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Abstract

We extend the quantum polynomial simulation of Dawson et al. [1] to work for quantum circuits with
gates of almost any kind, using low-degree polynomials q(x1, . . . , xn) over the ring of integers modulo
k where k is a power of 2. The simulations require computing the values Nq[j] = |{x ∈ Zn

k : q(x) = j}|
for all j, 0 ≤ j ≤ k−1. For quadratic polynomials and fixed k this is doable in deterministic polynomial
time by results of Cai, Chen, Lipton, and Lu [2, 3]. We observe that quantum stabilizer circuits involve
such polynomials, thus yielding another proof that they can be simulated in classical polynomial time
[4, 5, 6, 7, 8]. Our second main technical result shows that the values Nq[j] occurring in the expressions
for the acceptance probability of quantum circuits are multiples of large powers of the size of the ring,
thus limiting the extent to which probabilities in these circuits can be “amplified”. These results are
a first attempt at a Chevalley-Warning-Weil type theory (see [9]) for polynomials modulo composites
rather than primes.

1 Introduction

Polynomials modulo composite numbers represent the frontier of what is known in computational com-
plexity theory, and a step beyond the well worked-out theory of polynomials over fields. In complexity
they correspond to the class ACC0 of languages represented by constant-depth, polynomial-sized circuits
of Boolean and mod-m gates. That this was only recently separated from the nondeterministic exponential
time class NEXP [10] indicates how difficult they are to study. In mathematics there are strange behaviors
even for univariate polynomials, for instance x “factors” as (4x + 3)(3x + 4) over Z6. The presence of
zero divisors nullifies regular notions such as degree and irreducibility. It is hard to find much evidence of
a general theory of properties of their solution sets, analogous to the rich theory of varieties in algebraic
geometry, because even when modules are used and polynomials are regarded as being over subrings, the
coefficients and division relations are ultimately based on a field.

Quantum computation gives a new reason for caring about properties of polynomials over the rings Zk
for composite k, especially for k a power of 2. We describe a new rule for associating to a quantum circuit
C a polynomial q = qC that quantifies the phase changes of the quantum state during its manipulation by
gates of C. Provided all phase angles in the gates are integral multiples of 2π/k, making them powers of
a primitive k-th root of unity ω, we can define q over Zk. Then we associate to q the following partition
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function Z(q) as in [8, 2], which can be expressed in two different ways as

Z(q) =
∑

x
ωq(x) =

k−1∑
i=0

ωiNq[i].

Here and below, Nq[i] denotes the number of arguments to the variables x = (x1, . . . , xn) for which q(x) =
i. The first form makes clear that this is an exponential sum, of the kind considered by Gauss two centuries
ago. The second form expresses this in terms of the cardinalities of the solution sets of q(x) − i for all i,
0 ≤ i ≤ k − 1. The importance is magnified by a normal form for quantum circuits C in which 1

R |Z(q)|2
gives the acceptance probability of the circuit, where the normalizing constant R quantifies the amount of
quantum nondeterminism (such as given by Hadamard gates) in the circuit.

The relation to acceptance was observed in the case k = 2 by Dawson et al. [1] for circuits of Hadamard
and Toffoli gates. Although these gates have all-real-number entries, they are still universal for defining the
bounded-error quantum polynomial time class, BQP. Dawson et al. suggested an extension for k = 8 using
mixed-modulus arithmetic.

Our first main theorem shows how to do this for any k = 2r without mixed arithmetic, applicable to
circuits C of gates whose phases are multiples of 2π/k, where q may also use some auxiliary variables over
Zk. Then we turn to the problem of the solution sets of q(x)− i: what are their cardinalities Nq[i], and what
other properties do they have?

