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Hilbert's Proof
of his Irreducibility Theorem

Mark B. Villarino, William Gasarch and Kenneth W. Regan

Abstract. Hilbert's Irreducibility Theorem is a cornerstone that joins areas of analysis and
number theory. Both the genesis and genius of its proof involved combining real analysis and
combinatorics. We try to expose the motivations that led Hilbert to this synthesis. His famous
Cube Lemma anchored the proof but without the analytical foundation and framework it would
have had no purpose. We also assess this lemma as a precursor of Ramsey Theory.

1. INTRODUCTION. In 1892, David Hilbert published what is known today as
Hilbert's irreducibility theorem We give his statement, usingtegral polynomialto
mean a polynomial in any number of variables whose coefficients are integers.

Theorem 1. If F(x,y,...,w;t,r,...,q)is an irreducible polynomial with integral
coefficients in the variables, y, . .., w and the parameters, r, ..., g, then it is al-

ways possible, and indeed in infinitely many ways, to substitute integers for the pa-
rameterst, r, . . ., ¢ such that the polynomid'(z,y, ..., w;t,r,...,q) becomes an
irreducible polynomial in the variables, y, . . ., w alone.

This is a direct translation fromlf]. The statement falls short of modern stan-
dards. For example, the irreducibility éf concerns the polynomial in the whole set
of variables—parameters included—but the statement is technically false if there are
no variables but only parameters. Nor is it clear whether one needs a lot of variables
and parameters or whether proving this for one or two of each suffices; this is clarified
below. One of our purposes is to lead readers to appreciate modern rigor and clarity
compared to 19th-century standards.

To Hilbert, this theorem was not an end in itself but rather a tool to use for some
remarkable applications. A simple one is that if a polynonfi@t) overZ has values
that are perfect squares for all sufficiently largethen f(x) must be the square of
some other polynomial oveéf. One of his most striking is:

Corollary 2. For every integem there exist infinitely many polynomiatsin Z|x|
such thatp has the symmetric groug, as its Galois group.

He began his papel fl] with a statement and proof of the two-variable case, which
is the fundamental step in the proof of the general theorem. Again in Hilbert's own
words, the statement is:

Theorem 3. If f(x,t) is an irreducible polynomial in the two variablesand¢ with
integral coefficients

flz,t) =Ta" + Ty ' + -+ T, 1)

whereT, T}, ..., T, are integral polynomials irt, it is always possible, indeed in
infinitely many ways, to substitute an integer fan f(, ¢) such that the polynomial
f(x,t) becomes an irreducible polynomial of the single variable

A more modern formulation is:
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Theorem 4. Let f(z,y) € Z[z,y| be irreducible. For an infinite number d¢fe Z,
f(z,t), as an element dk[z], is irreducible.

In fact, Hilbert proved theontrapositivewhich can be formulated as follows.

Theorem 5. Let f(z, y) € Z[z, y]. If there existg, such that for every integer> ¢,
f(z,t) is reducible ovetZ, then f(z, y) is reducible ovefZ.

Hilbert proved this by formulating what is today calletilbert's Cube Lemmalt
can be viewed not only as an enhanced form of Dirichlet's pigeonhole principle but
also as the first statement of a Ramsey-type theorem.

In Section 2 we discuss Ramsey Theory to illustrate why Hilbert's cube lemma is
regarded as belonging to that field. In Section 3 we state and give a simple modern
proof of the Hilbert's cube lemma (we discuss optimizations and Hilbert’s original
proof in Section 13). It is easy to appraise the Hilbert cube lemma as a gem in an
isolated setting and forget the quest that led to it, which wastavéind a polynomial
factor, p(z,t) € Z[z, t], of the polynomialf (x, t).

In Sections 4 through 11 we provide a motivated account of Hilbert's beautiful proof
of (ir)reducibility by putting ourselves in his shoes and following the trail of ideas that
we find in his 1892 paper. We have tried to make it as self-contained and elementary
as possible.

After Hilbert, many mathematicians offered other proofs of the irreducibility the-
orem. Many of these proofs use so-called “density” arguments, a standard technique
in today’s Diophantine approximation theory, but a far cry from the natural idea of
Hilbert to find a factor of a reducible polynomial. We will say more about modern
proofs in Section 12.

Hilbert remains one of the greatest mathematicians of all time. His original proof
still contains insights and arguments that are well worth study even today. We offer
the reader a detailed exposition of this proof in hope of saving it from the oblivion of
history.

2. RAMSEY THEORY. Theorems in Ramsey Theory almost always follow this
informally-stated pattern:

For any coloring of a large enough object
there is a nice monochromatic sub-object.

We give three examples of such theorems along with some of the historylGee [
16, 27 for more on these theorems and also Alexander Soifer's bpgkdr more of
the history.

In 1916, Issai Schui24] proved the following:

Lemma 6. For all c there existsS = S(c) such that for alle-colorings of{1, ..., S}
there exists a monochromatic tripte y, z such thatr + y = z.

Schur viewed his lemma as a means to an end and so did not launch what is now
called Ramsey Theory. He used it to prove the following theorem in number theory.

