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Hilbert’s Proof
of his Irreducibility Theorem

Mark B. Villarino, William Gasarch and Kenneth W. Regan

Abstract. Hilbert’s Irreducibility Theorem is a cornerstone that joins areas of analysis and
number theory. Both the genesis and genius of its proof involved combining real analysis and
combinatorics. We try to expose the motivations that led Hilbert to this synthesis. His famous
Cube Lemma anchored the proof but without the analytical foundation and framework it would
have had no purpose. We also assess this lemma as a precursor of Ramsey Theory.

1. INTRODUCTION. In 1892, David Hilbert published what is known today as
Hilbert’s irreducibility theorem. We give his statement, usingintegral polynomialto
mean a polynomial in any number of variables whose coefficients are integers.

Theorem 1. If F (x, y, . . . , w; t, r, . . . , q) is an irreducible polynomial with integral
coefficients in the variablesx, y, . . . , w and the parameterst, r, . . . , q, then it is al-
ways possible, and indeed in infinitely many ways, to substitute integers for the pa-
rameterst, r, . . . , q such that the polynomialF (x, y, . . . , w; t, r, . . . , q) becomes an
irreducible polynomial in the variablesx, y, . . . , w alone.

This is a direct translation from [14]. The statement falls short of modern stan-
dards. For example, the irreducibility ofF concerns the polynomial in the whole set
of variables—parameters included—but the statement is technically false if there are
no variables but only parameters. Nor is it clear whether one needs a lot of variables
and parameters or whether proving this for one or two of each suffices; this is clarified
below. One of our purposes is to lead readers to appreciate modern rigor and clarity
compared to 19th-century standards.

To Hilbert, this theorem was not an end in itself but rather a tool to use for some
remarkable applications. A simple one is that if a polynomialf(x) overZ has values
that are perfect squares for all sufficiently largex, thenf(x) must be the square of
some other polynomial overZ. One of his most striking is:

Corollary 2. For every integern there exist infinitely many polynomialsp in Z[x]
such thatp has the symmetric groupSn as its Galois group.

He began his paper [14] with a statement and proof of the two-variable case, which
is the fundamental step in the proof of the general theorem. Again in Hilbert’s own
words, the statement is:

Theorem 3. If f(x, t) is an irreducible polynomial in the two variablesx andt with
integral coefficients

f(x, t) = Txn + T1x
n−1 + · · ·+ Tn, (1)

whereT, T1, . . . , Tn are integral polynomials int, it is always possible, indeed in
infinitely many ways, to substitute an integer fort in f(x, t) such that the polynomial
f(x, t) becomes an irreducible polynomial of the single variablex.

A more modern formulation is:
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Theorem 4. Let f(x, y) ∈ Z[x, y] be irreducible. For an infinite number oft ∈ Z,
f(x, t), as an element ofZ[x], is irreducible.

In fact, Hilbert proved thecontrapositive, which can be formulated as follows.

Theorem 5. Letf(x, y) ∈ Z[x, y]. If there existst0 such that for every integert ≥ t0,
f(x, t) is reducible overZ, thenf(x, y) is reducible overZ.

Hilbert proved this by formulating what is today calledHilbert’s Cube Lemma. It
can be viewed not only as an enhanced form of Dirichlet’s pigeonhole principle but
also as the first statement of a Ramsey-type theorem.

In Section 2 we discuss Ramsey Theory to illustrate why Hilbert’s cube lemma is
regarded as belonging to that field. In Section 3 we state and give a simple modern
proof of the Hilbert’s cube lemma (we discuss optimizations and Hilbert’s original
proof in Section 13). It is easy to appraise the Hilbert cube lemma as a gem in an
isolated setting and forget the quest that led to it, which was wasto find a polynomial
factor,ϕ(x, t) ∈ Z[x, t], of the polynomialf(x, t).

In Sections 4 through 11 we provide a motivated account of Hilbert’s beautiful proof
of (ir)reducibility by putting ourselves in his shoes and following the trail of ideas that
we find in his 1892 paper. We have tried to make it as self-contained and elementary
as possible.

After Hilbert, many mathematicians offered other proofs of the irreducibility the-
orem. Many of these proofs use so-called “density” arguments, a standard technique
in today’s Diophantine approximation theory, but a far cry from the natural idea of
Hilbert to find a factor of a reducible polynomial. We will say more about modern
proofs in Section 12.

Hilbert remains one of the greatest mathematicians of all time. His original proof
still contains insights and arguments that are well worth study even today. We offer
the reader a detailed exposition of this proof in hope of saving it from the oblivion of
history.

2. RAMSEY THEORY. Theorems in Ramsey Theory almost always follow this
informally-stated pattern:

For any coloring of a large enough object
there is a nice monochromatic sub-object.

We give three examples of such theorems along with some of the history. See [10,
16, 21] for more on these theorems and also Alexander Soifer’s book [27] for more of
the history.

In 1916, Issai Schur [24] proved the following:

Lemma 6. For all c there existsS = S(c) such that for allc-colorings of{1, . . . , S}
there exists a monochromatic triplex, y, z such thatx+ y = z.

Schur viewed his lemma as a means to an end and so did not launch what is now
called Ramsey Theory. He used it to prove the following theorem in number theory.

Theorem 7. Let n ≥ 1. There existsq such that, for all primesp ≥ q, there exists
x, y, z ∈ {1, . . . , p− 1} such thatxn + yn ≡ zn (mod p).

