(n). Here is how this theorem plays out in some examples.

Grover search. Here Gn is the complete graph on n vertices. Since Gn has degree

n− 1 and the next-highest eigenvalue is known to be 1, the gap is n− 2. Hence

D(n) = (n−1)/(n−2)≈ 1. Suppose at least k of the n nodes are hits. Then E(n)≤
n/k. The setup takes one step of parallel Hadamard gates, the update takes one query

step, and the checking is reflected in one flip step. Hence the time is O(
√

n/k). This

is O(
√

n) if all we know is that there is at least one hit. Note that the quantum walk

architecture for controlling the search automatically guarantees faster time if there

are many hit nodes.

Element distinctness. Above we have given a parameter r(n) and its effect on

hit density as motivation, but we haven’t defined particular graphs Gn to use. Several

kinds of graphs works, but the Johnson graphs Jn,r are the original and most popular

choice. Recall that Jn,r has a node for each R ⊂ [n] of size r, and edges connecting

R,R′ when they have r−1 elements in common; note that the complete graph equals

Jn,1. The degree of Jn,r is r(n− r) since every edge involves deleting one element

u from R and swapping in one element v not in R. The second eigenvalue is r(n−
r)−n, so the gap is n provided r ≥ 2. Thus D(n) = r(n−r)

n
= r− r2/n < r. From the

above hit density we have E(n) = (n/r)2. The goal is to choose r as a function of n

to balance and minimize the total cost.

The quantum algorithm needs to initialize not only a uniform superposition over

nodes R = (u1, . . . ,ur), but also the values f (u1), . . . , f (ur) for its elements—and to

sort the latter locally. This requires r linearly-superposed queries to r, and O(r) time

if we ignore log factors, as we are already doing for the binary encoding of the ui.

This gives setup cost S(n) = O(r). The update needs to remove the value f (ui) and

add a value f (v) when ui is swapped out for v in the walk, which takes 2 queries.

Again since we are ignoring the logn size of encodings, this gives U(n) = O(1) for

time and queries both. From the formula (16.1) we obtain overall cost of order

r+
n

r
(2
√

r+0) = O(r+
n√
r
).

This is balanced with r = n2/3 giving time O(n2/3). It is known that the same order

of queries are necessary, so this bound is asymptotically tight.

Checking Subgraph Triangle Incidence. Given an m-node subgraph H of an

n-node graph G, does H have an edge of a triangle in G? Given a fixed edge (u,v)
in H, we could do a

√
n-time Grover search for w such that (u,w) and (v,w) are also

edges. But iterating this through possibly order-m2 edges in H is clearly prohibitive.

Summary 93

Instead for each w, we do a quantum random walk to find (u,v). We take r =m2/3,

and define a subset R of the nodes of H to be a hit if it contains a suitable edge (u,v).
Using the Johnson graph Jm,r and data consisting of whether (u,v),(u,w),(v,w) are

all edges, all the parameters are the same as for element distinctness, so the time is

O(m2/3). This becomes the checking time for the Grover search, so the overall time

is O(n1/2m2/3). We can amplify both the check and the Grover success probability

to be at least 5/6, so as to yield 2/3 on the whole.

Finding a Triangle. Now we call an m-node subset R of V (G) a hit if the induced

subgraph H includes an edge of a triangle in G. The E and D will hence be the same

as for element-distinctness with “m” replacing “r”: E(n) = (n/m)2, D(n) ≤ m. We

may use the previous item to obtain checking cost C(n) = O(n1/2m2/3). The one

thing that is different is that the setup and update costs are higher. The setup needs

to encode the entire adjacency matrix of H, and when the update swaps in a vertex v′

and swaps out a v, it needs to update the m−1 adjacencies of v′ while erasing those

of v. Thus we have S(n) = O(m2) and U(n) = O(m). The formula for the overall

cost becomes:

O(m2)+
n

m
(O(m

√
m+n1/2m2/3)).

This time, the setup cost drops out of the equation—the balancing is between the

update and checking cost, and is achieved when m3/2 = n1/2m2/3, that is when

m5/6 = n1/2, so m = n3/5. This results in the overall time

O(n6/5 +n2/5n9/10) = O(n13/10).

The best known classical algorithm for finding a triangle takes the adjacency ma-

trix A and forms A2 + A; it hence runs in time O(nω) where the exponent ω of

matrix multiplication is known to be at most 2.372. Hence if the quantum time

were just a little lower, say O(n1.18) instead of O(n1.3), then the speedup over the

best known classical time would exceed the generic quadratic improvement from

Grover search—and indeed would exceed the quadratic improvement between gen-

eral quantum and classical random walks. Thus the question of further quantum

improvements may be tied to the possibility of advances in classical matrix multi-

plication. No quantum lower bound higher than linear is known for this problem,

while no lower bound higher than 2 is known for ω .

