Chapter 16
Quantum Random Walks

Both quantum and classical random walks can be visualized as walks on graphs.
The graphs may be finite or infinite, directed or undirected. First we consider the
classical case.

Classical Random Walks

Classical random walks on graphs are a fundamental topic in computational theory.
The idea of a walk is easy to picture. Suppose you are at a node u € V, and suppose
there are edges out of u to neighbors vy,...,v,. In the standard random walk, you
pick a neighbor v; at random, that is with probability 1/d. In a general random walk,
there is a specified probability p,_,,,. Either way, if you choose v;, you go there by
setting u := v; and repeat. There are three main questions about a classical random
walk:

1. Given a node w different from u, what is the expectation for the number of steps
to reach w starting from u?

2. How many steps are expected for the walk to visit all nodes w in the graph, in
case n = |V| is finite?

3. If you stop the walk after a given number ¢ of steps, what is the probability p;(w)
of ending at node w? How does it behave as ¢ gets large?

The questions can have dramatically different answers, depending on whether G
is directed or undirected. To see this, first consider the undirected graph in which
the vertices stand for the integers, and n is connected to n — 1 and to n+ 1. If we
start at 0, what is the expected number of steps to reach node n? Each step is a
coin-flip, heads you move right, tails you move left. Hence reaching cell n means
sometime having an excess of n more heads than tails. Now the standard deviation

71

78 16 Quantum Random Walks

of N-many coin-flips is proportional to y/N, and it follows that the expected time to
have a deviation of +n is O(n?).

This result carries over to any undirected n-vertex graph. If node y is reachable
at all from node x, then there is a path from x to y of length at most n — 1. It is
possible that some node « along this path may have degree d > 3 with d — 1 of the
neighbors further away from y, so that the chance of immediate progress is only 1/d.
However, this entails that the original distance from x to y was at most n —d + 1.
Thus any graph structure richer than the simple path trades against the length, and it
can be shown that the O(n?) step expectation of the simple path remains the worst
case to reach any given node in the same connected component as x. In particular,
this yields a log-space, polynomial-time randomized algorithm to tell whether an
undirected graph is connected.

For directed graphs, however, the time can be exponential. Consider directed
graphs G, with V.= {0,...,n—1 } and edges (i,i+ 1) and (i,0) for each i. The
walk starts at ¥ = 0 and has goal node y = n — 1, which we may suppose has both
out-edges going to 0. Now a “tail” sends the walk all the way back to 0, so the event
of reaching y is the same as getting n — 1 consecutive heads. The expected time for
this is proportional to 2". Thus mazes with one-way corridors are harder to solve
than the familiar kind with undirected corridors.

This difference undergirds central open questions in computational complexity.
Random walks can be performed in O(logn) space, needing only O(logn) bits to
store the address of the current node and provide some indices i, j for iterating over
the adjacency matrix of the graph. The graph is given as read-only input that doesn’t
count against space, so in particular one may not mark already-visited nodes. Omer
Reingold [8] completed a decades-long project of showing that the random-walk al-
gorithm for connectivity can be “de-randomized,” that is replaced by a deterministic
algorithm of equivalent efficiency. This classified the undirected connectivity prob-
lem into deterministic logspace, which is called L. Directed connectivity, however,
remains complete for nondeterministic logspace, which is called NL. The NL =L
problem bears some resemblance to NP = P, but has some differences, most notably
that NL is known to be closed under complementation, while belief that NP # co-NP
is almost as strong as that in NP # P.

There are two main further insights in the road to quantum random walks. The
first is that quite apart from how directedness can make locations difficult to reach
with high probability, it is possible to cancel the probability of being in certain
locations at certain times altogether. The second is like the difference between AC
and DC electricity. Instead of seeing a walk as “going somewhere” like a current,
it is better to view it as a dance back-and-forth on the vertices according to some
eventually-realized distribution. Both insights require representing walks in terms
of actions by matrices, and again we can get much initial mileage from the classical
case.

Random Walks and Matrices 79

Random Walks and Matrices

Classical random walks on graphs G = (V, E) can be specified by matrices A whose
rows and columns correspond to nodes u,v. Here A is like the adjacency matrix of
G, in that A(u,v) # 0 only if there is an edge from u to v in G, but the entries on
edges are probabilities. Namely, A(u,v) = p,_,, which denotes the probability of
going next to v if the “walker” is at u. The matrix A is row-stochastic; that is, the
values in each row are nonnegative and sum to 1.

It follows that A2 is also a row-stochastic matrix, and gives the probabilities of
pairs of steps at a time. That is, for any nodes « and w,

Az(“a w) = ZA(”‘7V)A(V7 w) = Zpu—wpv—)w-
v v

Since the events of the walk going from u to different nodes v are mutually exclusive
and collectively exhaustive, this sum indeed gives the probability of going from u
to w in 2 steps. The same goes for A3 and paths of three steps, and so on for A*, all
k>0.

A probability distribution D on the nodes of G is stable under A if for all nodes

7 D(s) = L DA(w.v)

Intuitively this says that if D(v) is the probability of finding a missing parachute
jumper at any location v, then the probability is the same even if the jumper has had
time to do a random step according to A after landing. Mathematically this says that
D is an eigenvector of A, with eigenvalue 1; the eigenvector is on the left, giving
DA =D.