Proof. Givenn let q = S(n). Let p be a prime such thatp ≥ S(n). ThenZ∗p, which
denotes the numbers{1, . . . , p− 1} together with the operation of modular multipli-
cation, forms a group. All arithmetic henceforth is inZ∗p.
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Let H = {xn | x ∈ Z∗p}. ClearlyH is a subgroup ofZ∗p. It is known that|H| =
p−1

gcd(n,p−1)
so the number of cosets isc = p−1

|H| = gcd(n, p− 1) ≤ n. We denote the
cosets byd1H, . . . , dcH .

Consider the followingc-coloring of {1, . . . , p − 1}: color x by i such thatx ∈
diH . Sincec ≤ n andp − 1 ≥ S(n), by Schur’s Lemma, there exists a monochro-
matic x1, y1, z1 such thatx1 + y1 = z1. Since they are all in he same coset there
existsd such thatx1, y1, z1 ∈ dH . Hencex1 = dxn, y1 = dyn, z1 = dzn. Since
dxn + dyn = dzn we getxn + yn = zn.

Theorem 7 refuted the idea of proving Fermat’s last theorem by showing that for all
n ≥ 3 there are arbitrarily largep such thatxn + yn ≡ zn has no solution modulop.

In 1927, Bartel van der Waerden [31] proved the following theorem which now
bears his name:

Theorem 8. For all k, c there exists a numberW = W (k, c). such that for allc-
colorings {1, . . . ,W} there there exists a monochromatic arithmetic sequence of
lengthk.

The title of [31] credits Pierre Baudet with having conjectured this, but Soifer [27]
gives evidence that Schur had also done so. Even though van der Waerden did not have
another goal in mind, he did not pursue this line of research and so did not launch what
is now called Ramsey Theory.

Frank Ramsey [22] proved the following theorem which now bears his name. As
others often do, we state only the case for graphs, not hypergraphs. Agraphconsists
of a setV of verticesand a setE ⊆ V × V of edges. We consider onlyundirected
graphs, in which edges are unordered pairs(x, y), withoutself-loops, meaning always
x 6= y. The graph iscompleteif E includes all such pairs and is then denoted by
Kn, n = |V |. A c-coloring of the edges is a mappingf from E to {1, . . . , c}. A
monochromaticKm means a subsetV ′ ⊆ V of sizem andc′ 6 c such that for all
distinctu, v ∈ V ′, (u, v) is an edge andf(u, v) = c′.

Theorem 9. For all c,m there exists a numberR = R(c,m) such that for allc-
colorings of the edges ofKR there exists a monochromaticKm.

The folkloric example of this theorem is that in any group of six people,at least
three know each other or at least three are complete strangers. If the six are the vertices
of aK6 and each edge is colored green or blue (friends or strangers), then the theorem
says there is at least one monochromatic triangle. In fact, there are at leasttwo such
triangles, whereasK5 has none when a green five-pointed star is inscribed in a blue
pentagon, so thatR(2, 3) = 6.

Ramsey applied his lemma to problems in mathematical logic. He viewed it as a
means to an end and so did not launch what is now called Ramsey Theory.

In 1892, before all of the results above, Hilbert [14] proved the lemma featured in
the next section. Like the three statements, it applies to anyc-coloring and yields a
monochromatic nice substructure. Hilbert viewed his lemma as a means to an end and
so did not launch what is now called Ramsey Theory. He used it to prove the Hilbert
Reducibility Theorem, which is our main topic here.

Who did launch Ramsey Theory? Speaking later about his joint paper in 1935 with
George Szekeres [5], Paul Erd̈os related that it was Szekeres who rediscovered the
statement and proof of Ramsey’s theorem. They used it as a means to the following
end:

Theorem 10. For all n ≥ 3 there existsm > n such that for anym points in the
plane in general position there existsn points that form a convex hull.
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But, they also attracted a clique of mostly Hungarians who developed the ideas, con-
jectures, and results that grew into Ramsey Theory as we know it.

3. THE CUBE LEMMA. Hilbert’s first paragraph crisply framed theproblemof
irreducibility under substitutions represented by the statement of Theorem 1. Then he
continued right away, “Our developments rest on the following lemma.” We reproduce
his words but change hisa, µ to c, β and compact his displayed formulas using0–1
variablesb1, . . . , bm:

“Given an infinite integer sequencea1, a2, a3, . . . in which generally each
as denotes one of thec-many positive integers1, 2, . . . , c, let m be any pos-
itive whole number. Then there are alwaysm-many positive whole numbers
µ(1), µ(2), . . . , µ(m) such that the2m elements

aβ+
∑m
i=1 biµ

(i)

for infinitely many whole numbersβ are collectively the same numberG, where
G is one of the numbers1, 2, . . . , c.”

Call those elements collectively them-cube, which we can denote by
C(β;µ1, . . . , µm). The sequencea1, a2, a3, . . . can be called acoloring of N+ us-
ing c colors. Thus the conclusion is that every coloring gives rise toincrements
µ(1), µ(2), . . . , µ(m) that yield a monochromaticm-cube for infinitely many starting
pointsβ. This is implied by the following finitistic statement, which we regard as
Hilbert’s Cube Lemma in the modern sense:

Lemma 11. For all m, c there is a numberH such that, for allc-colorings ofN+ and
all intervals of lengthH in N+, there is a monochromaticm-cube within the interval.

Proof. The proof is by induction onm. For the base casem = 1, we can takeH1 =
c+ 1. This just says that for anyc-coloring of an interval of lengthc+ 1 there will be
two elements that are the same color. Takingβ to be the smaller one andβ + µ1 the
larger one,C(β;µ1) is a monochromatic 1-cube.