Theorem 7. Letn > 1. There existg such that, for all prime® > ¢, there exists
z,y,z € {1,...,p— 1} such thatz” + y" = 2" (mod p).

Proof. Givenn letq = S(n). Letp be a prime such that > S(n). ThenZ;, which
denotes the numbefd, ..., p — 1} together with the operation of modular multipli-
cation, forms a group. All arithmetic henceforth isZi).

2 (© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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Let H = {2" | z € Z;}. Clearly H is a subgroup ofZ;. It is known that| H| =

eitas—T) SO the number of cosetsds= 7+ = ged(n, p — 1) < n. We denote the
cosets byl H,...,d.H.

Consider the following:-coloring of {1,...,p — 1}: color z by i such thatr €
d;H. Sincec < n andp — 1 > S(n), by Schur's Lemma, there exists a monochro-
matic x1, y1, 21 such thatr; + y; = z;. Since they are all in he same coset there
existsd such thatr,,y,,z; € dH. Hencezx, = dz", y, = dy”, z; = dz". Since
dx™ + dy" = dz" we getx™ + y" = 2". [ |

Theorem 7 refuted the idea of proving Fermat's last theorem by showing that for all
n > 3 there are arbitrarily large such thate™ + y™ = 2™ has no solution modulp.

In 1927, Bartel van der Waerde31] proved the following theorem which now
bears his name:

Theorem 8. For all k, ¢ there exists a numbéil” = W (k, c¢). such that for allc-
colorings {1, ..., W} there there exists a monochromatic arithmetic sequence of
lengthk.

The title of [31] credits Pierre Baudet with having conjectured this, but SoR&} [
gives evidence that Schur had also done so. Even though van der Waerden did not have
another goal in mind, he did not pursue this line of research and so did not launch what
is now called Ramsey Theory.

Frank RamseyZ?2] proved the following theorem which now bears his name. As
others often do, we state only the case for graphs, not hypergrapraph consists
of a setV of verticesand a setF C V' x V of edges We consider onlyundirected
graphs, in which edges are unordered pgirgy), withoutself-loops meaning always
x # y. The graph iscompleteif E includes all such pairs and is then denoted by
K,, n =|V|. A c-coloring of the edges is a mappinf from E to {1,...,c}. A
monochromatick’,, means a subsét’ C V of sizem andc’ < ¢ such that for all
distinctu,v € V', (u,v) is an edge and (u, v) = ¢.

Theorem 9. For all ¢, m there exists a numbeR = R(c, m) such that for allc-
colorings of the edges df ; there exists a monochromatic,,, .

The folkloric example of this theorem is that in any group of six peogtdeast
three know each other or at least three are complete strantféhe six are the vertices
of a Kg and each edge is colored green or blue (friends or strangers), then the theorem
says there is at least one monochromatic triangle. In fact, there are atweastch
triangles, wherea&s has none when a green five-pointed star is inscribed in a blue
pentagon, so thak(2, 3) = 6.

Ramsey applied his lemma to problems in mathematical logic. He viewed it as a
means to an end and so did not launch what is now called Ramsey Theory.

In 1892, before all of the results above, Hilbett] proved the lemma featured in
the next section. Like the three statements, it applies tocasgloring and yields a
monochromatic nice substructure. Hilbert viewed his lemma as a means to an end and
so did not launch what is now called Ramsey Theory. He used it to prove the Hilbert
Reducibility Theorem, which is our main topic here.

Who did launch Ramsey Theory? Speaking later about his joint paper in 1935 with
George Szekered], Paul Erdis related that it was Szekeres who rediscovered the
statement and proof of Ramsey’s theorem. They used it as a means to the following
end:

Theorem 10. For all n > 3 there existsn > n such that for anym points in the
plane in general position there existspoints that form a convex hull.

January 2014] 3
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But, they also attracted a clique of mostly Hungarians who developed the ideas, con-
jectures, and results that grew into Ramsey Theory as we know it.

3. THE CUBE LEMMA. Hilbert’s first paragraph crisply framed th@oblem of
irreducibility under substitutions represented by the statement of Theorem 1. Then he
continued right away, “Our developments rest on the following lemma.” We reproduce
his words but change his, 1 to ¢, 6 and compact his displayed formulas usinel

variablesh,, ..., b,,:

“Given an infinite integer sequenea, a., as, ... in which generally each
as denotes one of the-many positive integers, 2, ..., ¢, let m be any pos-
itive whole number. Then there are alwaysmany positive whole numbers
p® u® o u™ such that the@™ elements

aﬁ""Z ?;1 biﬂ(i)

for infinitely many whole number8§ are collectively the same numb@&t where
G is one of the numbers, 2, ..., ¢

Call those elements collectively then-cube which we can denote by
C(B; 1,y - - - m). The sequence,, as, as, ... can be called @oloring of N* us-
ing ¢ colors. Thus the conclusion is that every coloring gives risentsements
p® u® o u™ that yield a monochromatis:-cube for infinitely many starting
points 5. This is implied by the following finitistic statement, which we regard as
Hilbert's Cube Lemma in the modern sense:

Lemma 11. For all m, c there is a numbef such that, for alk-colorings ofN* and
all intervals of lengthH in N, there is a monochromatie:-cube within the interval.