If G is connected, finite, undirected graph that is not bipartite, there is an integer
k such that for all ¢ > k, and all x,y € V, there is a path of exactly ¢ steps from x
to y. It follows that for for any matrix A defining a random walk on G, all entries
of A¥ and all higher powers are nonzero. It then further follows—this is a hard
theorem—that the powers of A converge pointwise to a matrix A* that projects onto
some stationary distribution. That is, for any initial distribution C, CA* = D, and
moreover the sequence C;, = CA* converges pointwise to D. This goes even for the
distribution C(u) = 1, C(v) = 0 for all v # u, which represents our random-traveler
initially on node u.

When A is the standard random walk, the limiting probability is D(u) = deg(u)/2|E]|.
Non-uniform walks A may have other limiting probabilities, but they still have the
remarkable property that any initial distribution is converged pointwise to D. The
relation between € > 0 and the power k needed to ensure ||CA’ — D|| < ¢ for all
¢ >k, where || - || is the max-norm, is called the mixing time of A, while the k for
max,,, [D(v) — A’ (u,v)| < € for all £ > k is called the hitting time.

If G is bipartite, there is still a stationary D, but not all C will be carried toward
it—any distribution with support confined to one of the two partitions will alternate
between the partitions. When G is directed, similar behavior occurs with period 3

80 16 Quantum Random Walks

in a directed triangle, and so on. However, provided that for every u,v and prime p
there is a path from u to v whose number of steps is not a multiple of p, the above
limiting properties still hold for every random walk on G, and the notions of mixing
and hitting times are still well-defined. In an undirected graph, for constant &, the
hitting time of any walk is polynomial, but in a directed graph even the standard
walk may need exponential time, as the directed graphs in the last section show.
The analogy here is that the stationary distribution D is like “AC current” in
that you picture a one-step dance back and forth but the overall state remains the
same. This differs from the “DC” view of a traveler going on a random walk. What
distinguishes the quantum case is that via the magic of quantum cancellation we can
often arrange for D(v) to be zero for many undesired locations v, and hence pump
up the probability of the “traveler” being measured as being at a desired location u.

An Encoding Nicety

To prepare for the notion of quantum random walks, we consider the probabilities
p as derived from a set C of random outcomes. In the background is a function
h(u,c) = v that specifies the destination node for each outcome c.

To encode the standard random walk in which the next node is chosen with equal
probability among all out-neighbors v of u, we simply take |C| to be the least com-
mon multiple of the out-degrees of all the vertices in the graph. Then for each vertex
we assign outcomes in C to choices of neighbor evenly. This is well-defined also for
classes of infinite graphs of bounded degree. Indeed the infinite path graph remains
a featured example, taking C = { 0,1 } and thinking of ¢ as a “coinflip.” We could
extend this formalism to allow arbitrary distributions on C, but uniform suffices for
the main facts and applications

Now we make a matrix A’ whose rows index pairs u,c of nodes and random
outcomes. We can write this pair without the comma. So we define

A(uc,v) =1 if h(u,c)=v

and A’(uc,v) = 0 otherwise. Now each row has one 1 and n—1 0s. We can,
however, obtain the stochastic matrix A above via

Au,v) = ﬁ ;A/(uc,v).

If we had a non-uniform distribution on C, we could use a weighted sum accord-
ingly. Note also that our functional view of matrices makes this undisturbed by the
possibility that V, and hence A and A’, could be infinite.

We do one more notational change that already helps with the classical case by
making the matrix square again. We make the same random outcome part of the
column value as well, by defining:

Quantum Random Walks 81

B(uc,vc') =1 if h(u,c) =vand ' =,

with B(uc,vc’) = 0 otherwise. Then B acts like the identity on the C-coordinates,
and acts like A’ on the V-coordinates, that is on the nodes. Now the stochastic matrix
A is given by

Au,v) = ﬁ ZC:B(uc, ve).

The sum on the right-hand side goes down the diagonal of the C-part, much like
the trace operation does on an entire matrix. It is called a partial trace operation, and
is generally important in quantum mechanics. In the classical case, all this does is
get us back to our original idea of entries A(u,v) being probabilities, but it will help
in the quantum case where they are amplitudes, meaning complex numbers whose
squared norms are probabilities.

Quantum Random Walks

The reason we need the added notation of C in the quantum case is that on the
whole space V(G) ® C, quantum evolution is an entirely deterministic process. It is
because the action on C is unknown and unseen before being implicitly “traced out”
that gives the effect of a randomized walk.

Definition 16.1. A quantum random walk on the graph G is defined by a matrix U
with analogous notation to B above, but where U is unitary, and allowing the action
Uc of U on the C coordinates to be different from the identity.

Indeed, in the case |C| = 2, by making U¢ have the action of a 2 x 2 Hadamard
matrix H, we can also simulate the action of flipping the coin at each step. Again
the action of H itself is deterministic, but because measurement involves making a
choice over the entries of H, the end effect is nondeterministic. Here is an example
that packs a surprise.

Let G be the path graph with seven nodes, labeled u = —3,—2,—1,0,1,2,3. Our
state space is V(G) ® {0, 1}. To flip a coin, we apply the unitary matrix C =@ H
where [is the 7-dimensional identity matrix. To effect the outcome b, we apply the
14 x 14 permutation matrix P that maps (#,0) to (u—1,0) and (u,1) to (u+1,1).
Since we will apply this only three times to a traveler beginning at 0, it doesn’t
matter where (—3,0) and (3, 1) are mapped—to preserve the permutation property
they can go to (3,0) and (—3,1), respectively, thus making the action on V(G)
circular. Our walk matrix is thus A = PC. We apply A> to the quantum basis state
Mo that has a 1 in the coordinate for (0,0) and a 0 everywhere else.