For the induction, assume thath = Hm−1 exists. We show that, for anyc-coloring
of an interval of lengthHm = h·(1 + ch), there is a monochromaticm-cube. Let
COL be ac-coloring of an interval of lengthHm. Partition the interval into1 + ch

blocks of sizeh. By the pigeonhole principle, some two of those blocks have the same
sequence ofh colors. By the induction hypothesis, the former has a monochromatic
(m− 1)-cubeC(β;µ1, . . . , µm−1), and since the color sequence of the latter is the
same, it hasC(β′;µ1, . . . , µm−1) with the same color and increments butβ′ > β.
Takeµm = β′ − β. ThenC(β;µ1, . . . , µm) is the required monochromaticm-cube.

4. MONIC POLYNOMIALS. Hilbert begins by reducing his general problem to
the case ofmonic polynomials in one variablex with rational coefficients. That is, he
shows that the following statement suffices to prove Theorem 5.

Theorem 12. Letg(y, t) ∈ Z[y, t]. If there existst0 such that for allt > t0, g(y, t) is
monic and reducible inZ[y], theng(y, t) is reducible inQ[y, t].

Proving Theorem 12 will occupy all the sections to follow, but here we show:

Proposition 13. Theorem 12 implies Theorem 5.

4 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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For the proof we must preface the following lemma:

Lemma 14. Let f(x, y) ∈ Z[x, y] andg(x, y) ∈ Z[x, y] and suppose that they are
arranged according to powers ofx:

f(x, y) = a0(y)xn + a1(y)xn−1 + · · ·+ an−1(y)x+ an(y),

g(x, y) = b0(y)xn + b1(y)xn−1 + · · ·+ bn−1(y)x+ bn(y),

where eachai andbi belongs toZ[y]. Then:

(a) A necessary and sufficient condition that a polynomialψ(y) be a factor of
f(x, y) is that it is a factor of all the polynomialsai(y).

(b) If ψ(y) is irreducible and divides the productf · g then either it is a factor of all
ai(y) or a factor of allbi(y).

(c) If f(x, y) can be factored into the product of two polynomials inx whose coeffi-
cients are rational functions ofy with integral coefficients, i.e., inQ(y)[x], then
it can be factored into the product of two polynomials inZ[x, y].

Proof. The intuition for statements (a) and (b) is that sincex occurs nowhere else it
cannot helpψ(y) dividef or f · g any other way than stated. Bôcher [1, pp. 203–204]
has a formal proof. To prove (c), we write the given factorization in the form

f(x, y) =
f1(x, y)
ϕ1(y)

· f2(x, y)
ϕ2(y)

,

wheref1(x, y), f2(x, y), ϕ1(y) andϕ2(y) are integral polynomials such thatf1 is
not divisible by any factor ofϕ1(y) andf2 is not divisible by any factor ofϕ2(y). By
part (b), sincef1 · f2 is divisible byϕ1 · ϕ2, f1 has the complete polynomialϕ2 as
a factor andf2 has the complete polynomialϕ1 as a factor. By (a) we can cancelϕ2

from the coefficients off1 and we can cancelϕ1 from the coefficients off2. This gives
us our factorization into two polynomials inZ[x, y].

Proof of Proposition 13.Let f(x, y) ∈ Z[x, y] and suppose we havet0 such that for
all t > t0, f(x, t) is reducible inZ[x]. Recall from (1) the integral polynomials
T, T1, . . . , Tn in t such that

f(x, t) = Txn + T1x
n−1 + · · ·Tn−1x+ Tn.

Note thatT and theTj become integer constants for any fixed value oft. Define

g(y, t) = yn + S1y
n−1 + · · ·+ Sn−1y + Sn,

where for eachj, 1 6 j 6 n, Sj = TjT
n−j . Then

g(y, t) = f(
y

T
, t).

Sincef(x, t) factors inZ[x], g(y, t) factors inQ[y]. But sinceg(y, t) is an integral
polynomial and is monic in the one variabley, it factors inZ[y] by a famous and
simple lemma of Gauss. Often calledGauss’s polynomial lemma, it states that any
product of two monic polynomials over the rationals with at least one rational non-
integral coefficient is itself a monic polynomial over the rationals with at least one
rational non-integral coefficient.

January 2014] 5
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Thus we have satisfied the hypothesis of Theorem 12—and with the samet0 as in
Theorem 5. Assuming its conclusion gives us

g(y, t) = Ψ(y, t)Ψ′(y, t),

whereΨ(y, t) andΨ′(y, t) belong toQ[y, t]. Substituting backy = xT yields the
following equation for our original polynomial:

f(x, t) =
Φ(x, t)Φ′(x, t)

AT n−1
,

whereΦ(x, t) andΦ′(x, t) both belong toZ[x, t],A ∈ Z, andT ∈ Z[t] . Now part (c)
of our lemma completes the proof.

Gauss used his lemma, which appeared on page 42 of hisDisquisitiones[6], to give
the first proof of the irreducibility of the cyclotomic polynomial of prime degree over
the rationals. As we’ve seen, Hilbert used it to reduce the Irreducibility Theorem to
the case of monic polynomials with rational coefficients. But to go further and prove
Theorem 12, a new tool is needed.

5. PUISEUX SERIES. The fundamental theorem of algebra shows us that the equa-
tion g(y, t) = 0 hasn complex roots for each value oft. Thus, informally, there aren
functions oft, sayy1(t), . . . , yn(t), which satisfy the equation. Hilbert uses a refined
form of the implicit function theorem, which we refer to asPuiseux’s theorem(see
discussion of origins below). It says that then root functionsy1(t), . . . , yn(t) can be
expressed in a concrete way by means of fractional power series in decreasing powers
of the variable. These are the so-calledPuiseux series at infinity, whose definition we
now recall.