Proof. The proof is by induction omn. For the base case = 1, we can takeH; =
c + 1. This just says that for amycoloring of an interval of length 4 1 there will be
two elements that are the same color. Takihtp be the smaller one an@l+ 1, the
larger one(C'(3; 111 ) is @ monochromatic 1-cube.

For the induction, assume that= H,,_, exists. We show that, for anycoloring
of an interval of length,,, = h-(1 + ch), there is a monochromatie:-cube. Let
COL be ac-coloring of an interval of lengtti,,,. Partition the interval intd + ¢
blocks of sizeh. By the pigeonhole principle, some two of those blocks have the same
sequence oh colors. By the induction hypothesis, the former has a monochromatic

(m — 1)-cubeC(B; p1, - - ., tm—1), @nd since the color sequence of the latter is the
same, it ha<’(4'; p1, - . ., tm—1) With the same color and increments hift> [.
Takeu,, = ' — 3. ThenC(S; 1, - - - , i) is the required monochromatia-cube.

[

4. MONIC POLYNOMIALS. Hilbert begins by reducing his general problem to
the case ofmonic polynomials in one variable with rational coefficients. That is, he
shows that the following statement suffices to prove Theorem 5.

Theorem 12. Letg(y, t) € Zly, t]. If there existg, such that for altt > ¢, g(y,t) is
monic and reducible ifZ[y], theng(y, t) is reducible inQ]y, t].

Proving Theorem 12 will occupy all the sections to follow, but here we show:

Proposition 13. Theorem 12 implies Theorem 5.

4 (© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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For the proof we must preface the following lemma:

Lemma 14. Let f(z,y) € Z[x,y] andg(x,y) € Z[z,y] and suppose that they are
arranged according to powers af

[z, y) = ao(y)a™ + ar(y)a" ' 4 -+ a1 (Y)z + an(y),
g(x,y) = bo(y)z" 4+ bi(y)a" " 4 4 b1 (Y)z + ba(y),

where eachu; andb, belongs tdZ[y|. Then:
(@) A necessary and sufficient condition that a polynomiél)) be a factor of
f(z,y) is that it is a factor of all the polynomials;(y).

(b) If ¢»(y) isirreducible and divides the produgt- ¢ then either it is a factor of all
a;(y) or a factor of allb;(y).

(c) If f(x,y) can be factored into the product of two polynomials:iwhose coeffi-
cients are rational functions af with integral coefficients, i.e., iQ(y)[z], then
it can be factored into the product of two polynomial€ifx, y|.

Proof. The intuition for statements (a) and (b) is that sinceccurs nowhere else it
cannot help)(y) divide f or f - g any other way than statedoBher [, pp. 203—204]
has a formal proof. To prove (c), we write the given factorization in the form

_ fi(z,y) ) fa(z,y)
f@y%—%@) ©2(y)

)

where f1(x,y), f2(x,y), ¢1(y) andp,(y) are integral polynomials such thdt is
not divisible by any factor of; (y) and f, is not divisible by any factor ap,(y). By
part (b), sincef; - f5 is divisible by - ¢,, f1 has the complete polynomial, as
a factor andf, has the complete polynomial, as a factor. By (a) we can cance}
from the coefficients of; and we can cancel, from the coefficients of,. This gives
us our factorization into two polynomials ifix, y]. [

Proof of Proposition 13.Let f(z,y) € Z[z,y] and suppose we havg such that for
all t > to, f(z,t) is reducible inZ[z]. Recall from (1) the integral polynomials
T,T,...,T, intsuch that

f(.T, t) =Tx" + Tlxn71 + - Tn—lm + Tn‘
Note thatl” and thel; become integer constants for any fixed valué. @efine
9y, t) =y" + Sy "+ Sy + S,

where for each, 1 < j < n, S; = T;7" 7. Then

Y
Since f(x, t) factors inZ[z], g(y, t) factors inQ[y]. But sinceg(y, t) is an integral
polynomial and is monic in the one variabje it factors inZ[y| by a famous and
simple lemma of Gauss. Often call&huss’s polynomial lemmat states that any
product of two monic polynomials over the rationals with at least one rational non-
integral coefficient is itself a monic polynomial over the rationals with at least one
rational non-integral coefficient.

January 2014] 5
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Thus we have satisfied the hypothesis of Theorem 12—and with thetgeamsen
Theorem 5. Assuming its conclusion gives us

g(y,t) = U(y, t)¥'(y,1),

where W (y, t) and ¥'(y, t) belong toQ[y, t|. Substituting back) = =T yields the
following equation for our original polynomial:

Oz, 1) (z, 1)

f(:L"t> = ATr—1 ’
where®(x,t) and®’(z, t) both belong t&[z, t], A € Z, andT" € Z[t] . Now part (c)
of our lemma completes the proof. [ |

Gauss used his lemma, which appeared on page 42 Disggiisitioneq6], to give
the first proof of the irreducibility of the cyclotomic polynomial of prime degree over
the rationals. As we've seen, Hilbert used it to reduce the Irreducibility Theorem to
the case of monic polynomials with rational coefficients. But to go further and prove
Theorem 12, a new tool is needed.