In three steps of a classical random walk on G starting at the origin, the probabil-
ities on the nodes (—3,—1, 1, 3) respectively are (é, %, %, é) according to the familar
binomial distribution. (Those on the even nodes are zero since G is bipartite.) This
is arrived at by summing over paths, each path being a product of three entries of the

82 16 Quantum Random Walks

-1 -1 1 -1 -1 : 1 -
./'A/'// / /

@< @ < @< o< o< o< (]
-3 -2 -1 0 1 2 3

Fig. 16.1 Expanded graph G’ of quantum walk on path graph G.

1

0

walk matrix. Since each nonzero entry is %, the middle values come about because
there are three different ways to go from 0 to +1 in three steps, and likewise form 0
to —1.

In the quantum random walk, there is also a sum over paths, with each path being
a product of three entries in the matrix A, but there are three differences. First, the
entries have /2 rather than 2 in their denominators—they will be squared again
when going from amplitudes to probabilities at the end. Second, the numerators can
be —1 and +1. Third, and the unseen part under the hood, the paths being summed
by Nature fork not only in the G part, but also in the C part of the space. That is
to say, each coin outcome, which is represented by a column of the ordinary 2 x 2
Hadamard matrix,

11
w=[i)

has two ways of reaching that outcome, via the first or second row. When the coin
outcome is O for “tails,” both entries contribute a numerator of 41, but when the
outcome is 1, one path contributes a +1, and the other —1.

Hence the walk is really taking place in a 14-node graph G’ that includes the
coinflips. This graph has directed edges from (u,0) and (u,1) to (u— 1,0) for the
outcome “tails,” say wrapping around to (3,0) in the case u = —3. And for “heads” it
has edges from (u,0) and (u, 1) to (u+ 1, 1), again wrapping around, with the crucial
difference that the rightward edges from (u, 1) (representing a previous outcome of
heads) have multiplier —1. The other edges have +1. Now the three-step paths from
(0,0) in G, and their multiplier values, are:

(0,0) = (1,1) = (2,1) = 3,1):1-—1-—1=1
(0,0) = (1,1) = (2,1) = (1,0): 1 - —1-1=—
(0,0) = (1,1) = (0,0) = (1,1): 1-1-1=1
(0,0) — (1,1) = (0,0) = (=1,0) : 1

(0,0) = (=1,0) = (0,1) — (1,1): 1-1- =1 =—1
(0,0) = (=1,0) = (0,1) = (=1,0) : 1

(0,0) = (=1,0) = (=2,0) = (—=1,1): 1

(0,0) = (=1,0) — (=2,0) — (=3,0): 1

Quantum Random Walks 83

Thus there are six, not four, different destinations. The crux is that the two paths
that reach destination (1, 1) have multipliers of 1 and —1 and hence cancel, while the
two paths with destination (—1,0) both have multipliers of 1 and hence amplify. The
14-dimensional vector representing the quantum state of the outcome of the walk,
given the initial vector which had a 1 in place (0,0) and nothing else, becomes this
when arranged in a 2 x 7 grid:

1 /00100 01
"’O*ﬁ(lozo—mo)'
Finally, to obtain the probabilities while “tracing out” the unseen coin, we sum the
squares in each column. The final classical probability vector, giving the probability

of finding the “traveler” at each of the original seven nodes of G after a measure-
ment, is

(é’o’ 2707 %?07 é)’
in marked contrast to the classical outcomes. What happened, and why the loss of
symmetry?

It is at least reassuring that the bipartiteness of G showed through, giving zero
probability again on the even-numbered vertices. But the leftward bias flies in the
face of fairness when flipping a coin. The Hadamard matrix is used all the time
to introduce quantum nondeterminism, so why does it give off-center results? The
reason is that the —1 entry biases against “heads,” causing cancellations that do not
happen for “tails.”

These cancellations can be harnessed for a rightward bias by starting the traveler
at (0,1) rather than (0,0). That is, unknown to the traveler or any parties observing
just the original graph G, we are starting the coin in an initial state of “heads” rather
than “tails.” In the G ® C space this means the initial state 1; has a 1 in the coordinate
for (0,1) and a 0 everywhere else. From (0, 1), some relevant 3-step paths are:

(0,1) = (1,1) = (2,1) = (1,0) : =1-—1-1=1
(0,1) = (1,1) = (0,0) = (1,1) : =1-1-1=—1
(0,1) = (=1,0) = (0,1) = (1,1): 1-1-—1 = —1
(0,1) = (=1,0) = (0,1) = (=1,0): 1-1-1=1
0,1) — (1,1

These show a mirror-image amplification and cancellation, and give the 14-vector

g — L (0010-20-1
T /8\1000 100)

These amplitudes give the classical probabilities (%, 0, %70, %, 0, é) on G, now biased
to the right.