Definition 1. Letm ∈ N. A Puiseux series at infinity is an expression of the form

u(x1/k) +
∞∑
i=1

Bi

xi/k
,

whereu(x) ∈ C[x] is of degreem, k ∈ N+, andB1,B2, · · · ∈ C.

We adopt the following theorem statement from [30, pp. 80–81] with slight alter-
ations in notation and formatting. The power series in (2) are calledPuiseux expansions
at infinity.

Theorem 15 (Puiseux’s Theorem).Giveng(y, t) as above, there aren distinct power
series

y1(t) = A11τ
h + A12τ

h−1 + · · ·+ A1,h+1 +
B11

τ
+

B12

τ 2
+

B13

τ 3
+ · · ·

y2(t) = A21τ
h + A22τ

h−1 + · · ·+ A2,h+1 +
B21

τ
+

B22

τ 2
+

B23

τ 3
+ · · ·

...
...

yn(t) = An1τ
h + An2τ

h−1 + · · ·+ An,h+1 +
Bn1

τ
+

Bn2

τ 2
+

Bn3

τ 3
+ · · ·

(2)

which are all convergent fort greater than some constant, where the following hold:

6 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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(a) For a certain positive integerk, τ = t1/k, where the positive real value of the
root is meant;

(b) The given numberh is the highest positive exponent ofτ that occurs.

(c) All coefficientsAi,j and Bi,j are well-defined uniquely determined complex
numbers;

(d) Any formal power seriesy(t) satisfying the formal identityg{y(t), t} ≡ 0 and
having properties analogous to those of the series(2) necessarily coincides with
one of the aboven series.

(e) The following formal identity holds:

g(y, t) ≡
n∏
i=1

{y − yi(t)}.

Hilbert ascribed the idea he used to Runge in a work that had appeared three years
earlier, and cited it in a footnote exactly like this.1 He then notes—and this is the rea-
son to reduce the problem to monic polynomials—the relation between the elemen-
tary symmetric functions of the rootsy1, y2, . . . , yn and the coefficient polynomials
S1, S2, · · · , Sn, namely:

S1 = −(y1 + y2 + · · ·+ yn)

S2 = (−1)2(y1y2 + y1y3 + · · ·+ yn−1yn)

...
...

Sn = (−1)n(y1y2y3 · · · yn−1yn).

(3)

The insight is that by Puiseux’s theorem, when we plug the expansions (2) into
the symmetric functions (3),the resulting fractional power series for the coefficients
all collapse down to the integral polynomialsSk in t. For later referral, it will be
convenient to formulate this simple observation as a theorem, calling the part of the
expansion with positive exponents thepolynomial part.

Theorem 16. For any g(x, y) ∈ C[x, y] the elementary symmetric functions ofn
Puiseux expansions(2) collapse down to polynomials inZ[t] if and only if:

(a) The coefficients of all thenegativepowers ofτ in the resulting fractional power
series for the coefficients areall equal to zero.

(b) The numerical coefficients of the“polynomial part” of the resulting fractional
power series for the coefficientsare all integers.

(c) The numerical coefficients of thepositive fractional powersof τ in the resulting
fractional power series for the coefficients areall equal to zero.

These three conditions will, with appropriate changes, characterize the coefficients
of any polynomial factor inZ[y, t] of g(y, t). Lemma 14 above shows that we can
write “rational numbers” instead of “integers” in condition (b).

1The original work of Puiseux can be found inLiouville’s Journal, vols. 15, 16 (1850, 1851). These ex-
pansions have already been used byC. Rungeto derive necessary conditions that an equation between two
unknowns have infinitely many integral solutions. See this Journal, vol. 100, p. 425. [Hilbert’s footnote]

January 2014] 7
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6. THE FORMAL FACTORS. Any nontrivial formal polynomial factor ofg(y, t)
is a polynomial of the form

πA(y, t) :=
∏
yj∈A

(y − yj), (4)

whereA is a subset of the roots{y1, y2, . . . , yn}. As Hilbert points out, there are
(
n
2

)
quadratic factors,

(
n
3

)
cubic factors,

(
n
4

)
quartic factors,

(
n
5

)
quintic factors, and so on,

and finally
(
n
n−1

)
factors of degreen− 1. Additionally, we count then linear factors

for a grand total of(
n

2

)
+
(
n

3

)
+ · · ·+

(
n

n− 1

)
+ n = 2n − 2

possible factors. So, ifg(y, t) is reducible,someπA(y, t), must be an integral polyno-
mial factor.Sometimes we prefer to think ofA as a single item rather than a set, so we
assign it a unique indexa wherea = 1, 2, . . . , 2n − 2. Thenπa(y, t) means the same
asπA(y, t). These items will become the “colors” in the Cube Lemma.

Let’s look at a simple example of a reducible integral polynomial:

g(y, t) := y3 − t3.

Then the roots ofg(y, t) = 0 arey1 = t, y2 = ωt, y3 = ω2t whereω3 = 1, ω 6= 1.2

Whenn = 3 there are23 − 2 = 6 formal factors. Thus the setsA are

{y1}, {y2}, {y3}, {y1, y2}, {y1, y3}, {y2, y3},

and we (arbitrarily) assign the indicesa = 1, 2, 3, 4, 5, 6 to them respectively. Then,
by (4) these formal factors are:

π{y1} ≡ π1(y, t) = y − y1 = y − t,
π{y2} ≡ π2(y, t) = y − y2 = y − ωt,

π{y3} ≡ π3(y, t) = y − y3 = y − ω2t,

π{y1,y2} ≡ π4(y, t) = (y − y1)(y − y2) = y2 + ωty + ω2t2,

π{y1,y3} ≡ π5(y, t) = (y − y1)(y − y3) = y2 + ω2ty + ωt2,

π{y2,y3} ≡ π6(y, t) = (y − y2)(y − y3) = y2 + ty + t2.