We obtain results for Nq[i] in case q(x) is quadratic, and either over Z4 or multilinear over Z2r . Such
polynomials (specifically the former kind) arise as qC for so-called stabilizer circuits C. It has long been
known that these circuits, which include Hadamard but not Toffoli gates, can be simulated in classical deter-
ministic polynomial time [4]. Successive modifications to the proof [5, 6, 7, 8] have revealed connections to
graph theory and Gauss sums, as well as enhancing the pretty theory already associated to stabilizer groups
and Clifford algebra. Our work, combined with the polynomial-time algorithm for computing Z(q) when
q is quadratic by Cai et al. [2], furnishes yet another proof, but we argue greater significance in the reverse
direction: this may enable the algebraic theory to inform issues about polynomials modulo 2r.

The results for Nq[i] in our other main theorems show that they are multiples of 2m where m = Θ(nr).
Thus the acceptance probability must be a multiple of 22m

R . This limits how close to 1 it can be. We
speculate that these observations can be extended to show a tradeoff between “amplification” of the success
probability and the amount of quantum nondeterminism—such as the number of Hadamard gates—needed
by the circuit.

When Toffoli gates are included, the degree of q becomes 3. (In the analogous setting of [8], the poly-
nomial defined there goes from linear to quadratic.) Unfortunately our proof technique for degree 2 does
not readily extend to degree 3 or higher, but we conclude with some conjectures for general degrees d. The
general connection we establish in this paper may thereby explain some of the mathematical difficulty posed
in studying solutions of cubic and higher degree polynomials modulo composites, supplemented by the re-
sults of [3] showing that computing Z(q) becomes generally NP-hard, in fact #P-complete. Our side of the
difficulty stems from Toffoli and Hadamard gates sufficing to build small quantum circuits for all problems
in BQP, in particular the problem of factoring [11] which is commonly believed to lie outside of classical
(randomized) polynomial time.

2 Quantum Circuit Simulation and Polynomials

Every quantum gate g has some bounded numberm of incoming and outgoing qubit wires, and is specifiable
by a 2m×2m unitary matrix Ug. The gate is balanced if all non-zero entries in Ug have the same magnitude
rg. This balance property carries over to arbitrary tensor products of Ug with identity matrices representing
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the (non-)action on qubit wires that re not involved in the gate. A quantum circuit is balanced if all of its
gates are balanced. This is not a great restriction—in fact, it is hard to find examples of useful quantum
circuits in the literature that aren’t balanced, and many different kinds of universal quantum circuits are
balanced.

The notion of balance suffices to well-define the normalizing constant R = RC : it is the product of rg
over all gates g in C. Also define k = kC to be the least integer such that all angles θ in entries reiθ of
gates in C are integer multiples of 2π/k. For example if C has only Hadamard, CNOT, and Toffoli gates
then kC = 2; if it adds the so-called T gate which has an entry eπi/4, then kC = 8. As is usual in talking
about quantum circuits, we may suppose that the “input string” a is already packaged into an initial set of
gates of C, and a final set of gates incorporates a string b that describes the final measurement process. Via
the normal-form theorem proved in [1] (but previously folklore), the triple product aUCb yields a complex
scalar whose norm-squared is the acceptance probability of C. Our theorem says that this scalar is described
by the partition function of the polynomial q constructed in its proof.

The theorem itself involves counting 0-1 assignments, not all assignments in Znk . Accordingly we define
N ′q[`] to be the number of Boolean arguments x for which q(x) = `. Our application to stabilizer circuits is
an example where one can later extend the counting to all of Znk .

Theorem 1. There is an efficient uniform procedure that transforms any balanced quantum circuit C with
s gates of minimum phase 2π/k where k = 2r into a polynomial q over Zk such that, with R and a, b as
above,

aUCb =
1

R

k−1∑
`=0

ω`N ′q[`], (1)

and both the size of q and the time needed to construct q are O(22mms) where m is the maximum arity of a
gate in C.

Proof. The polynomial qC is a simple sum of polynomials qg for every gate g in C. Each qg has 2m basic
variables labeled y = y1, . . . , ym and z = z1, . . . , zm, plus some number of auxiliary variables w. Every
possible 0-1 assignment i to y and j to z indexes a unique entry of Ug corresponding to (i, j). We can define
an indicator term Ti,j(y, z) that is 1 when y = i and z = j and 0 otherwise.