5. PUISEUX SERIES. The fundamental theorem of algebra shows us that the equa-
tion g(y,t) = 0 hasn complex roots for each value 6fThus, informally, there are
functions oft, sayy; (t), ..., y.(t), which satisfy the equation. Hilbert uses a refined
form of theimplicit function theoremwhich we refer to asuiseux’s theorenfsee
discussion of origins below). It says that theoot functionsy, (¢), . .., y,(t) can be
expressed in a concrete way by means of fractional power series in decreasing powers
of the variable. These are the so-calRuiseux series at infinifywvhose definition we

now recall.

Definition 1. Letm € N. A Puiseux series at infinity is an expression of the form

9] BZ‘
u(@) + >
=1

whereu(x) € Clx] is of degreen, k € N*, andB;,B,, --- € C.

We adopt the following theorem statement fro8®,[pp. 80—-81] with slight alter-
ations in notation and formatting. The power series in (2) are cRlgseux expansions
at infinity.

Theorem 15 (Puiseux’s Theorem)Giveng(y, t) as above, there are distinct power
series

B B B
yi(t) = A" + A" 4 Ay + % T 7-—122 - 7—23

B B Ba-
3/2(75)=A217h+A227h71+"‘+A2,h+1+i+£+£+--'
T T2 T3

)

T2

Bn Bn BTL
y’n(t) - Aanh + An27—h—1 + “ e _|_ An,h+1 + Tl + 2 T—33

which are all convergent fot greater than some constant, where the following hold:

6 (© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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(a) For a certain positive integek, 7 = t'/*, where the positive real value of the
root is meant;

(b) The given numbek is the highest positive exponentrothat occurs.

(c) All coefficientsA; ; and B, ; are well-defined uniquely determined complex
numbers;

(d) Any formal power serieg(t) satisfying the formal identity{y(¢),t} = 0 and
having properties analogous to those of the sefgsecessarily coincides with
one of the above series.

(e) The following formal identity holds:

g9(y,t) = H{y —yi(t)}

Hilbert ascribed the idea he used to Runge in a work that had appeared three years
earlier, and cited it in a footnote exactly like tHigle then notes—and this is the rea-
son to reduce the problem to monic polynomials—the relation between the elemen-
tary symmetric functions of the roois, y-, . . . , ¥, and the coefficient polynomials
S1,82,--+,8,, namely:

Si=—(+y2+- -+ yn)

Sy = (=1)*(1y2 + Y1Ys + *++ + Yn_1Yn)
(3)

Sn = (_1)n(y1y2y3 to ynflyn)-

The insight is that by Puiseux’s theorem, when we plug the expansions (2) into
the symmetric functions (3}he resulting fractional power series for the coefficients
all collapse down to the integral polynomials, in ¢t. For later referral, it will be
convenient to formulate this simple observation as a theorem, calling the part of the
expansion with positive exponents thelynomial part

Theorem 16. For any g(z,y) € Clz,y| the elementary symmetric functions rof
Puiseux expansior(®) collapse down to polynomials i[¢] if and only if:

(a) The coefficients of all theegativepowers ofr in the resulting fractional power
series for the coefficients asdl equal to zero

(b) The numerical coefficients of tlpolynomial part” of the resulting fractional
power series for the coefficierdse all integers

(c) The numerical coefficients of tip@sitive fractional powersf 7 in the resulting
fractional power series for the coefficients akequal to zero [ |

These three conditions will, with appropriate changes, characterize the coefficients
of any polynomial factor irZ[y, t] of g(y,t). Lemma 14 above shows that we can
write “rational numbers” instead of “integers” in condition (b).

1The original work of Puiseux can be found lilouville’s Journal, vols. 15, 16 (1850, 1851). These ex-
pansions have already been usedyRungeto derive necessary conditions that an equation between two
unknowns have infinitely many integral solutions. See this Journal, vol. 100, p. 425. [Hilbert's footnote]

January 2014] 7
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6. THE FORMAL FACTORS. Any nontrivial formal polynomial factor ofg(y, t)
is a polynomial of the form

maly,t) = [[ w—w), (4)

y]-GA

whereA is a subset of the rooty;, v, . . ., . }. As Hilbert points out, there arg))
quadratic factors(’;) cubic factors(";) quartic factors(?) quintic factors, and so on,

and finally (n’jl) factors of degrea — 1. Additionally, we count the: linear factors
for a grand total of

<g>+(§)+...+<nﬁl>+nzzn_z

possible factors. So, if(y, t) is reduciblesomer 4 (y, t), must be an integral polyno-
mial factor. Sometimes we prefer to think of as a single item rather than a set, so we
assign it a unique indexwherea = 1,2, ...,2" — 2. Thenr,(y, t) means the same
asm4(y,t). These items will become the “colors” in the Cube Lemma.

Let's look at a simple example of a reducible integral polynomial:

gy, t) ==y* —t°.

