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Abstract. We extend the quantum polynomial simulation of Dawson et al. [1] to
work for quantum circuits with gates of almost any kind, using low-degree poly-
nomials q(x1, . . . , xn) over the ring of integers modulo k where k is a power of
2. The simulations require computing the values Nq[j] = |{x ∈ Zn

k : q(x) = j}|
for all j, 0 ≤ j ≤ k − 1. For quadratic polynomials and fixed k this is doable in
deterministic polynomial time by results of Cai, Chen, Lipton, and Lu [2, 3]. We
observe that quantum stabilizer circuits involve such polynomials, thus yielding
another proof that they can be simulated in classical polynomial time [4–8]. Our
second main technical results show that the values Nq[j] occurring in the expres-
sions for the acceptance probability of quantum circuits are multiples of large
powers of 2, thus limiting the extent to which probabilities in these circuits can
be “amplified” at least when q is multilinear. These results are a first attempt at a
Chevalley-Warning-Weil type theory (see [9]) for polynomials modulo compos-
ites rather than primes.

1 Introduction

Polynomials modulo composite numbers represent the frontier of what is known in
computational complexity theory, and a step beyond the well worked-out theory of
polynomials over fields. In complexity they correspond to the class ACC0 of languages
represented by constant-depth, polynomial-sized circuits of Boolean and mod-m gates.
That this was only recently separated from the nondeterministic exponential time class
NEXP [10] indicates how difficult they are to study. In mathematics there are strange
behaviors even for univariate polynomials, for instance x “factors” as (4x+3)(3x+4)
over Z6. The presence of zero divisors nullifies regular notions such as degree and ir-
reducibility. It is hard to find much evidence of a general theory of properties of their
solution sets, analogous to the rich theory of varieties in algebraic geometry, because
even when modules are used and polynomials are regarded as being over subrings, the
coefficients and division relations are ultimately based on a field.

Quantum computation gives a new reason for caring about properties of polyno-
mials over the rings Zk for composite k, especially for k a power of 2. We describe a
new rule for associating to a quantum circuit C a polynomial q = qC that quantifies
the phase changes of the quantum state during its manipulation by gates of C. Provided
all phase angles in the gates are integral multiples of 2π/k, making them powers of
a primitive k-th root of unity ω, we can define q over Zk. Then we associate to q the



following partition function Z(q) as in [8, 2], which can be expressed in two different
ways as

Z(q) =
∑

x

ωq(x) =

k−1∑
i=0

ωiNq[i].

Here and below, Nq[i] denotes the number of arguments to the variables x =
(x1, . . . , xn) for which q(x) = i. The first form makes clear that this is an exponential
sum, of the kind considered by Gauss two centuries ago. The second form expresses this
in terms of the cardinalities of the solution sets of q(x)− i for all i, 0 ≤ i ≤ k− 1. The
importance is magnified by a normal form for quantum circuits C in which 1

R |Z(q)|
2

gives the acceptance probability of the circuit, where the normalizing constant R quan-
tifies the amount of quantum nondeterminism (such as given by Hadamard gates) in the
circuit.

The relation to acceptance was observed in the case k = 2 by Dawson et al. [1]
for circuits of Hadamard and Toffoli gates. Although these gates have all-real-number
entries, they are still universal for defining the bounded-error quantum polynomial time
class, BQP. Dawson et al. suggested an extension for k = 8 using mixed-modulus
arithmetic.

Our first main theorem shows how to do this for any k = 2r without mixed arith-
metic, applicable to circuits C of gates whose phases are multiples of 2π/k, where q
may also use some auxiliary variables over Zk. Then we turn to the problem of the so-
lution sets of q(x) − i: what are their cardinalities Nq[i], and what other properties do
they have?