Summary

The key to understanding a classical random walk in a graph is that it is defined

locally. That is, for every node u, and every neighbor v one can walk to in one step,

define A(u,v) to be the probability of choosing to walk to v. Then A2(u,w) is the

probability of reaching node w in exactly two steps given that you started at u, and

this carries over to any power: Ak(u,v) gives the probability of ending at v in exactly

94 16 Quantum Random Walks

k steps, given that you started at u. Thus random walks in graphs are just linear

algebra.

The nice thing about quantum random walks is that they too are just linear alge-

bra, except the entries are complex numbers whose squared absolute values become

the probabilities. The use of matrix multiplication and summing over paths is the

same, except that what gets summed are possibly-complex amplitudes rather than

probabilities. The difference—maybe not so nice—is that these amplitudes can can-

cel, thus giving zero probability for certain movements from u to w that would be

possible in the classical case. This enables piling higher probabilities on other move-

ments in ways that cannot be directly emulated classically. But again the key is that

the definition is local for each “node” which is just a basis state, and gives you a

matrix.

We have explained quantum coins with a “hidden-variables” mentality, and it is

dangerous to combine that with the idea of “local.” However, this view has not tried

to obscure non-local phenomena such as the way certain superpositions, such as the

two coin states without the phase shift, can render certain far locations unreachable.

We have really tried to emphasize the role of linear algebra, and combinatorial el-

ements such as the enlarged graph G′ and the counting of HH substrings. It may

seem strange to picture that Nature tracks the parity of substring counts, and for-

malisms we haven’t touched such as calculating in the Fourier-transformed space of

the walk branches avoid an exponential amount of work while at least giving good

approximations, but this is evidently the effect of what Nature does.

Quantum walks have yielded improved and optimal algorithms for certain deci-

sion problems. Beyond that, they exemplify the idea that quantum computation is

about creating rich quantum states, one that cannot be readily simulated by classical

means, by which novel solutions can be obtained.

Problems

16.1. Verify the probabilities obtained for the 4-step walk on the graph with nodes

labeled−4 to +4. What happens when this walk is started in the state (η0+η1)/
√

2,

that is without the phase shift on the “initial heads” part of the walk?

16.2. Work out the amplitudes and probabilities for the 3-step walk with the J matrix

in place of the Hadamard action on the coin space.

16.3. Can you devise a combinatorial rule for figuring the destination and amplitude

of basic paths under the J matrix, in terms of the binary code of the path, analogous

to the counting of HH substrings for the H matrix?

16.4. Can you use the combinatorial rule for the H matrix to prove that the ampli-

tude of (0,0) for an n-step walk (n even) on the infinite path graph is bounded by

1/
√

2n+ ε , for suitable ε > 0?

16.5. Show by direct calculation that the matrix VR is unitary.

Summary 95

16.6. Work out the analogous decomposition of the matrix VL, using an arbitrary

fixed basis state X0 of the “left” node space. What happens if X0 is not a basis state?

16.7. In the algorithm for element-distinctness, suppose we use recursion to check

whether a set of r nodes has two non-distinct function values and thus constitutes a

“hit.” Do you get the same O(n2/3) running time, or something less?

16.8. Sketch how to implement the element-distinctness algorithm on the Hamming

graphs Hn,r, whose vertices are r-tuples from [n], and whose edges connect r-tuples

that differ in one place. Are all of D(n), E(n), S(n), U(n),a nd C(n) asymptotically

the same as before?

16.9. Sketch a quantum search algorithm that given three n×n matrices A,B,C finds

i, j such that ∑k AikBk j 6= Ci j if such a pair exists, else outputs “accept.” You may

consider arithmetic operations to be unit time, and need only count steps that query

matrix entries. The goal is cost O(n5/3).

16.10. Suppose you can make superposed black-box queries to a binary operation ◦
on [n] whose values lie in [k]. Sketch a quantum algorithm to find a,b,c ∈ [n] such

that (a◦b)◦c is not equal to a◦ (b◦c), if any such “non-associative triple” exists. If

k = O(1), what is the running time of the algorithm? Note that the data associated

to a Johnson-graph node (u1, . . . ,ur) can preserve values of ◦ on arguments in [k] as

well as the ui.

Notes

Most of this chapter is based on the survey papers by Kempe [6] and Santha [9],

also with reference to Magniesz et al. [7]. The last two problems also come from

[9], while the problem about element distinctness on the Hamming graphs is based

on [3].