Then the roots ofi(y,t) = 0 arey;, = t, yo = wt, y3 = w’t wherew? = 1, w # 1.2
Whenn = 3 there are® — 2 = 6 formal factors. Thus the sets are

{yl}a {y2}7 {ZJS}, {y1>y2}’ {ylayS}v {y2a3/3}a

and we (arbitrarily) assign the indices= 1,2, 3,4, 5, 6 to them respectively. Then,
by (4) these formal factors are:

Ty =mT(y,t) =y -y =y —t,
7T{y2}—7r2y7 _y_yZZy_wta
y—ys =y —wit,

= —y)y—ys) =y + Wty + wt’,
(y— )y —ys3) = y* + ty + t*.

We observe that, (y, t) andmg(y, t) areintegral polynomial factors whereas the other
four are not.

(

(

Tiysr = T3(y,

(

Ty st = Ts(Y, t
(

t)
)=
Tiywey = T4y, 1) = (y — 1) (Y — 1) = ¥ + wiy + 1%,
)
)

T{ys,y3} = Te y,t

7. USING THE PIGEONHOLE PRINCIPLE. Our problem now is to discoveat

least oneformal factorr,, that is anintegral polynomial. (We note that its comple-
mentary factor is also an integral polynomial.) We begin our search by applying our
hypothesis.

Taket, from the hypothesis of Theorem 12 angto be the positivé:th root oft,.
Usually, 7o will be irrational. By hypothesis, if we substitutg into all of the coef-
ficient series of the formal factors,(y, t), at least one of them will be an integral
polynomial iny.

2Moreovery; = t, yo = wt, y3 = w?t wherew® = 1, w # 1 are also the Puiseux expansions of the roots.

8 (© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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Now, along with Hilbert, we observe that if we substit@te into all of the coeffi-
cient series of the formal factors,(y, t), thenat least one of them will be an integral
polynomial iny, by the assumption that(y, 2*¢,) is reducible.

Again, if we substitute3, into all of the coefficient series of the formal factors
7. (y,t) at least one of them will be an integral polynomialjnby the assumption
thatg(y, 3*t,) is reducible. The same is true ¢f,, 57, and indeed, ofr, for o =

1,2,3,....
Therefore, we obtainan infinite sequence of integral polynomial factors
74(y,o%ty) in y. Each of them has a unique indexwherea = 1,2,...,2" — 2,

Let these indices bey, as, as, .. ., as, . ... Then, by the pigeonhole principlat least
one indexa, occurs infinitely oftenin our example above, we can take = 1 or
as = 6 and our sequence of indices contains either 6 or both infinitely often. The
point is that:

The corresponding formal polynomial,, (y,t) is a
natural candidate for our integral polynomial factor.

To prove that iis our integral polynomial factor, we must verify that its Puiseux series
satisfy the three conditions of Theorem 16. The rest of Hilbert's paper (and ours) is the
proof thatthe candidate formal factor,, (v, t) satisfies these three conditions .

8. FRAMING THE CUBE LEMMA. Let's consider the first conditiorthe coef-
ficients of all thenegativepowers ofry in the resulting fractional power series for
the coefficients of, (y, 0*t,) are all equal to zeroSuppose the following system of
coefficient power series for,, (y, (6*ty)) hasa, as its index:

Y+ ye+ oty = A (o) + Ap(omn) 4+ Ay i

NY2 Y = Aul(UTo)hV + Auz(UTo)hV_l +- 4+ A

Bul Bu2 BV3
o TRy
oty (o70) (o70)

The coefficients\, B are all completely determinate rational or irrational, real or com-
plex numbers; some of them have the value zero since the positive exponenia of
general will be smaller thafm — 1)h.

The variable quantity here is the integerThis suggests thate rewrite the above
fractional series as series in and then obtain:

Yy1+y2+---+y :A110h+A120h71+"'+A1,h+1

January 2014] 9
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where the new coefficientd, B are again determinate numerical quantities. Suppose
that the index of the first occurrence of our infinitely repeated polynomial factor is
s = o = u. Then every repetition of the indgx produces the same power series

in o, but with alarger value ofo. Thus, since there are an infinite number of such
indices, there are infinitely many larger and larger values @fsubstituted into the
power series.

If we look at the series ofiegativepowers for any particular coefficient, we see
that for sufficiently larger it become arbitrarily small in absolute value. Yet, the total
power series takes integral values for all of these values dthat suggests that the
total contribution of the negative powers, for larggs an integer of arbitrarily small
absolute value, i.e., zero

Thus we might try to argue by contradiction as follows: Assume that thege
nonzero coefficients of negative powers and deduce an absurd conclusion. The possible
hitch is that this inference ignores the “polynomial part” of the coefficient series—
which could exactly compensate for a tiny nonzero contribution of the negative powers.