We obtain results for Nq[i] in case q(x) is quadratic, and either over Z4 or mul-
tilinear over Z2r . Such polynomials (specifically the former kind) arise as qC for so-
called stabilizer circuits C. It has long been known that these circuits, which include
Hadamard but not Toffoli gates, can be simulated in classical deterministic polyno-
mial time [4]. Successive modifications to the proof [5–8] have revealed connections to
graph theory and Gauss sums, as well as enhancing the pretty theory already associated
to stabilizer groups and Clifford algebra. Our work, combined with the polynomial-time
algorithm for computing Z(q) when q is quadratic by Cai et al. [2], furnishes yet an-
other proof, but we argue greater significance in the reverse direction: this may enable
the algebraic theory to inform issues about polynomials modulo 2r.

The results for Nq[i] in our other main theorems show that they are multiples of 2m

where m = Θ(nr). Thus the acceptance probability must be a multiple of 22m

R . This
limits how close to 1 it can be. We speculate that these observations can be extended
to show a tradeoff between “amplification” of the success probability and the amount
of quantum nondeterminism—such as the number of Hadamard gates—needed by the
circuit.

When Toffoli gates are included, the degree of q becomes 3. (In the analogous set-
ting of [8], the polynomial defined there goes from linear to quadratic.) Unfortunately
our proof technique for degree 2 does not readily extend to degree 3 or higher, but we
conclude with some conjectures for general degrees d. The general connection we es-
tablish in this paper may thereby explain some of the mathematical difficulty posed in
studying solutions of cubic and higher degree polynomials modulo composites, supple-
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mented by the results of [3] showing that computing Z(q) becomes generally NP-hard,
in fact #P-complete. Our side of the difficulty stems from Toffoli and Hadamard gates
sufficing to build small quantum circuits for all problems in BQP, in particular the
problem of factoring [11] which is commonly believed to lie outside of classical (ran-
domized) polynomial time.

2 Quantum Circuit Simulation and Polynomials

Every quantum gate g has some bounded number m of incoming and outgoing qubit
wires, and is specifiable by a 2m × 2m unitary matrix Ug . The gate is balanced if all
non-zero entries in Ug have the same magnitude rg . This balance property carries over
to arbitrary tensor products of Ug with identity matrices representing the (non-)action
on qubit wires that re not involved in the gate. A quantum circuit is balanced if all of its
gates are balanced. This is not a great restriction—in fact, it is hard to find examples of
useful quantum circuits in the literature that aren’t balanced, and many different kinds
of universal quantum circuits are balanced.

The notion of balance suffices to well-define the normalizing constant R = RC : it
is the product of rg over all gates g in C. Also define k = kC to be the least integer
such that all angles θ in entries reiθ of gates in C are integer multiples of 2π/k. For
example if C has only Hadamard, CNOT, and Toffoli gates then kC = 2; if it adds
the so-called T gate which has an entry eπi/4, then kC = 8. As is usual in talking
about quantum circuits, we may suppose that the “input string” a is already packaged
into an initial set of gates of C, and a final set of gates incorporates a string b that
describes the final measurement process. Via the normal-form theorem proved in [1]
(but previously folklore), the triple product aUCb yields a complex scalar whose norm-
squared is the acceptance probability ofC. Our theorem says that this scalar is described
by the partition function of the polynomial q constructed in its proof.

The theorem itself involves counting 0-1 assignments, not all assignments in Znk .
Accordingly we define N ′q[`] to be the number of Boolean arguments x for which
q(x) = `. Our application to stabilizer circuits is an example where one can later extend
the counting to all of Znk .

Theorem 1. There is an efficient uniform procedure that transforms any balanced
quantum circuit C with s gates of minimum phase 2π/k where k = 2r into a poly-
nomial q over Zk such that, with R and a, b as above,

aUCb =
1

R

k−1∑
`=0

ω`N ′q[`], (1)

and both the size of q and the time needed to construct q are O(22mms) where m is the
maximum arity of a gate in C.

Proof. The polynomial qC is a simple sum of polynomials qg for every gate g in C.
Each qg has 2m basic variables labeled y = y1, . . . , ym and z = z1, . . . , zm, plus some
number of auxiliary variablesw. Every possible 0-1 assignment i to y and j to z indexes
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a unique entry of Ug corresponding to (i, j). We can define an indicator term Ti,j(y, z)
that is 1 when y = i and z = j and 0 otherwise.