You might hence think that you can cancel the biases by starting the system up
with the coin in the “half-tails, half-heads” state

84 16 Quantum Random Walks

1
= —(ng+m).
mn \/z(no 7?1)

This is like saying Schrodinger’s cat has half a tail, or rather the square root of half
a tail. By the linearity of quantum mechanics—remember A3 is just a matrix—the
final state you get now is

1

¢2:ﬁ(¢0+¢1)
~1{0020-200
~2\2020 0 00)/"

Note that we got some more cancellations—that is to say the two walks interfered
with each other—and those were both on the right-hand side, so we have bias to the
left again with probabilities (%,O, %,0, %,0,0). In particular, the rightmost node is
now unreached.

We can finally fix the bias by making the second random walk occur with a
quarter-turn phase displacement. This means starting up in the state

—L(+iny)
Tlafﬁﬂo m)-

This state is like Schrodinger’s cat with half a tail and an imaginary head. Again by
linearity the final state is ¢3 = (@o +i¢1)/sqre2, so that
¢7£ 0 014i0 —2i 01—
37 4\1+i0 2 0-14i0 0

Taking the squared norms and adding each column gives the probabilities

1
—(0+2,0,24+4,0,4+2,0,2+0) = (

16)

)

oo W
| —

3
’87

oo —

again, at last modeling the classical random walk.
A more-robust wat to fix the bias is to use a fully-balanced matrix other than
Hadamard for the quantum coin-flip action. A suitable unitary matrix is

R

INGELR!
If we take higher powers A¥, whether A = P(I®@ H) or A = P(I® J) or whatever, the
circular connectivity of G guarantees that the uniform classical distribution giving

probability % to each node of G is approached. It is stable as the induced classical
distribution.

The Big Factor 85

The Big Factor

If instead we extend the graph G beyond seven nodes, we come immediately to the
surprise of greatest import. Let G have n = 9 nodes, labeled —4 to 4, and define G’
as before including wrapping at the endpoints. Extend P to be 18 x 18 accordingly,
keep H as the action on the coin space, and consider walks of length 4. Labeling the
16 basic walks of length 4 by HHHH through TTTT gives us a shortcut to compute
the destination (m,a) and multiplier b € { 1, —1 } for each walk w:

e m is the number of H in w minus the number of T.
e aisOifwendsin T, 1if wends in H.
e bis —1 if HH occurs an odd number of times as a substring of w, 1 if even.

For example, HHTT, HTHT, and THHT all come back to (0,0), and their respective
multipliers are —1, 1, and —1. Importantly, this implies there is a cancellation at the
origin, leaving —1 there. Similar happens with HTTH, THTH, and TTHH ending
at (0,1), leaving 1, while HTTT, THTT, and TTHT all hit (—2,0) with weight I,
reinforcing each other to leave 3 there. The full 2 x 9 vector for the quantum state
after the walk is:

~1(001010-10-1
%o=311030-10100)

For initial state (0,1) we have the same rules, except with Hw in place of w. This
yields
1 (0010—10 3 01>

=2{1010-10-100

Again (o +iy)/sqrt2 results from superposing the initial states with a 90-degree
phase shift on the latter. Taking the squared norms of its entries gives

1 /0020201002
32\2010020 2 00/ "

Summing the columns finally yields the classical probabilities

This is the surprise: the five nonzero numerators differ from (%, %,%,%, 1—16)

which is the classical walk’s binomial distribution. The quantum coin-flip distri-
bution is flatter in the middle, with more weight dispersed to the edges.

As n increases, this phenomenon becomes more pronounced: the locations near
the origin cumulatively have low probability, while most of the probability is on
nodes at distance proportional to n. This phenomenon persists under various quan-
tum coin matrices. The general reason is that the many paths under the classical
“H-T” indexing that end close to the origin tend to cancel themselves out, while the
fewer classical paths that travel do enough mutual reinforcement that the squared
norms compensate for the overall count.

86 16 Quantum Random Walks

The effect is that unlike the classical distribution, which for n steps has stan-
dard deviation proportional to /n, the quantum distributions have standard devi-
ation fully proportional to n. In fact reasonable schemes make them approach the

is a pretty big factor of n. Thus the quantum traveler does a lot of boldly going where
it hasn’t been before.

uniform distribution on | |, whose standard deviation is \/gn > (0.4n, which

Search in Big Graphs

We have seen that at least on the path graphs, a quantum random walk does a good
and fast job of spreading amplitude fairly evenly among the nodes, rather than lump-
ing it near the origin as with a classical random walk. When the graph G is bushier
and has shorter distances than the path graph, we can hope to accomplish such
spreading in fewer steps. Then if we are looking for a node or nodes with special
properties, we can regard the evened-out amplitude as the springboard for a Grover
search. If the graph’s distances relative to its size are small, then we can even tol-
erate the size becoming super-polynomial—provided the structure remains regular
enough that the action of a coin with d basic outcomes can be applied efficiently at
any node of degree d.

At this point in the last main section of our final main chapter, we finally skirt
full details. However, we can leverage the foregoing ideas well enough to explain a
“meta-theorem” that underlies how quantum random walks serve as an algorithmic
toolkit. For motivation we discuss the following problem, whose solution by Andris
Ambainis [2] is most credited for commanding attention to quantum walks.

Element distinctness: Given a function f : [n] — [n], test whether the elements
f(x) are all distinct, i.e. f is 1-to-1.

The best-known classical method is to sort the objects according to f(x), then
traverse the sorted sequence to see if any entry is repeated. If we consider evalua-
tions f(x) and comparisons to take unit time, then this takes time proportional to
nlogn.