To show that this isiot the case we would like to somehow “eliminate” the poly-
nomial part of the coefficient series without losing the property of being an integer
for infinitely many values o&. This suggestirming suitable linear combinations of
the coefficient series which successively subtract off the principal terms of the polyno-
mial parts, and leaving finally only linear combinations of integer-valued series with
negative coefficients

To see how this would work, let's look at a typical coefficient series. Let us choose
any of thev power series in the system under consideration, say the power series

Plo) = Apno™ 4 Apo™ P4 4 Ay + Bu | B—f + B—f’
(o g (o
where we have writtem — 1 for the highest power af.
Now comes a new insighThis is the insight that is key to the whole pro$ sim-
plicity belies the brilliance it took to think of it. Professional mathematicians are aware
of this phenomenon: the deepest ideas, in the end, are based on a simple observation.
Here is Hilbert's:

Suppose that the seri@¥ o) takes on integral values, not only fo
infinitely many values o, but also for all the infinitely many values
of o + p™, wherep(" is a fixed increment independentcof

Now we form the linear combination
PY(0) :=P(c) — P(o + uV)
and put the polynomial part equal to
Om_1(0) i= Apo™ M+ Appo™ 2 4+ Ay,

for brevity. We now start the argument-by-contradiction.

Suppose now that the other coefficier$s,, Bi2, B3, ... of the power series
P(o) are not all zeroand letB;, /c” be the first term whose coefficiedt;, does
notvanish. Then

1 1
P(l) (G) = Somfl(o-) - 80777.71(0— + ,Uz(l)) + Blv —

o ooy T
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Here the first difference on the right-hand side polynomial of degree: — 2 in ¢;
we put

Pm—2(0) = Pm-1(0) = Pm-1(c + p).

We expand the remaining terms on the right-hand side in decreasing powsertheh
we obtairt

Blv
O-'U+1

PU(0) = pma(o) + pPv—1 4.
We have reduced the maximum degree of the polynomial part by oné/ianéover,
PW (o) takes on integral values for infinitely many

We havenot proved that such an increment!) exists, but if we could, then we
could make a first step in reaching our goal of producing a series of negative powers
of ¢ that is an integer for infinitely many values of

To carry out a similar program teduce the maximum degree of the polynomial
part tom — 3, then tom — 4, and so on until finally to zefave would have to have
to prove the existence of, fixed incrementg.*), k = 1,2, --- , m whose values are
all independent ofr and such that if we substitute any of the integers

17
ptu)

PRI RN CONINC)

PP C ORI € B C YR ¢ C ) RPN € D A CO NI )

N+l‘(m) P‘+N(1)+N(m/) .U'+;U'(2>+H(Tn) H+H(l)+"'+l"(m)

for o in P(o), the values will all be integers
Note that the proof of the existence of the incremeét amounts to proving that,
anda ,, ) are bottthe same number in the set of indicgsA similar property holds

for the set of all the above sums of fixed increments (for k = 1,2, ..., m) with
1, namely that they all are the subscriptsleé same number in the set of indiegs
In our running example they are all equalltor they are all equal t6.

The proof of the existence of these increments is the content dflilbert cube
lemma To serve the context of Hilbert's proof, we re-state it using his formulas much
as he visualized them in his paper.

3The details, with simplified notation, are:

1 1 B, [ 1
Bro|— — il Bl arravs
oV | (1+g)

o (o+p)”
-G () ]

Biy [uv  v(v+1) <u>2 }
== _ T2} 4.
o¥ | o 2 o

v+1l/p
1— [l
2 <a>+ ]

and this last expression on the right-hand side is equivalent to that in the main body of the paper.

_ /J/VBI’U
- a—u+1
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Theorem 17. Letay, as, as, ... be an infinite sequence in which the general term,
as, is one of thex positive numberg, 2, ..., a. Moreover, letm be any positive in-
teger. Then we can always fimd positive integerg:"), 4®, ..., 1™ such that for
infinitely many integerg the 2™ elements

ay

Q)
a/th,(?) aMer,(l)er,(?)

Qg ® Qg3 Q43 Qg (1) (2 ()
a#Jr#(m) ath#(l)Jr#(m) a#+#(2)+#(7”) to T au+ﬂ(1)+#(2)+...+#("b)
are all equal to the same numbét, whereG is one of the numberk 2, . . . a.

Thus we see that the statemanises naturally from the necessity of proving that
the coefficients of the negative powergafiust be all equal to zerdt is the strength-
ened form of the pigeonhole principle we mentioned earlier. It is stronger because it
imposes atructureon the distribution of infinitely many common valueswhereas
the pigeonhole principle only implies theaikistence

9. THE COEFFICIENTS OF THE NEGATIVE POWERS OF ¢ ARE ZERO.
Employing the above idea, we form the following linear combinations:

PU() = Plo) = Plo+ ),
PE(0) = PU() = PV (o + ),

P () =P () — P (g + pl™).