If the entry Ug(i, j) is non-zero, then after division by the balanced value rg it
has the form ωe for some e, whereupon we give qg the additive term eTi,j . If it is
zero, however, we allocate fresh variables w1, . . . , wr and include (w1 + 2w2 + 4w3 +
· · · 2r−1wr)Ti,j in the sum. In physical terms, the assignment y = i, z = j violates the
operation of the gate and is impossible. In our formula, its effect is to leave an additive
term of wb’s where the variables wb appear nowhere else. Since this term can take
any value in Zk, all Boolean domain elements involving such an impossible assignment
contribute equally to eachNq[`] value, and hence cancel each other out in the expression
for aUCb, i.e. in Z(q).

The use of these extraw variables is the innovation that avoids the ad-hoc suggestion
of mixed-modulus arithmetic in [1]. The remainder of the proof then follows by the
technique used in that paper for k = 2 with Hadamard and Toffoli gates only. �

In many cases we can avoid introducing w-variables by substituting some or all z-
variables for a gate by expressions in the y-variables. In particular, for a deterministic
gate such as CNOT or Toffoli, we can substitute all of them and avoid introducing any
w’s. Note also that the Ti,j terms are expressible as products of yb or 1 − yb and zb or
1−zb according to the values of the individual bits b of i and j. The different products of
the former index the rows of Ug , and different products of the latter index the columns.
For a general single-qubit gate g we have the indexing scheme (1− z) z

(1− y) a11 a12
y a21 a22,


Writing a′ when a = ωa

′
, and regarding a′ = w when the matrix entry is 0, the

polynomial qg is then given by

qg = a′11(1− y)(1− z) + a′12(1− y)z + a′21y(1− z) + a′22yz.

The NOT gate, also called X , has a11 = a22 = 0 and a12 = a21 = 1, so it gives

qg = (1− y)(1− z)w + (1− y)z · 0 + y(1− z) · 0 + yzw = w(2yz − y − z + 1).

Now when z = y = 0 or z = y = 1 the w is left alone as an additive term. Instead, we
can substitute z = 1−y, and this dispenses with thew-variables leaving just q′g = 0. We
can always do substitution for any deterministic gate, even one with imaginary entries
such as the Phase Gate:

S =

[
1 0
0 i

]
; qg = w(y + z − 2yz) +

k

4
yz; q′g =

k

4
y2.

For Hadamard gates we pull the balance factor
√
2 outside, and note that −1 = ωk/2.

H =

[
1 1
1 −1

]
; qg =

k

2
yz.

Here there is no substitution, so we have added a variable, and there are no constraints
on assignments either.
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Multi-Qubit Gates

A 2-qubit gate with inputs y1, y2 has a 4×4 matrix with rows indexed (1−y1)(1−y2),
(1−y1)y2, y1(1−y2), y1y2, and columns similarly for the outputs z1, z2. For example:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
The q-polynomial for CNOT has twelve terms multiplied byw’s but nothing else. These
terms are zeroed out by the substitution z1 = y1, z2 = y1 + y2− 2y1y2, which conveys
this deterministic action having no effect on phase.

For CZ the bottom-right−1 entry contributes k2y1y2z1z2 to q. The substitution z1 =

y1, z2 = y2 is applicable, and leaves k
2y

2
1y

2
2 , which is equivalent to k

2y1y2 for 0-1
assignments. It also has a similar w-multiplied term as for CNOT, which goes away for
q′.

The Toffoli gate is similar for three inputs/outputs and an 8 × 8 matrix. The main
difference is that the substitution for the third qubit is

z3 = y1y2 + y3 − 2y1y2y3,

which is a cubic polynomial. Of particular import, there is no linear or quadratic sub-
stitution that has the same parity. Thus these gates, which are needed for efficient uni-
versality to define BQP, introduce cubic terms into the partition polynomials, making
the additive ones over Zk cubic overall. (Compare also the notation scheme of [8], in
which this case comes out quadratic.)