We observe thatπ1(y, t) andπ6(y, t) areintegralpolynomial factors whereas the other
four are not.

7. USING THE PIGEONHOLE PRINCIPLE. Our problem now is to discoverat
least oneformal factorπα that is anintegral polynomial. (We note that its comple-
mentary factor is also an integral polynomial.) We begin our search by applying our
hypothesis.

Taket0 from the hypothesis of Theorem 12 andτ0 to be the positivekth root oft0.
Usually,τ0 will be irrational. By hypothesis, if we substituteτ0 into all of the coef-
ficient series of the formal factorsπa(y, t), at least one of them will be an integral
polynomial iny.

2Moreover,y1 = t, y2 = ωt, y3 = ω2twhereω3 = 1,ω 6= 1 are also the Puiseux expansions of the roots.
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Now, along with Hilbert, we observe that if we substitute2τ0 into all of the coeffi-
cient series of the formal factorsπa(y, t), thenat least one of them will be an integral
polynomial iny, by the assumption thatg(y, 2kt0) is reducible.

Again, if we substitute3τ0 into all of the coefficient series of the formal factors
πa(y, t) at least one of them will be an integral polynomial iny, by the assumption
thatg(y, 3kt0) is reducible. The same is true of4τ0, 5τ0, and indeed, ofστ0 for σ =
1, 2, 3, . . . .

Therefore, we obtainan infinite sequence of integral polynomial factors
πa(y, σkt0) in y. Each of them has a unique indexa wherea = 1, 2, . . . , 2n − 2.
Let these indices bea1, a2, a3, . . . , as, . . . . Then, by the pigeonhole principle,at least
one indexas occurs infinitely often. In our example above, we can takeas = 1 or
as = 6 and our sequence of indices contains either1 or 6 or both infinitely often. The
point is that:

The corresponding formal polynomialπas(y, t) is a
natural candidate for our integral polynomial factor.

To prove that itis our integral polynomial factor, we must verify that its Puiseux series
satisfy the three conditions of Theorem 16. The rest of Hilbert’s paper (and ours) is the
proof thatthe candidate formal factorπas(y, t) satisfies these three conditions .

8. FRAMING THE CUBE LEMMA. Let’s consider the first condition:The coef-
ficients of all thenegativepowers ofτ0 in the resulting fractional power series for
the coefficients ofπas(y, σkt0) are all equal to zero. Suppose the following system of
coefficient power series forπas(y, (σkt0)) hasas as its index:

y1 + y2 + · · ·+ yν = A11(στ0)h + A12(στ0)h−1 + · · ·+ A1,h+1

+
B11

στ0

+
B12

(στ0)2
+

B13

(στ0)3
+ · · ·

...
...

y1y2 · · · yν = Aν1(στ0)hν + Aν2(στ0)hν−1 + · · ·+ Aν,hν+1

+
Bν1

στ0

+
Bν2

(στ0)2
+

Bν3

(στ0)3
+ · · · .

The coefficientsA,B are all completely determinate rational or irrational, real or com-
plex numbers; some of them have the value zero since the positive exponents ofτ0 in
general will be smaller than(n− 1)h.

The variable quantity here is the integerσ. This suggests thatwe rewrite the above
fractional series as series inσ and then obtain:

y1 + y2 + · · ·+ yν = A11σ
h +A12σ

h−1 + · · ·+A1,h+1

+
B11

σ
+
B12

σ2
+
B13

σ3
+ · · ·

...
...

y1y2 · · · yν = Aν1σ
hν +Aν2σ

hν−1 + · · ·+Aν,hν+1

+
Bν1

σ
+
Bν2

σ2
+
Bν3

σ3
+ · · ·
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where the new coefficientsA,B are again determinate numerical quantities. Suppose
that the index of the first occurrence of our infinitely repeated polynomial factor is
s = σ = µ. Then every repetition of the indexµ produces the sameν power series
in σ, but with a larger value ofσ. Thus, since there are an infinite number of such
indices,there are infinitely many larger and larger values ofσ substituted into the
power series.

If we look at the series ofnegativepowers for any particular coefficient, we see
that for sufficiently largeσ it become arbitrarily small in absolute value. Yet, the total
power series takes integral values for all of these values ofσ. That suggests that the
total contribution of the negative powers, for largeσ, is an integer of arbitrarily small
absolute value, i.e., zero.

Thus we might try to argue by contradiction as follows: Assume that thereare
nonzero coefficients of negative powers and deduce an absurd conclusion. The possible
hitch is that this inference ignores the “polynomial part” of the coefficient series—
which could exactly compensate for a tiny nonzero contribution of the negative powers.

To show that this isnot the case we would like to somehow “eliminate” the poly-
nomial part of the coefficient series without losing the property of being an integer
for infinitely many values ofσ. This suggestsforming suitable linear combinations of
the coefficient series which successively subtract off the principal terms of the polyno-
mial parts, and leaving finally only linear combinations of integer-valued series with
negative coefficients.

To see how this would work, let’s look at a typical coefficient series. Let us choose
any of theν power series in the system under consideration, say the power series

P(σ) = A11σ
m−1 +A12σ

m−2 + · · ·+A1m +
B11

σ
+
B12

σ2
+
B13

σ3
+ · · · .

where we have writtenm− 1 for the highest power ofσ.
Now comes a new insight.This is the insight that is key to the whole proof. Its sim-

plicity belies the brilliance it took to think of it. Professional mathematicians are aware
of this phenomenon: the deepest ideas, in the end, are based on a simple observation.
Here is Hilbert’s:

Suppose that the seriesP(σ) takes on integral values, not only for
infinitely many values ofσ, but also for all the infinitely many values
of σ + µ(1), whereµ(1) is a fixed increment independent ofσ.