If the entry Ug(i, j) is non-zero, then after division by the balanced value rg it has the form ωe for
some e, whereupon we give qg the additive term eTi,j . If it is zero, however, we allocate fresh variables
w1, . . . , wr and include (w1 + 2w2 + 4w3 + · · · 2r−1wr)Ti,j in the sum. In physical terms, the assignment
y = i, z = j violates the operation of the gate and is impossible. In our formula, its effect is to leave an
additive term of wb’s where the variables wb appear nowhere else. Since this term can take any value in
Zk, all Boolean domain elements involving such an impossible assignment contribute equally to each Nq[`]
value, and hence cancel each other out in the expression for aUCb, i.e. in Z(q).

The use of these extra w variables is the innovation that avoids the ad-hoc suggestion of mixed-modulus
arithmetic in [1]. The remainder of the proof then follows by the technique used in that paper for k = 2 with
Hadamard and Toffoli gates only. �

In many cases we can avoid introducing w-variables by substituting some or all z-variables for a gate
by expressions in the y-variables. In particular, for a deterministic gate such as CNOT or Toffoli, we can
substitute all of them and avoid introducing any w’s. Note also that the Ti,j terms are expressible as products
of yb or 1 − yb and zb or 1 − zb according to the values of the individual bits b of i and j. The different
products of the former index the rows of Ug, and different products of the latter index the columns. For a
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general single-qubit gate g we have the indexing scheme (1− z) z

(1− y) a11 a12
y a21 a22,


Writing a′ when a = ωa

′
, and regarding a′ = w when the matrix entry is 0, the polynomial qg is then given

by
qg = a′11(1− y)(1− z) + a′12(1− y)z + a′21y(1− z) + a′22yz.

The NOT gate, also called X , has a11 = a22 = 0 and a12 = a21 = 1, so it gives

qg = (1− y)(1− z)w + (1− y)z · 0 + y(1− z) · 0 + yzw = w(2yz − y − z + 1).

Now when z = y = 0 or z = y = 1 the w is left alone as an additive term. Instead, we can substitute
z = 1 − y, and this dispenses with the w-variables leaving just q′g = 0. We can always do substitution for
any deterministic gate, even one with imaginary entries such as the Phase Gate:

S =

[
1 0
0 i

]
; qg = w(y + z − 2yz) +

k

4
yz; q′g =

k

4
y2.

For Hadamard gates we pull the balance factor
√

2 outside, and note that −1 = ωk/2.

H =

[
1 1
1 −1

]
; qg =

k

2
yz.

Here there is no substitution, so we have added a variable, and there are no constraints on assignments either.

Multi-Qubit Gates

A 2-qubit gate with inputs y1, y2 has a 4×4 matrix with rows indexed (1−y1)(1−y2), (1−y1)y2, y1(1−y2),
y1y2, and columns similarly for the outputs z1, z2. For example:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
The q-polynomial for CNOT has twelve terms multiplied by w’s but nothing else. These terms are zeroed
out by the substitution z1 = y1, z2 = y1 + y2 − 2y1y2, which conveys this deterministic action having no
effect on phase.

For CZ the bottom-right −1 entry contributes k
2y1y2z1z2 to q. The substitution z1 = y1, z2 = y2

is applicable, and leaves k
2y

2
1y

2
2 , which is equivalent to k

2y1y2 for 0-1 assignments. It also has a similar
w-multiplied term as for CNOT, which goes away for q′.

The Toffoli gate is similar for three inputs/outputs and an 8 × 8 matrix. The main difference is that the
substitution for the third qubit is

z3 = y1y2 + y3 − 2y1y2y3,

which is a cubic polynomial. Of particular import, there is no linear or quadratic substitution that has the
same parity. Thus these gates, which are needed for efficient universality to define BQP, introduce cubic
terms into the partition polynomials, making the additive ones over Zk cubic overall. (Compare also the
notation scheme of [8], in which this case comes out quadratic.)
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Simulations

A stabilizer circuit can be characterized by having only Hadamard, CZ, and S-gates, giving k = 4.