Simulations

A stabilizer circuit can be characterized by having only Hadamard, CZ, and S-gates,
giving k = 4.

Theorem 2. There is an efficient translation of a stabilizer circuit C into a quadratic
polynomial q over Z4 such that with a, b as above and R′ = 2nR,

aUCb =
1

R′
Z(q),

and so that q is invariant under replacing any argument y by y + 2 modulo 4.

The proof is by inspection, since q is composed of terms y2 and 2yz which have
the invariance property. This enables a correspondence between Boolean arguments
and those over Zn4 , whose double-counting is absorbed by going from R to R′. The
following known theorem then provides another proof that stabilizer circuits can be
simulated in classical polynomial time:

Theorem 3 ([2, 3]). There is a poly(n, r)-time algorithm to compute Z(q) given any
quadratic polynomial q over Z2r .
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The running times appear to have the same order as in earlier algorithms for stabi-
lizer circuits [5–7], skirting the issue of repeated measurements which most concerns
these papers.

The main issue going forward is, what further properties are possessed by the sets of
solutions to q(x) = j for the different values of j? The cardinality of these sets affects
the granularity of the sums of powers of ω, and hence the set of possible amplitudes
of the expression for the acceptance probability. It would also be nice to learn other
structural properties of the respective solution sets, but it is already enough of an issue
to begin with their cardinalities.

3 Solution Set Cardinalities

The notation for this part of the paper switches to using w for the modulus, k for a value
modulo w, and P for polynomials. We write NP [k | some constraints] to denote the
number of assignments to x that fulfill the constraints and for which still P (x) ≡ k mod
w. Also Tk denotes a generic integer depending on k, and implicitly also depending on
P and w.

Theorem 4. For any multivariate polynomial P (x) of n variables over Z4 of degree
up to 2 without square terms, and any k ∈ {0, 1, 2, 3}, it holds that NP [k] = Tk2

n−1.
Furthermore, NP [k] + NP [k + 2] is divisible by 2n.

Proof. The proof is by induction on number of variables. It can be easily checked to be
true for n = 1 and n = 2 through exhaustive iteration.

Assuming the theorem holds for all polynomials over at most n variables, we would
like to show that it holds for any polynomial of the form

Qn+1(x, z) = Pn(x) + Ln(x)z,

where Qn+1 is over n+ 1 variables and has degree up to 2, Pn is over n variables and
also has degree up to 2, and Ln is an affine linear form over n variables. Then:

NQ[0 | z = 0] = NP [0]

NQ[0 | z = 1] = NP [0 | L(x) = 0] +NP [3 | L(x) = 1] +NP [2 | L(x) = 2] +NP [1 | L(x) = 3]

NQ[0 | z = 2] = NP [0 | L(x) = 0] +NP [2 | L(x) = 1] +NP [0 | L(x) = 2] +NP [2 | L(x) = 3]

NQ[0 | z = 3] = NP [0 | L(x) = 0] +NP [1 | L(x) = 1] +NP [2 | L(x) = 2] +NP [3 | L(x) = 3].

Therefore:

NQ[0] = 4NP [0 | L(x) = 0] + 2(NP [0 | L(x) = 2] +NP [2 | L(x) = 2])

+ NP [0 | L(x) = 1] +NP [1 | L(x) = 1]) +NP [2 | L(x) = 1] +NP [3 | L(x) = 1])

+ NP [0 | L(x) = 3] +NP [1 | L(x) = 3]) +NP [2 | L(x) = 3] +NP [3 | L(x) = 3])

Let us note that for any k and `, NP [k | L(x) = `] takes on one of three forms.
Either it equals NG[k] for a certain polynomial G over n − 1 variables, the sum of
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NGi
[k] for some such polynomials over n − 1 variables, or is 0 (note that because L

is affine-linear, we can always solve it for one variable and replace that variable in P ).
In any case we can always say that NP [k | L(x) = `] = t2n−2 for some t. Using the
induction hypothesis we write:

NQ[0] = 4t02
n−2 + 2t22

n−1 + t14
n−1 + t34

n−1 = T02
n,

noting NP [0 | L(x) = 2] +NP [2 | L(x) = 2] = t22
n−1. Analogously as for NQ[0] we

obtain:

NQ[1] = 4NP [1 | L(x) = 0] + 2(NP [1 | L(x) = 2] +NP [3 | L(x) = 2])

+ NP [0 | L(x) = 1] +NP [1 | L(x) = 1]) +NP [2 | L(x) = 1] +NP [3 | L(x) = 1])

+ NP [0 | L(x) = 3] +NP [1 | L(x) = 3]) +NP [2 | L(x) = 3] +NP [3 | L(x) = 3])

NQ[2] = 4NP [2 | L(x) = 0] + 2(NP [0 | L(x) = 2] +NP [2 | L(x) = 2])

+ NP [0 | L(x) = 1] +NP [1 | L(x) = 1]) +NP [2 | L(x) = 1] +NP [3 | L(x) = 1])

+ NP [0 | L(x) = 3] +NP [1 | L(x) = 3]) +NP [2 | L(x) = 3] +NP [3 | L(x) = 3])

NQ[3] = 4NP [3 | L(x) = 0] + 2(NP [1 | L(x) = 2] +NP [3 | L(x) = 2])

+ NP [0 | L(x) = 1] +NP [1 | L(x) = 1]) +NP [2 | L(x) = 1] +NP [3 | L(x) = 1])

+ NP [0 | L(x) = 3] +NP [1 | L(x) = 3]) +NP [2 | L(x) = 3] +NP [3 | L(x) = 3])

Note that for any NQ[k], assignments for ` from NP [` | . . .] are just shifted by k from
those for NQ[0]. It is easy to observe that for any k: NQ[k] +NQ[k + 2] = t2n+1 for
some t. �

Theorem 5. For any multivariate polynomial P (x) of n ≥ 2 variables over Z2r of
degree up to 2 without square terms, and any integer k, there is an integer Tk such that
NP [k] = Tk2

d rn2 e−1. Furthermore,

2q−1∑
i=0

NP [k + 2r−qi] = Tk,q2
d rn2 e+q−1

for a certain integer Tk,q .

Proof. The proof is by induction on the number of variables. The base cases are n = 2
and n = 3; in this extended abstract we omit their lengthy consideration, and present the
general induction step as our theorem. Assuming the theorem is true for all polynomials
over n ≥ 2 variables, we would like to show that it holds for any

Qn+1(x, z) = Pn(x) + Ln(x)z.
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where Qn+1 is over n+ 1 variables and has degree up to 2, Pn is over n variables and
also has degree up to 2, while Ln is an affine linear form over n variables. Let us notice
that:

NQ[k] =

2r−1∑
`=0

2r−1∑
z=0

NP [k − `z | L(x) = `] =

2r−1∑
`=0

2r−1∑
z=0

NP [k + `z | L(x) = `].

If we divide this sum into components with identical value `, we will see that each of
them has the form

2f
2r−f−1∑
j=0

NP [k + 2f j|L(x) = `],

where for any given `, f = maxm{m ≤ r : 2m | `}.
Let us note that for any k, `: NP [k | L(x) = `] is equal either to N [k] for some

polynomial over n− 1 variables, the sum of N [k]-s over some polynomials over n− 1
variables, or to 0 (again because L is affine-linear, we can solve it for one variable and
replace that variable in P ). Using the induction hypothesis for n− 1 variables, we can
write now:

2f
2r−f−1∑
j=0

NP [k + 2f j | L(x) = `] = 2fTk,f2
d r(n−1)

2 e+r−f−1 = Tk,f2
d r(n+1)

2 e−1.