Now we form the linear combination

P(1)(σ) := P(σ)− P(σ + µ(1))

and put the polynomial part equal to

ϕm−1(σ) := A11σ
m−1 +A12σ

m−2 + · · ·+A1m

for brevity. We now start the argument-by-contradiction.
Suppose now that the other coefficientsB11, B12, B13, . . . of the power series

P(σ) are not all zeroand letB1v/σ
v be the first term whose coefficientB1v does

not vanish. Then

P(1)(σ) = ϕm−1(σ)− ϕm−1(σ + µ(1)) +B1v

[
1
σv
− 1

(σ + µ(1))v

]
+ · · · .
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Here the first difference on the right-hand sideis a polynomial of degreem− 2 in σ;
we put

ϕm−2(σ) = ϕm−1(σ)− ϕm−1(σ + µ(1)).

We expand the remaining terms on the right-hand side in decreasing powers ofσ; then
we obtain3

P(1)(σ) = ϕm−2(σ) + µ(1)v
B1v

σv+1
+ · · · .

We have reduced the maximum degree of the polynomial part by one unit. Moreover,
P(1)(σ) takes on integral values for infinitely manyσ.

We havenot proved that such an incrementµ(1) exists, but if we could, then we
could make a first step in reaching our goal of producing a series of negative powers
of σ that is an integer for infinitely many values ofσ.

To carry out a similar program toreduce the maximum degree of the polynomial
part tom− 3, then tom− 4, and so on until finally to zero, we would have to have
to prove the existence ofm fixed incrementsµ(k), k = 1, 2, · · · ,m whose values are
all independent ofσ and such that if we substitute any of the integers:

µ

µ+µ(1)

µ+µ(2) µ+µ(1)+µ(2)

µ+µ(3) µ+µ(1)+µ(3) µ+µ(2)+µ(3) µ+µ(1)+µ(2)+µ(3)

...
...

...
... ···

...
µ+µ(m) µ+µ(1)+µ(m) µ+µ(2)+µ(m) ··· ··· µ+µ(1)+···+µ(m)

for σ in P(σ), the values will all be integers.
Note that the proof of the existence of the incrementµ(1) amounts to proving thataµ

andaµ+µ(1) are boththe same number in the set of indicesas. A similar property holds
for the set of all the above sums of fixed incrementsµ(k) (for k = 1, 2, . . . ,m) with
µ, namely that they all are the subscripts ofthe same number in the set of indicesas.
In our running example they are all equal to1 or they are all equal to6.

The proof of the existence of these increments is the content of theHilbert cube
lemma. To serve the context of Hilbert’s proof, we re-state it using his formulas much
as he visualized them in his paper.

3The details, with simplified notation, are:

B1v

[
1

σν
−

1

(σ + µ)ν

]
=
B1v

σν

[
1−

1

(1 + µ
σ

)ν

]

=
B1v

σν

[
1−

{
1 +

(−ν
1

)µ
σ

+
(−ν

2

)(µ
σ

)2

+ · · ·
}]

=
B1v

σν

[
µν

σ
−
ν(ν + 1)

2

(
µ

σ

)2

+ · · ·
]

=
µνB1v

σν+1

[
1−

ν + 1

2

(
µ

σ

)
+ · · ·

]
,

and this last expression on the right-hand side is equivalent to that in the main body of the paper.
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Theorem 17. Let a1, a2, a3, . . . be an infinite sequence in which the general term,
as, is one of thea positive numbers1, 2, . . . , a. Moreover, letm be any positive in-
teger. Then we can always findm positive integersµ(1), µ(2), . . . , µ(m) such that for
infinitely many integersµ the2m elements

aµ
aµ+µ(1)

aµ+µ(2) aµ+µ(1)+µ(2)

aµ+µ(3) aµ+µ(1)+µ(3) aµ+µ(2)+µ(3) aµ+µ(1)+µ(2)+µ(3)

...
...

...
... · · · . . .

aµ+µ(m) aµ+µ(1)+µ(m) aµ+µ(2)+µ(m) · · · · · · aµ+µ(1)+µ(2)+···+µ(m)

are all equal to the same numberG, whereG is one of the numbers1, 2, . . . , a.

Thus we see that the statementarises naturally from the necessity of proving that
the coefficients of the negative powers ofσ must be all equal to zero. It is the strength-
ened form of the pigeonhole principle we mentioned earlier. It is stronger because it
imposes astructureon the distribution of infinitely many common valuesas whereas
the pigeonhole principle only implies theirexistence.

9. THE COEFFICIENTS OF THE NEGATIVE POWERS OF σ ARE ZERO.
Employing the above idea, we form the followingm linear combinations:

P(1)(σ) = P(σ)− P(σ + µ(1)),

P(2)(σ) = P(1)(σ)− P(1)(σ + µ(2)),
...

...

P(m)(σ) = P(m−1)(σ)− P(m−1)(σ + µ(m)).

It follows from what we proved earlier that each of thesem power series also assumes
integer values for infinitely many integral argumentsσ = µ.

As we indicated, assuming the cube lemma, we obtain

P(2)(σ) = ϕm−3(σ) + µ(1)µ(2)v(v + 1)
B1v

σv+2
+ · · · ,

whereϕm−3(σ) is a polynomial inσ of degreem− 3. Afterm steps we arrive finally
at the formula

P(m)(σ) = µ(1)µ(2) · · ·µ(m)v(v + 1) · · · (v +m− 1)
B1v

σv+m
+ · · · .