Theorem 2. There is an efficient translation of a stabilizer circuit C into a quadratic polynomial q over Z4

such that with a, b as above and R′ = 2nR,

aUCb =
1

R′
Z(q),

and so that q is invariant under replacing any argument y by y + 2 modulo 4.

The proof is by inspection, since q is composed of terms y2 and 2yz which have the invariance property.
This enables a correspondence between Boolean arguments and those over Zn4 , whose double-counting is
absorbed by going from R to R′. The following known theorem then provides another proof that stabilizer
circuits can be simulated in classical polynomial time:

Theorem 3 ([2, 3]). There is a poly(n, r)-time algorithm to compute Z(q) given any quadratic polynomial
q over Z2r .

The running times appear to have the same order as in earlier algorithms for stabilizer circuits [5, 6, 7],
skirting the issue of repeated measurements which most concerns these papers.

The main issue going forward is, what further properties are possessed by the sets of solutions to q(x) =
j for the different values of j? The cardinality of these sets affects the granularity of the sums of powers of
ω, and hence the set of possible amplitudes of the expression for the acceptance probability. It would also
be nice to learn other structural properties of the respective solution sets, but it is already enough of an issue
to begin with their cardinalities.

3 Solution Set Cardinalities

In this chapter we show that cardinalities of solutions of multivariate polynomials are divisible by exponen-
tially large divisors in the number of those polynomials variables. Such a result over fields is already known
in mathematics, and it comes from work on Newton Polytopes (Hui June Zhu, personal communication,
May 2013). In Theorem 4 we show it for rings over Zm where m is not squarefree (i.e. there is a prime
p which square divides m). This is not an optimal result, we discuss this in more depth when presenting
future work.

Let us start with a simple lemma which we suspect to be folklore yet our search and queries have
not turned up a reference.

Lemma 1. Let P (x) = c0 +
∑n

i=1 cixi be a linear polynomial of n variables over Zm. Let g =
GCD(m, c1, c2, . . . , cn). Then

NP [0] =

{
gmn−1 if g|c0
0 otherwise

Proof. When g - c0, then because ∀x g|
∑n

i=1 cixi, clearly P has no solutions.
Let us assume now that g|c0. The proof is by induction on n, and we will maintain a somewhat stronger

induction hypothesis:
∀kNP [kg] = gmn−1.
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For the base case of n = 1 we want to prove that for P (x) = c0+c1x1 over Zm, it holds that ∀kNP [kg] = g,
where g = GCD(m, c1). For certain i, c0 = ig. Let us fix k and consider the cyclic group

{kg − ig, kg − (i+ 1)g, kg − (i+ 2)g, . . . , kg − (i− 1)g} = {0, g, 2g, . . . , (m− 1)g}

under addition mod m. For any element of this m/g-size group there are exactly g assignments to x1 that
evaluate c1x1 to that element. Only when c1x1 = kg − ig do we obtain P (x1) = kg, and as we said there
are precisely g such assignments to x1.

Let us now look at the general induction step, still when g|c0. For P (x) = c0 +
∑n

i=1 cixi over Zm we
have g = GCD(m, c1, c2, . . . , cn), and let us introduce g′ = GCD(m, c1, c2, . . . , cn−1). From the induction
hypothesis we have that for a polynomial of the form Q(x) =

∑n−1
i=1 cixi over n− 1 variables, it holds that:

∀tNQ[tg′] = g′mn−2.

Now consider single-variable polynomials L(xn) = c0 + cnxn. Whenever L(xn) = tg′ + kg there are
exactly g′mn−2 assignments to {x1, x2, . . . , xn − 1} that make the whole P (x) = kg. We need the number
of assignments to xn making L(xn) = tg′ + kg for any t. By use of the base induction step we obtain that

L(xn) ≡ kg (mod g′)

holds for exactly g assignments to xn from Zg′ . If we pick assignments to xn from Zm instead, then there
are gmg′ of them (remember g′|m). Having gmg′ assignments to xn making L(xn) = tg′ + kg for any t,
and for each of them g′mn−1 assignments to {x1, x2, . . . , xn − 1} making whole P (x) = kg, we obtain
gmg′ g

′mn−2 = gmn−1 assignments to x as a whole.