If we wish to apply Grover search, then we are searching for a colliding pair
(x,¥), y # x, such that f(x) = f(y). We can implement a Grover oracle for this test
easily enough, but the problem is that there are (g) = order-n? pairs to consider.
Thus the square-root efficiency of Grover search will merely cancel the exponent,
leaving O(n) time, which is no real savings considering that the encodings of x,y
and values of f really use O(logn) bits each.

The idea is to make a bigger target for the Grover search. Let » > 2 and consider
subsets R of r-many elements. Call R a “hit” if f fails to be 1-to-1 on R. It might
appear that testing this involves recursion, but (i) we will expend r quantum steps
to prepare a superposition of quantum states that include the values f(u;) for every
r-tuple (ui,...,u,) € R, in a way that the hit check for every R is recorded, and even

General Quantum Walk For Graph Search 87

apart from this, (ii) if we count only queries—that is linearly superposed evaluations
of f—then the test incurs no extra cost. Thus the preparation time S for the walk is
reckoned as proportional to r.

However, now we have order-n" many subsets, which seems to worsen the issue
we had with Grover search on pairs. This is where quantum walks allow us to exploit
three compensating factors:

1. The subsets have a greater density of “hits”: any r — 2 elements added to a col-
liding pair make a hit. Hence the hit density is at least

(22 _rr=1) (oY

O a1
In general we write E for the reciprocal of this number.

2. Rather than make a Grover oracle that sits over the entire search space, we can
make a quantum coin that needs to work only over the d neighbors of a given
node.

3. If we make a degree-d graph that is bushy enough, we can diffuse amplitude
nearly-uniformly over the whole graph in a relatively small number of steps.

The walk steps in the last point represent an additional time factor compared
to Grover search, but the other two points reduce the work in the iterations. This
exposes the issues for search in big graphs. Now we are ready to outline the imple-
mentation.

In thinking about the element-distinctness example for motivation in what fol-
lows, note that the vertices of the graph G are not the individual elements x,y but
rather the (unordered) r-tuples of such elements, corresponding to sets R. The adja-
cency relation of G in this case is between R and R’ that share » — 1 elements, so that
R’ is obtained by swapping one element for another. This defines the so-called John-
son graph J, .. Although all our examples are on Johnson graphs, the formalism in
the next section applies more generally.

General Quantum Walk For Graph Search

The first idea in formulating quantum walks generically is that the coin space need
not be coded as { 1,...,d } but can use a separate copy of the node space. Then
the expanded graph G’ becomes the edge graph of G. We still reference nodes
X,Y,Z... in our notation; the capital letters come from thinking of G as a big graph
as above. The previous node X of a walk now at node Y is preserved as with the
previous coin state in the current state (X,Y). Execution of a step to choose a next
node Z is achieved by changing (X,Y) to (Y,Z). This can be done by treating the
first coordinate as the “coin space” and replacing X by a random Z to make (Z,Y),
then either permuting coordinates to make (Y,Z) explicitly, or leaving (Z,Y) as-is
and being sure to treat the other coordinate with Y as the coin space next.

88 16 Quantum Random Walks

The second idea is that the goal of the search is to concentrate amplitude on
one or more of the “hit” nodes. This is the reverse of the notion of a walk starting
from that node or nodes, which would diffuse out to uniform probability. Reversal,
however, is “no problem” for quantum computation. Hence we can start up in a
stationary distribution of the classical walk on G, which by the first idea will extend
naturally to the quantum walk since G’ uses a copy of the nodes of G. For a d-regular
graph, the uniform distribution is stationary.

Of course we cannot expect that a generic walk will run in reverse to every pos-
sible start node, since that would not be invertible. The third idea is to combine the
diffusion step with a Grover-type sign flip upon detecting that the current node is a
hit. This will drive amplitude onto the hit nodes. Accordingly we define a unitary
operator U on our doubled-up grpah space by

UXY]=—1if X orY isahit, U[XY]= 1 otherwise.

Now let px y give the probability of going from X to Y in the standard classical walk
on G, and py y the probability in the reverse walk. For a stationary distribution 7 of
the forward walk on V(G), py x obeys the equation 7y Pyx = Txpxy. The walk is
reversible if in addition p*X,Y = px y. On aregular graph 7 is uniform distribution,
so a reversible walk gives py x = py y = px,y and hence is also symmetric. But we
can define the following “right” and “left” reflection operators even for a general
walk:

VRIXY,XZ] = 2/pxypxz — Oz

VLIXZ,YZ] = 2, /py x Py 7 — Ox.v-

Here 8y 7 is the Dirac delta functon giving 1 if ¥ = Z and 0 otherwise. If W # X
then VR[XY,WZ] =0, and similarly V| [XZ,YW] = 0.

We can define these operators more primitively by coding the walk directly. Let
Yy be some basis state in the coin space—usually it is taken to be the node coded by
the all-zero string but this is not necessary. Take Pr to be any unitary operator such
that for all X and Y,

PR[XY,XYO] = ,/px,y.