Since this power series begins with negative powers ofσ, we can find a positive
numberΓ such that for all values ofσ that exceedΓ the absolute value of the power
serieswill be smaller than one. On the other hand, the power seriesP(m)(σ) is itself
equal to an integer for infinitely many argumentsσ and since an integer whose absolute
value is less than one is necessarily equal to zero, it follows thatthere are infinitely
many integersσ for which the power series vanishes.
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But, our last formula shows us that

lim
σ→∞

[
σv+mP(m)(σ)

]
= µ(1)µ(2) · · ·µ(m)v(v + 1) · · · (v +m− 1)B1v,

where the expression on the right hand-side represents a quantitydifferent from
zero. This last result stands incontradictionwith the conclusion above, and there-
fore it is impossible that a nonzero coefficientB1v occurs among the coeffi-
cients B11, B12, B13, . . . . It follows in the same way thatalso the coefficients
B2i, B3i, B4i, . . . , Bνi must all be equal to zero.

This completes the proof of the first condition of Theorem 16 about the Puiseux
expansions of the coefficients ofπas(y, t).

This step was the heart of Hilbert’s proof and his paper’s most brilliant insight. The
other parts are clever too, but in our opinion this best shows his penetrating originality.

10. THE COEFFICIENTS OF THE POLYNOMIAL PART ARE RATIONAL
NUMBERS. The next condition of Theorem 16 to be verified is:the numerical coef-
ficients in the polynomial part of the Puiseux expansions of the coefficients ofπas(y, t)
are rational numbers. Our expansion has collapsed to the polynomial part:

P(σ) = A11σ
m−1 +A12σ

m−2 + · · ·+A1m, (5)

where the right-hand side assumes integer values for infinitely many values ofσ. If we
set the right-hand side equal to these integers form values ofσ we obtainm linear
equations withm unknownsA11, A1,2, . . . , A1m which have arational solutionby
Cramer’s rule. By Proposition 13, getting “rational” suffices to prove the condition.

11. ONLY INTEGRAL POWERS OF t . The final condition of Theorem 16 to be
verified is:the only nonzero terms in the polynomial part of the Puiseux expansions of
the coefficients ofπas(y, t) are those with integral powers oft.

Takeτ0 to be aprimenumberp larger thanC ′′ and recallστ0 = τ. We now deter-
mine2n − 2 distinct prime numbersp′, p′′, . . . , p2n−2 all greater thanp. Then also for
each of these prime numbers there exists at least one among the2n − 2 formal factors
whose coefficients have the above polynomial form (5). However, since the number of
prime numbersp, p′, p′′, . . . , p2n−2 is equal to2n − 1 while the number formal factors
only reaches2n − 2, necessarilythere must exist at least one formal factor admitting
a double representation by these polynomials(5). That is to say, as above:

y1 + y2 + · · ·+ yν = A11p
−(m−1)/kτm−1 +A12p

−(m−2)/kτm−2 + · · ·+A1m

...
...

y1y2 · · · yν = Aν1p
−(m−1)/kτm−1 +Aν2p

−(m−2)/kτm−2 + · · ·+Aνm

and simultaneously

y1 + y2 + · · ·+ yν = A′11p
′−(m−1)/kτm−1 +A′12p

′−(m−2)/kτm−2 + · · ·+A′1m

...
...

y1y2 · · · yν = A′ν1p
′−(m−1)/kτm−1 +A′ν2p

′−(m−2)/kτm−2 + · · ·+A′νm .
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Since, by Puiseux’s theorem, the coefficients of the powers ofτ are unique, if we
equate coefficients of equal powers ofτ on the right-hand sides we obtain:

A11p
−(m−1)/k = A′11p

′−(m−1)/k · · · = · · · A1mp
−(m−1)/k = A′1mp

′−(m−1)/k

A21p
−(m−1)/k = A′21p

′−(m−1)/k · · · = · · · A2mp
−(m−1)/k = A′2mp

′−(m−1)/k

... =
... · · · = · · ·

... =
...

Aν1 = A′ν1 · · · = · · · Aνm = A′νm

Since the coefficientsA, B andA′, B′ are all rational numbers andp andp′ are
distinct prime numbers, the above equations show us thatthe only coefficients that can
be different from zero are those for which the corresponding exponent ofτ must be an
integer divisible byk.

That is, the power series of our systemare polynomials inτk with rational coeffi-
cients, and if we putτk = t, we obtain

y1 + y2 + · · ·+ yν = F1(t)
...

...

y1y2 · · · yν = Fν(t),

whereF1(t), . . . , Fν(t) arepolynomials int with rational coefficients.
This completes the proof of the third condition of Theorem 16 of the Puiseux ex-

pansions of the coefficients of some formal factorπas(y, t).

We note that the final formal factorπas(y, t) is not necessarily the same one that
we started with. All we needed was that it fulfills the three conditions of Theorem 16,
and therefore the proof of Theorem 12 is complete.

12. LATER PROOFS OF THE IRREDUCIBILITY THEOREM. After Hilbert,
many mathematicians offered other proofs of the irreducibility theorem.

Most of the modern proofs of the (two-variable) irreducibility theorem are based
on that of Karl D̈orge [4], which sharpened an idea of Thoralf Skolem [26]. Dörge
proved it without using the cube lemma and obtained a stronger result. To begin con-
trasting his and Hilbert’s results, recall Hilbert’s statement that iff ∈ Z[x, t1, . . . , ts]
is irreducible, then for infinity manya1, . . . , as ∈ Z, f(x, a1, . . . , as) is irreducible.