Theorem 4. Let P (x) be a multivariate polynomial of n variables over Zm where m = pr11 p
r2
2 . . . prkk and

all p1, p2, . . . , pk are different primes. Then for any g ∈ Zm there is an integer Tg such that:

NP [g] = Tg
∏
i:2|ri

p
ri
2
(n−1)

i

∏
i:2-ri

p
ri−1

2
(n−1)

i

Note that when m is squarefree, every ri equals 1, and the theorem gives trivial divisibility by 1. Thus
our present result gives exponential gaps only when there is at least one ri ≥ 2. We argue in the final section
that exponential gaps should hold in the squarefree case as well, that is for all m, but it seems that dieas
beyond hensel lifting may be needed. The present proof uses the basic idea of standard proofs of Hensel’s
Lemma.

Proof. Let us take a function f : Zn → Z that can be represented as a polynomial. Let m = pr11 p
r2
2 . . . prkk .

For any h ∈ Znm such that
f(h) ≡ 0 (mod m),

we would like to find all the numbers of the form h +mt (t ∈ Znd , d = pq11 p
q2
2 . . . pqkk , ∀i qi ≤ ri) such that

f(h +mt) ≡ 0 (mod pr1+q21 pr2+q22 . . . prk+qkk ).

Note that all such numbers for all h constitute all solutions of the f in this raised moduli. Using Taylor’s
Theorem we obtain:

f(h +mt) ≡ f(h) +

[
∂

∂h1
f(h),

∂

∂h2
f(h), . . . ,

∂

∂hn
f(h)

]
t1m
t2m

...
tnm

+A(m2)
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≡ f(h) +

[
∂

∂h1
f(h),

∂

∂h2
f(h), . . . ,

∂

∂hn
f(h)

]
t1m
t2m

...
tnm

 (mod md)

(where A(m2) is a remainder that is divisible by m2 and vanishes since d|m). Defining z = f(h)
m we get:

zm+

[
∂

∂h1
f(h),

∂

∂h2
f(h), . . . ,

∂

∂hn
f(h)

]
t1m
t2m

...
tnm

 ≡ 0 (mod md)

and

z +

n∑
i=1

∂

∂hi
f(h)ti ≡ 0 (mod d)

Let us define Ph via:

Ph(t) = z +
n∑
i=1

∂

∂hi
f(h)ti ≡ 0 (mod d).

Using the Lemma 1, we know that depending on h the Ph has 0 or adn−1 (where a|d) solutions (mod d).
Let us enumerate all numbers dividing d as a1, a2, . . . , ab, where b =

∏
i≤k

(qi + 1). Let

M = #{h : NPh [0] = 0} and ∀i≤b Ni = #{h : NPh [0] = aid
n−1}

(those equalities are exact, not in any modulus). Let Qm be the number of solutions of f (mod m), i.e.
#{h : f(h) ≡ 0 (mod m)}. Then

Qm = M +
b∑
i=1

Ni.

Denoting by Qmd the number of solutions of f (mod md), we can write:

Qmd = M · 0 +
b∑
i=1

Niaid
n−1 = dn−1

b∑
i=1

Niai,

as it is the number of all possible h +mt for which

f(h +mt) ≡ 0 (mod md).