For Z # Y), PRr[XY,XZ] may be arbitrary, but Pr[XY,WZ] = 0 whenever W # X.
Among concrete possibilities for Pg, we could let ¥ be the state coded by the all-
1 string instead and control on it, so that the action on Z # Yj is the identity, or
define PRr[XY,XZ] = ,/px yar,az. It turns out not to matter. Define the projector
and reflection about ¥ by

General Quantum Walk For Graph Search 89

Mo[XY. Wz = {1 W =XAY =Z =Y
0 otherwise;
Jo[XY,WZ] = 2Mo[XY,WZ] — Sxywz
1 fX=WAY=Z=Y,,
={ -1 ifX=WAB=D#Y,,
0 otherwise.

Lemma 16.1. Vg = PRJOPE. Hence VR is unitary, and similarly for V.

Proof. For any W,X,Y,Z, with lines without W multiplied by a tacit 60X, W,

(PrIOPR)XY,WZ] = Y Y Pr[XY,AB]Jo[AB,CD|PR[CD,WZ]
AB CD

= Z [XY,XB]Jo[XB,XD|PL[XD,XZ]
B.D
=) Pr[XY,XB]Jo[XB,XB|PRr[XZ,XB]
B

ifB=Y,

ifB#Y,

= 2PR[XY,XYo|PR[XZ,XYo] — Y Pr[XY,XB|Pr[XZ,XB]
B

=) PRr[XY,XB|Pr[XZ,XB] {1_1

=2,/pxypxz—O0rz (since PR is unitary)
= VrIXY,WZ].

Since our U is also similar to the U in Chapter 15, the following blends Grover
search with the quantum walk.

Definition 16.2. The generic quantum walk derived from the classical walk P =
(px,y) on the graph G is the walk on V(G) ® V(G) defined by iterating the step
operation

Wp = V| Vg,

and the generic search algorithm iterates
Mp =V VRU.

There are allowable variations. Provided G is not bipartite, it is OK to omit a
check for Y being a hit in the definition of U. That is, if we define

UL[XY] = —1if X isahit, UL [XY]=1 otherwise;
Ur[XY] = —1ifYisahit, Ugr[XY]=1 otherwise.

then it suffices to iterate WpU|_ without checking whether we found a hit in the Y
coordinate. Or perhaps more elegantly, we can iterate V| U VRUgr. We do not know

90 16 Quantum Random Walks

whether the concrete effects on implementations have been all worked out in the
recent literature, likewise with particular choices for Pg and the analogous P, but
asymptotically there is no difference. All of them, however, involve similar left-right
alternation, in line with the above analogy to AC electricity.

The “generic” walk idea allows extending the nodes of G with other data. That
is, if we have a string Dy of data associated to a node X, and want to use states
A(XDy) in place of A(X) so as to encode the data in extra indices, we can re-
create all the above encoding of operators with X Dy in place of X. Everything goes
through as before, technically because we will have pxp, yp, = 0 whenever Y Dy
does not match the data update when going from node X with Dx to node Y.

These considerations also factor into the initial state of the walk. Let Xy be the
node coded by the all-zero index, ¥y the same but on the right-hand side of indexing
XY, and Dy the data associated to Yy. One possibility for the initial state Ay of the

walk is defined by
Ao(XYo) = /7y,

and Ag(XY) = 0 for Y # Yp. This can be interpreted either as starting at the all-zero
node with the coin in a stationary-superposed state, or having the coin initialized
to “zero” with the walk initially in the classical stationary superposed state. On a
d-regular graph G we always have my = 1/d. Now if we throw in the data, this
technically means initializing the state

1
Ao(XDxYoDg) = \/;7

with A(XDYD') = 0 whenever D # Dy, Y # Yy, or D' # D. Since getting uniform
superpositions is relatively easy, and the adjacency relation of G is usually simple,
the difficulty in preparing A actually resides mainly in determining the associated
data. The same applies to the update cost—the time taken to implement the concrete
Vg and V| via extended versions of Pg and P is mainly for producing the data
associated with the node Y traversed from X.

Finally, in the concrete version of the “flip” U, there is the cost of checking
the associated data to see if the current node is a “hit.” In order for these steps
and checks to be done in superposition, they must be coded for accomplishment
by linear transformations. Thus far this is done by jockeying indices. Our point is
not so much to argue that our notation is more intuitive or less cumbersome than
standard notation—such as ¥y | XY,) (XY, | for the projector onto C¥(%) @ |Yy), or
| X)| Dx) to carry along the associated data—but rather to explore lower-level details
and suggest possible alternate encodings.

In presenting algorithms for some specific problems, this is the point where we
need to skimp on full details in order to highlight the generic intuition. At least it
comes in the last section of the last chapter of our text.

General Quantum Walk For Graph Search 91

Quantum Walk Search Algorithm and Complexity Toolkit

The last factor for efficient quantum walks is that the underlying graph G be suffi-
ciently “bushy” relative to its size N. The formal notion is that G be an expander,
meaning that there is an appreciably large value 4(G) such that for all sets 7' of
at most N/2 nodes, there are at least 4(G)|T|-many edges going to nodes outside
T. This entails that there are at least 1(G)|T|/d different nodes outside T that can
be reached in one step, but it is separately significant to have many edges that can
diffuse amplitude into these neighboring nodes. An important lower bound on 4(G)
is provided by the difference between the largest eigenvalue and the second largest
absolute value of the adjacency matrix of G, which is denoted by A(G) and called
the eigenvalue gap. The bound is

%A (G) < h(G).
For a d-regular graph we write D = d/A(G), which is actually the reciprocal of
the eigenvalue gap (commonly written §) of the stochastic matrix of the underlying
standard classical walk on G.