Because all of the components of the sum are divisible by 2d
r(n+1)

2 e−1, therefore the
whole sum is divisible by this value too. Finally, let us notice that

2q−1∑
i=0

NQ[k + 2r−qi] =

2q−1∑
i=0

2r−1∑
`=0

2r−1∑
z=0

NP [k + 2r−qi+ `z | L(x) = `]

=

2r−1∑
`=0

2q−1∑
i=0

2r−1∑
z=0

NP [k + 2r−qi+ `z | L(x) = `].

We can divide this sum, as we did earlier (defining f in the same way), into compo-
nents with identical value of `, and therefore obtain components of the form:

2q−1∑
i=0

2f
2r−f−1∑
j=0

NP [k + 2r−qi+ 2f j | L(x) = `]

= 2f2min(q,r−f)
2max(q,r−f)−1∑

i=0

NP [k + 2r−max(q,r−f)i | L(x) = `]

= 2f+min(q,r−f)Tk,f2
d r(n−1)

2 e+max(q,r−f)−1 = Tk,f2
d r(n+1)

2 e+q−1.�
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4 Conclusions and Further Work

We have first extended the method of [1] to prove a general algebraic simulation of
quantum circuits, one that directly connects the minimum phase angle of the quantum
gates to the modulus of polynomials. We observed that for stabilizer circuits, the result-
ing n-variable polynomials q(x) over Z4 are quadratic and multilinear. We then proved
that the number of solutions to q(x) = i is always a multiple of 2n−1. We extended this
over Z2r for r > 2, revealing an odd-even effect when r is odd.

On the basis of computational evidence and partial proofs, we conjecture that our
results will extend in the following ways. The first conjecture desires to remove the
multilinear restriction on the quadratic polynomials. The ones for higher degree d hold
promise of relevance to general quantum circuits. In the following, Tk and Tk,q denote
integers that depend on the subscripted quantities, and on P and r.

Conjecture 1 For any multivariate polynomial P of n ≥ 2 variables over Z2r of de-
gree up to 2, and any integer k, it holds that NP [k] = Tk2

d rn2 e−1. Furthermore,

2q−1∑
i=0

NP [(k + 2r−qi)] = Tk,q2
d rn2 e+q−1.

Conjecture 2 For any multivariate polynomial P of n ≥ 2 variables over Z2r , of
degree up to d, and any integer k, it holds that NP [k] = Tkp

d rnd e−1.

Conjecture 3 For any multivariate polynomial P of n ≥ 2 variables over Zpr , where
p is prime, of degree up to 2, and any integer k, it holds that NP [k] = Tkp

d rn2 e−1.

Conjecture 4 For any multivariate polynomial P of n ≥ 2 variables, of degree up to
2, over Zpr11 p

r2
2 ...prmm

, where p1, p2, . . . , pm are prime, and any integer k, it holds that

NP [k] = Tk
∏
i

p
(d rin2 e−1
i .

Conjecture 5 For any multivariate polynomial P of n ≥ 2 variables, of degree up to
d, over Zpr11 p

r2
2 ...prmm

, where p1, p2, . . . , pm are prime, and any integer k, it holds that

NP [k] = Tk
∏
i

p
(d rind e−1
i .

The closest basis for comparison that we know are the Chevalley-Warning theorems
(see [9]) over Zp for p prime, or over any finite field of characteristic p. They say that
provided the number n of variables is greater than the degree of the polynomial q, the
number of solutions to q(x) = 0 is a multiple of p. (The same goes for simultaneous
equations qj(x) = 0 provided n exceeds the degree of the product of the qj .) In our
case the modulus is 2r in place of p. However, there is also the stronger element that
our results and conjectures have n as well as r in the exponent of the multiplicand.

Despite the pathology of zero-divisors, we believe that the solution sets of polyno-
mials modulo composites should have a natural, attractive, and unifying theory. Such
a theory seems relevant to the prospects for progress in complexity lower bounds. We
hope that the work in this paper promotes interest and strategies in building this theory.
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