We can directly use this fact to prove the theorem. When we work over Zm, m = pr11 p
r2
2 . . . prkk we fix

two values m′ and d′ as follows:

m′ =
∏
i:2|ri

p
ri
2
i

∏
i:2-ri

p
ri+1

2
i

and
d′ =

∏
i:2|ri

p
ri
2
i

∏
i:2-ri

p
ri−1

2
i .
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Then:

NP [0] = Qm′d′ = d′n−1
b∑
i=1

Niai =

∏
i:2|ri

p
ri
2
(n−1)

i

∏
i:2-ri

p
ri−1

2
(n−1)

i

 b∑
i=1

Niai

= T0
∏
i:2|ri

p
ri
2
(n−1)

i

∏
i:2-ri

p
ri−1

2
(n−1)

i ,

where T0 =
b∑
i=1

Niai.

Finally let us take a polynomial G(x) = P (x) + g. Then

NP [g] = NG[0] = H0

∏
i:2|ri

p
ri
2
(n−1)

i

∏
i:2-ri

p
ri−1

2
(n−1)

i ,

for certain H0 = Tg.

Let us look at some sample applications of this theorem. Having polynomial of n variables, over Z4 or
Z8 we get solution number divisibility by 2n−1, it changes to divisibility by 4n−1 over Z16 and Z32. For e.g.
Z100 we get divisibility by 10n−1.

4 Conclusions and Further Work

We have first extended the method of [1] to prove a general algebraic simulation of quantum circuits, one
that directly connects the minimum phase angle of the quantum gates to the modulus of polynomials. We
observed that for stabilizer circuits, the resulting n-variable polynomials q(x) over Z4 are quadratic and
multilinear. We then proved, as a special case of Theorem 4, that the number of solutions to q(x) = i is
always a multiple of 2n−1.

For future comparison let us recall the result of Theorem 4, with definitions as in its description:

NP [g] = Tg
∏
i:2|ri

p
ri
2
(n−1)

i

∏
i:2-ri

p
ri−1

2
(n−1)

i .

Basing on computational evidence and partial proofs with use of different methods we believe that the
optimal result is as follows:

Conjecture 1. Let P (x) be a multivariate polynomial of degree d, of n variables over Zpr11 p
r2
2 ...p

rk
k

where
all p1, p2, . . . , pk are different primes. Then for any g ∈ Zpr11 p

r2
2 ...p

rk
k

there is an integer Tg such that:

NP [g] = Tg
∏
i:ri=1

p
d rin

d
e−1

i

∏
i:ri>1

p
d rin

2
e−1

i .

The optimal result, in addition to what is already known, would also show exponential divisibility of
number of solutions when the ring size is composite and squarefree. Additionally it may provide signifi-
cantly higher divisibility (although asymptotically same) for already known cases of m. This result seems
hard to obtain and we believe it requires different methods than those presented in proof of Theorem 4 — if
one would want to extend the existing proof, then he would either need to use Taylor’s Theorem for d - m
or infer special size properties of M and N1, N2, . . . , Nb. Both of those approaches seem to be far harder
than the methods we are currently experimenting with. In future work we plan to slowly arrive at proof of
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this conjecture, through proving a little weaker versions of it (e.g. limited to certain degrees of polynomials
or only to certain primes). The result we obtained through use of the idea behind Hensel’s Lemma standard
proof was a low-hanging fruit.

Potentially above divisibility results over non-field rings may also be obtained through use of Newton
Polyhedra. Up to now nobody made such a connection though, and one would be very hard to establish (Hui
June Zhu, personal communication, May 2013).

The closest basis for comparison that we know are the Chevalley-Warning theorems (see [9]) over Zp
for p prime, or over any finite field of characteristic p. They say that provided the number n of variables is
greater than the degree of the polynomial q, the number of solutions to q(x) = 0 is a multiple of p. (The
same goes for simultaneous equations qj(x) = 0 provided n exceeds the degree of the product of the qj .)
In our case the modulus is 2r in place of p. However, there is also the stronger element that our results and
conjectures have n as well as r in the exponent of the multiplicand.

Despite the pathology of zero-divisors, we believe that the solution sets of polynomials modulo compos-
ites should have a natural, attractive, and unifying theory. Such a theory seems relevant to the prospects for
progress in complexity lower bounds. We hope that the work in this paper promotes interest and strategies
in building this theory.
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