From the discussions here and in the last section, we have isolated five important
parameters that affect the performance of concrete implementations of the generic
quantum walk:

1. E: the reciprocal of the density of “hit” nodes in the graph G;

2. D: the degree divided by the eigenvalue gap of G;

3. §: the setup cost for preparing the initial quantum state, including associating to
each graph node any additional data such as function values;

4. U: the update cost of executing each step of the quantum walk;

5. C: the cost of checking locally to see whether a node is a hit, if not already
marked during setup.

The E and D parameters have been expressed in a way that requires no further
use of the size n or degree d of the graph, though they and d are implicitly functions
of n. The following “meta-theorem” expresses how quantum random walks can be
used as an algorithm toolkit for search problems.

Theorem 16.1. For any search problem on a uniform family of undirected graphs
G, with parameters E(n) and D(n), and any additive cost measure (such as time or
the number of function queries), one can design a quantum walk with setup, update,
and checking phases, such that if the respective costs of these phases are bounded
by S(n), U(n), and C(n) respectively, then the overall cost to achieve correctness
probability at least 3 /4 is bounded above by a constant times

S(n) +V/E(n)(U(n)\/D(n) +C(n)). (16.1)

92 16 Quantum Random Walks

The proof given by Magniesz et al. [7] has two stages, one involving an extra
factor of logE(n), and then a recursion to eliminate this factor. Also for reasons
stated above, we omit it here.

The way to apply this theorem is to find appropriate graphs on which to model
the search problem at different problem sizes n, get the D(n) and E(n) bounds, and
design additional features associated to the nodes (if needed) to balance out S(n),
U(n), and C(n). Here is how this theorem plays out in some examples.

Grover search. Here G, is the complete graph on n vertices. Since G, has degree
n—1 and the next-highest eigenvalue is known to be 1, the gap is n — 2. Hence
D(n)=(n—1)/(n—2) = 1. Suppose at least k of the n nodes are hits. Then E(n) <
n/k. The setup takes one step of parallel Hadamard gates, the update takes one query
step, and the checking is reflected in one flip step. Hence the time is O(\/n/k). This
is O(y/n) if all we know is that there is at least one hit. Note that the quantum walk
architecture for controlling the search automatically guarantees faster time if there
are many hit nodes.

Element distinctness. Above we have given a parameter r(n) and its effect on
hit density as motivation, but we haven’t defined particular graphs G, to use. Several
kinds of graphs works, but the Johnson graphs J,, , are the original and most popular
choice. Recall that J,, , has a node for each R C [n] of size r, and edges connecting
R, R’ when they have r — 1 elements in common; note that the complete graph equals
Jy1. The degree of J, . is r(n —r) since every edge involves deleting one element
u from R and swapping in one element v not in R. The second eigenvalue is r(n —
r) — n, so the gap is n provided r > 2. Thus D(n) = @ =r—r*/n < r. From the
above hit density we have E(n) = (n/r)?. The goal is to choose r as a function of
to balance and minimize the total cost.

The quantum algorithm needs to initialize not only a uniform superposition over
nodes R = (uy,...,u,), but also the values f(uj),..., f(u,) for its elements—and to
sort the latter locally. This requires r linearly-superposed queries to r, and O(r) time
if we ignore log factors, as we are already doing for the binary encoding of the ;.
This gives setup cost S(n) = O(r). The update needs to remove the value f(u;) and
add a value f(v) when u; is swapped out for v in the walk, which takes 2 queries.
Again since we are ignoring the logn size of encodings, this gives U(n) = O(1) for
time and queries both. From the formula (16.1) we obtain overall cost of order

NG

This is balanced with r = n?/3 giving time O(n%?). It is known that the same order
of queries are necessary, so this bound is asymptotically tight.

r4+(2v/F+0) = O(r+

Checking Subgraph Triangle Incidence. Given an m-node subgraph H of an
n-node graph G, does H have an edge of a triangle in G? Given a fixed edge (u,v)
in H, we could do a y/n-time Grover search for w such that (u,w) and (v, w) are also
edges. But iterating this through possibly order-m?> edges in H is clearly prohibitive.

Summary 93

Instead for each w, we do a quantum random walk to find (u,v). We take r = m? 3
and define a subset R of the nodes of H to be a hit if it contains a suitable edge (u,v).
Using the Johnson graph J,, - and data consisting of whether (u,v), (u,w), (v,w) are
all edges, all the parameters are the same as for element distinctness, so the time is
O(m?/3). This becomes the checking time for the Grover search, so the overall time
is O(nl/ 2m?2/ 3). We can amplify both the check and the Grover success probability
to be at least 5/6, so as to yield 2/3 on the whole.

Finding a Triangle. Now we call an m-node subset R of V(G) a hit if the induced
subgraph H includes an edge of a triangle in G. The E and D will hence be the same
as for element-distinctness with “m” replacing “r”: E(n) = (n/m)?, D(n) < m. We
may use the previous item to obtain checking cost C(n) = O(n'/2m??). The one
thing that is different is that the setup and update costs are higher. The setup needs
to encode the entire adjacency matrix of H, and when the update swaps in a vertex v/
and swaps out a v, it needs to update the m — 1 adjacencies of v/ while erasing those
of v. Thus we have S(n) = O(m?*) and U(n) = O(m). The formula for the overall
cost becomes:

0(m2)+%(0(m\/a+n'/2m2/3)).