It follows from what we proved earlier that each of thesg@ower series also assumes
integer values for infinitely many integral argumeats= .
As we indicated, assuming the cube lemma, we obtain

Blv

P2(0) = pm-s(0) + P v(v+1) 75

+...7

wherey,,_3(o) is a polynomial ino of degreem — 3. Afterm steps we arrive finally
at the formula

P (o) = puPp® ™o +1) - (v4+m—1)

Since this power series begins with negative powers,ofve can find a positive
numberl’ such that for all values of that exceed" the absolute value of the power
serieswill be smaller than oneOn the other hand, the power serfe€™ (o) is itself
equal to an integer for infinitely many argumentand since an integer whose absolute
value is less than one is necessarily equal to zero, it followstligae are infinitely
many integers for which the power series vanishes

12 (© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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But, our last formula shows us that

lim [o"*" P ()] = uOp® -y (o 1) (04 m —1)Bu,

g—00
where the expression on the right hand-side represents a qudiiféyent from
zera This last result stands ioontradictionwith the conclusion above, and there-
fore it is impossible that a nonzero coefficielt;, occurs among the coeffi-
cients By, By2, B3, .... It follows in the same way thatlso the coefficients
Bs;, Bs;, By, . .., B,; must all be equal to zero

This completes the proof of the first condition of Theorem 16 about the Puiseux

expansions of the coefficients of, (v, t). [

This step was the heart of Hilbert's proof and his paper’s most brilliant insight. The
other parts are clever too, but in our opinion this best shows his penetrating originality.

10. THE COEFFICIENTS OF THE POLYNOMIAL PART ARE RATIONAL
NUMBERS. The next condition of Theorem 16 to be verifiedtise numerical coef-
ficients in the polynomial part of the Puiseux expansions of the coefficients(of ¢)
are rational numbersOur expansion has collapsed to the polynomial part:

Plo) = Apo™ 4 Ape™ 2+ A, %)

where the right-hand side assumes integer values for infinitely many valae# gfe
set the right-hand side equal to these integersiioralues ofc we obtainm linear
equations withm unknownsA;,, A, o, ..., A, which have aational solutionby
Cramer’'s rule. By Proposition 13, getting “rational” suffices to prove the conditian.

11. ONLY INTEGRAL POWERS OF t. The final condition of Theorem 16 to be
verified is:the only nonzero terms in the polynomial part of the Puiseux expansions of
the coefficients of,, (v, t) are those with integral powers of

Take T, to be aprimenumberp larger thanC"” and recalbr, = 7. We now deter-
mine2” — 2 distinct prime numberg’, p”, ..., p* 2 all greater thap. Then also for
each of these prime numbers there exists at least one amo2§ th@ formal factors
whose coefficients have the above polynomial form (5). However, since the number of
prime number, p’, p”, ..., p* ~2is equal t?"” — 1 while the number formal factors
only reache®™ — 2, necessarilyhere must exist at least one formal factor admitting
a double representation by these polynom{als That is to say, as above:

Yr Yo+ Ay = Anp” TR 4 Apppm TR o Ay,

Y1Y2 - Yy, = Aylp_(M—l)/k’TWL—l + Ayzp—(M—Q)/k’Tm—2 + . + Al,m
and simultaneously

Y+ Yo+ Yy, = A/lef(mfl)/kTmfl + A/np/f(mf2)/k7_m72 4t Allm

Y1Ys - Yy = A:jlplf(mfl)/kTmfl + A;2p/7(m72)/k7m72 4ot A/

vm *
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Since, by Puiseux’s theorem, the coefficients of the powers afe unique, if we
equate coefficients of equal powersrobn the right-hand sides we obtain:

Allp—(m—l)/k: — A/llp/—(m—l)/k e — .. Almp—(m—l)/k — Allmp/—(m—l)/k:
Azlp—(m—l)/k — A/le/—(m—l)/k' e — .. A2mp—(m—1)/k _ A/2mp/—(m—1)/k
A=A, = Ay = A

Since the coefficientsl, B and A’, B’ are all rational numbers andandp’ are
distinct prime numbers, the above equations show ughleainly coefficients that can
be different from zero are those for which the corresponding exponentnfst be an
integer divisible byk.

That is, the power series of our systame polynomials in-* with rational coeffi-
cients and if we putr® = ¢, we obtain

Y1+ yo+ -+ oy = Fi(t)

Yy -y = F (1),

whereF(t), ..., F,(t) arepolynomials int with rational coefficients
This completes the proof of the third condition of Theorem 16 of the Puiseux ex-
pansions of the coefficients of some formal factor(y, t). [

We note that the final formal factor,, (y, t) is not necessarily the same one that
we started with. All we needed was that it fulfills the three conditions of Theorem 16,
and therefore the proof of Theorem 12 is complete. [ |

12. LATER PROOFS OF THE IRREDUCIBILITY THEOREM. After Hilbert,
many mathematicians offered other proofs of the irreducibility theorem.

Most of the modern proofs of the (two-variable) irreducibility theorem are based
on that of Karl Dbrge ], which sharpened an idea of Thoralf Skole®¢][ Dorge
proved it without using the cube lemma and obtained a stronger result. To begin con-
trasting his and Hilbert's results, recall Hilbert's statement thgtdf Z [z, ¢, ..., t,]
is irreducible, then for infinity many., . ..,as € Z, f(z,a4,. .., as) is irreducible.