Now let |f | be the maximum of8 and the absolute values of the coefficients of
f (the reason for insisting|f | ≥ 8 is technical). A simplified statement of Dörge’s
theorem is:

Theorem 18. There is a functionc(d, s) such that the following holds. Letf ∈
Z[x, t1, . . . , ts] be irreducible of degreed. Let N > |f |c(d,s). Then the number of
(a1, . . . , as) ∈ {−N, . . . , N}s such thatf(x, a1, . . . , as) is not irreducible is at most
|f |c(d,s)N s−(1/2) logN .

Note that the number of such(a1, . . . , as) has density 0. D̈orge actually presented a
generalization of this theorem where he replacesZ with the integers of a finite exten-
sion of a number field.

Dörge also showed (in fact this was his primary interest) that iff , viewed as an
element ofZ[t1, . . . , ts][x], has Galois groupG, then the number of(a1, . . . , as) ∈
{−N, . . . , N}s such thatf(x, a1, . . . , as) does not have Galois groupG is at most
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|f |c(d,s)N s−(1/2) logN . And again, he actually presented a generalization of this the-
orem that replacesZ with the integers of a finite extension of a number field.

Lang [17, 18] and Prasolov [20] have expositions of D̈orge’s proof. Franz [8] also
gave a proof that does not use the cube lemma, and this is expounded further by
Schinzel [25]. There is a another alternative proof by Fried [9]. Serre [28] recasts
these results in geometric terms and presents results about which groups can be Galois
groups.

13. HILBERT CUBE NUMBERS AND CONCLUSIONS. Define the “Hilbert
Cube Number”H(m, c) to be theleast numberH such that everyc-coloring of
1, . . . ,H has a monochromaticm-cube. Our proof of the cube lemma in Section 3
showed a recursive upper boundH(m, c) 6 H(m− 1, c)(1 + cH(m−1,c)), with ba-
sisH(1, c) = 1 for all c. This is far from best possible. For one thing, when2 6
m 6 c one can improve the upper bound toH(m, c) 6 h(1 + c(m − 1)h), where
h = H(m− 1, c), by a different counting argument. One can further tweak this with(
m−1
h

)
in place of(m− 1)h. These formulas are not bounded by any fixed tower of

exponents inc andm.
As observed by Brown et al. [2], Hilbert’s original proof yields bounds with(c+

1) rather than(m − 1) in the base and the Fibonacci numberF2m in the exponent.
Namely,H(m, c) 6 (c+ 1)F2m , whereF0 = 0,F1 = 1,F2 = 1,F3 = 2, . . . . These
bounds have double-exponential growth. Szemerédi [29] (see also [10]) improved both
the bounds and the nature of the result, showing that any subsetA of [1, . . . ,H] of
density1/c (that is, |A| > H/c) contains anm-cube wherem > log log(H) − C
andC depends only onc. The best known upper and lower bounds appear still to be
those of Gunderson and Rödl [11]:

c(1−εc)(2m−1)/m 6 H(m, c) 6 (2c)2m−1

,

whereεc → 0 asc → ∞. The same upper bound was recently ascribed to [12] by
Conlon, Fox, and Sudakov [3] but see also Śandor [23] with different asymptotics.
Erdős and Tuŕan [7] proved thatH(2, c) is asymptotic toc2, but the remarks in [2] that
less is known aboutH(m, c) for fixedm > 3 appear still in force, and [3] remarks
thatH(m, 2) depends on unknown properties of van der Waerden numbers.

We have shown the significance of the cube lemma in the context of Hilbert’s origi-
nal paper. The question of whether Hilbert might have expanded on it bids comparison
with Ramsey’s motivation in [22]. That was a problem in logic not number theory
per se. But Hilbert was the world’s master in the relationship between number theory
and logic until G̈odel emerged, so one may ask again why Hilbert didn’t pursue this
further or develop areas of extremal combinatoricsvis-à-vis logic in the direction of
Ramsey theory. We close with a speculative answer: The world in which Hilbert was
immersed is as different from that of Ramsey theory as “doubly-exponential” is from
“singly-exponential.”

The years 1890–1893 saw the publication of Hilbert’s great foundational works in
commutative algebra, including his basis theorem andNullstellensatz[13, 15]. A com-
mon thread through all this work is the notion ofregularity: given a finitely-specified
system of elements that may have arbitrarily large values of some parametert (such as
the degree of polynomials over a ring), there is some integert0 such that for allt > t0
the system conforms to a simple description. Hilbert first proved his basis theorem
nonconstructively. Later was it shown that the growth of the relevantt0 (in terms of
the degreesd of basis elements or then-variable equations in theNullstellensatz) is
double-exponential, of order at mostd2n . Our answer to the question we posed in the
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previous paragraph is that Hilbert was simply occupied with more-rarefied levels of al-
gebra and analysis revolving around invariants. Irreducibility of polynomials plays into
irreducible varieties and primary decompositions of polynomial ideals, which Hilbert’s
student Emanuel Lasker (the world chess champion) and colleague Emmy Noether
built upon for some great work in the next two decades. Meanwhile, Hilbert swooped
down to the utterly ground-level task of formalizing Euclid’s geometry in the later
1890s, which presaged his work on formal systems of logic.

The divide in purpose and growth rate doesn’t ward us off from appreciating the
cube numbers and seeking other uses for them. That is why we have devoted this paper
to expounding their original use and context. We have highlighted how the cube lemma
completed an insight about estimates by infinite series. We hope that our exposition
will foster a greater appreciation of combinatorial underpinnings of more “analytical”
areas of mathematics.
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1. M. Bôcher.Introduction to Higher Algebra. Dover, New York, 2004.
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