This time, the setup cost drops out of the equation—the balancing is between the
update and checking cost, and is achieved when m3/2 = n!/2m?/3_ that is when
m3/6 = n/2 5o m = n3/5. This results in the overall time

O(nG/S +n2/5n9/10) _ 0(1113/10).

The best known classical algorithm for finding a triangle takes the adjacency ma-
trix A and forms A + A; it hence runs in time O(n®) where the exponent ® of
matrix multiplication is known to be at most 2.372. Hence if the quantum time
were just a little lower, say O(n'!®) instead of O(n'?), then the speedup over the
best known classical time would exceed the generic quadratic improvement from
Grover search—and indeed would exceed the quadratic improvement between gen-
eral quantum and classical random walks. Thus the question of further quantum
improvements may be tied to the possibility of advances in classical matrix multi-
plication. No quantum lower bound higher than linear is known for this problem,
while no lower bound higher than 2 is known for ®.

Summary

The key to understanding a classical random walk in a graph is that it is defined
locally. That is, for every node u, and every neighbor v one can walk to in one step,
define A(u,v) to be the probability of choosing to walk to v. Then A%(u,w) is the
probability of reaching node w in exactly fwo steps given that you started at u, and
this carries over to any power: A (u,v) gives the probability of ending at v in exactly

94 16 Quantum Random Walks

k steps, given that you started at u. Thus random walks in graphs are just linear
algebra.

The nice thing about quantum random walks is that they too are just linear alge-
bra, except the entries are complex numbers whose squared absolute values become
the probabilities. The use of matrix multiplication and summing over paths is the
same, except that what gets summed are possibly-complex amplitudes rather than
probabilities. The difference—maybe not so nice—is that these amplitudes can can-
cel, thus giving zero probability for certain movements from u to w that would be
possible in the classical case. This enables piling higher probabilities on other move-
ments in ways that cannot be directly emulated classically. But again the key is that
the definition is local for each “node” which is just a basis state, and gives you a
matrix.

We have explained quantum coins with a “hidden-variables” mentality, and it is
dangerous to combine that with the idea of “local.” However, this view has not tried
to obscure non-local phenomena such as the way certain superpositions, such as the
two coin states without the phase shift, can render certain far locations unreachable.
We have really tried to emphasize the role of linear algebra, and combinatorial el-
ements such as the enlarged graph G’ and the counting of HH substrings. It may
seem strange to picture that Nature tracks the parity of substring counts, and for-
malisms we haven’t touched such as calculating in the Fourier-transformed space of
the walk branches avoid an exponential amount of work while at least giving good
approximations, but this is evidently the effect of what Nature does.

Quantum walks have yielded improved and optimal algorithms for certain deci-
sion problems. Beyond that, they exemplify the idea that quantum computation is
about creating rich quantum states, one that cannot be readily simulated by classical
means, by which novel solutions can be obtained.

Problems

16.1. Verify the probabilities obtained for the 4-step walk on the graph with nodes
labeled —4 to +4. What happens when this walk is started in the state (1o +1;)/v/2,
that is without the phase shift on the “initial heads” part of the walk?

16.2. Work out the amplitudes and probabilities for the 3-step walk with the J matrix
in place of the Hadamard action on the coin space.

16.3. Can you devise a combinatorial rule for figuring the destination and amplitude
of basic paths under the J matrix, in terms of the binary code of the path, analogous
to the counting of HH substrings for the H matrix?

16.4. Can you use the combinatorial rule for the H matrix to prove that the ampli-
tude of (0,0) for an n-step walk (n even) on the infinite path graph is bounded by
l/ﬂn + €, for suitable € > 0?

16.5. Show by direct calculation that the matrix VR is unitary.

Summary 95

16.6. Work out the analogous decomposition of the matrix V|, using an arbitrary
fixed basis state Xy of the “left” node space. What happens if Xj is not a basis state?

16.7. In the algorithm for element-distinctness, suppose we use recursion to check
whether a set of r nodes has two non-distinct function values and thus constitutes a
“hit.” Do you get the same O(n?/?) running time, or something less?

16.8. Sketch how to implement the element-distinctness algorithm on the Hamming
graphs H, ,, whose vertices are r-tuples from [n], and whose edges connect r-tuples
that differ in one place. Are all of D(n), E(n), S(n), U(n),a nd C(n) asymptotically
the same as before?

16.9. Sketch a quantum search algorithm that given three n x n matrices A, B, C finds
i,j such that Y, AyBy; # C;; if such a pair exists, else outputs “accept.” You may
consider arithmetic operations to be unit time, and need only count steps that query
matrix entries. The goal is cost O(n/3).

16.10. Suppose you can make superposed black-box queries to a binary operation o
on [n] whose values lie in [k]. Sketch a quantum algorithm to find a,b,c € [n] such
that (aob)ocis not equal to ao (boc), if any such “non-associative triple” exists. If
k= 0O(1), what is the running time of the algorithm? Note that the data associated
to a Johnson-graph node (uj,...,u,) can preserve values of o on arguments in [k] as
well as the u;.

Notes

Most of this chapter is based on the survey papers by Kempe [6] and Santha [9],
also with reference to Magniesz et al. [7]. The last two problems also come from
[9], while the problem about element distinctness on the Hamming graphs is based
on [3].