Now let | f| be the maximum oB and the absolute values of the coefficients of
f (the reason for insistingf| > 8 is technical). A simplified statement ofdBge’s
theorem is:

Theorem 18. There is a functiore(d, s) such that the following holds. Lef €
Zz,ty,...,t,] be irreducible of degreel. Let N > |f|(**). Then the number of

(ai,...,a5) € {—N,...,N}*suchthatf(z,as,...,as)isnotirreducible is at most
‘f|c(d,s)st(l/2) log N.
Note that the number of sudla,, ..., a,) has density 0. Drge actually presented a

generalization of this theorem where he repla€egith the integers of a finite exten-
sion of a number field.

Dorge also showed (in fact this was his primary interest) thdt iWiewed as an
element ofZ[ty, . . ., t,][z], has Galois groug-, then the number ofa,, ..., a,) €
{=N,...,N}* such thatf(z,ay,...,a,) does not have Galois grou@ is at most
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| f|(5) N5=(1/2) Jog N. And again, he actually presented a generalization of this the-
orem that replace® with the integers of a finite extension of a number field.

Lang [17, 1§ and Prasolov20] have expositions of Brge’s proof. Franz{] also
gave a proof that does not use the cube lemma, and this is expounded further by
Schinzel R5]. There is a another alternative proof by Fried]. [Serre P8 recasts
these results in geometric terms and presents results about which groups can be Galois
groups.

13. HILBERT CUBE NUMBERS AND CONCLUSIONS. Define the “Hilbert
Cube Number”H(m,c) to be theleast number H such that every-coloring of
1,..., H has a monochromatia:-cube. Our proof of the cube lemma in Section 3
showed a recursive upper boufit{m, c) < H(m — 1,¢)(1 + ¢(m=19)), with ba-
sis H(1,c¢) = 1 for all ¢. This is far from best possible. For one thing, wherg
m < ¢ one can improve the upper bound #(m, ¢) < h(1 + ¢(m — 1)"), where
h = H(m — 1, ¢), by a different counting argument. One can further tweak this with
(’”}:1) in place of(m — 1)". These formulas are not bounded by any fixed tower of
exponents irc andm.

As observed by Brown et al2], Hilbert's original proof yields bounds witfic +
1) rather than(m — 1) in the base and the Fibonacci numiey,, in the exponent.
Namely,H (m,c) < (c+1)f2m, whereF, =0, F;, =1, F, =1, F; = 2,... . These
bounds have double-exponential growth. Sz&rdgR9] (see also10]) improved both
the bounds and the nature of the result, showing that any subeéf1, ..., H]| of
densityl/c (that is,|A| > H/c) contains ann-cube wheren > loglog(H) — C
andC' depends only om. The best known upper and lower bounds appear still to be
those of Gunderson andRl [11]:

2m—1

1=ea)@=1)/m H(m,c) < (2c¢) ,

wheree, — 0 asc — oo. The same upper bound was recently ascribedL By

Conlon, Fox, and Sudakow] but see also &dor R3] with different asymptotics.
Erdds and Tuén [7] proved thatH (2, ¢) is asymptotic ta-?, but the remarks inZ] that

less is known about (m, c¢) for fixed m > 3 appear still in force, and3] remarks
that H (m, 2) depends on unknown properties of van der Waerden numbers.

We have shown the significance of the cube lemma in the context of Hilbert's origi-
nal paper. The question of whether Hilbert might have expanded on it bids comparison
with Ramsey’s motivation in42]. That was a problem in logic not number theory
per se But Hilbert was the world’s master in the relationship between number theory
and logic until Gdel emerged, so one may ask again why Hilbert didn’t pursue this
further or develop areas of extremal combinatoriissa-vis logic in the direction of
Ramsey theory. We close with a speculative answer: The world in which Hilbert was
immersed is as different from that of Ramsey theory as “doubly-exponential” is from
“singly-exponential.”

The years 1890-1893 saw the publication of Hilbert's great foundational works in
commutative algebra, including his basis theoremidnlistellensatf13, 15. A com-
mon thread through all this work is the notionrefularity. given a finitely-specified
system of elements that may have arbitrarily large values of some parar{sieh as
the degree of polynomials over a ring), there is some integsuch that for alt > ¢,
the system conforms to a simple description. Hilbert first proved his basis theorem
nonconstructively. Later was it shown that the growth of the relet@afih terms of
the degreed of basis elements or the-variable equations in thHullstellensatgis
double-exponential, of order at ma&t . Our answer to the question we posed in the
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previous paragraph is that Hilbert was simply occupied with more-rarefied levels of al-
gebra and analysis revolving around invariants. Irreducibility of polynomials plays into
irreducible varieties and primary decompositions of polynomial ideals, which Hilbert's
student Emanuel Lasker (the world chess champion) and colleague Emmy Noether
built upon for some great work in the next two decades. Meanwhile, Hilbert swooped
down to the utterly ground-level task of formalizing Euclid’s geometry in the later
1890s, which presaged his work on formal systems of logic.

The divide in purpose and growth rate doesn’t ward us off from appreciating the
cube numbers and seeking other uses for them. That is why we have devoted this paper
to expounding their original use and context. We have highlighted how the cube lemma
completed an insight about estimates by infinite series. We hope that our exposition
will foster a greater appreciation of combinatorial underpinnings of more “analytical”
areas of mathematics.
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