
A Pretty Identity
An old but beautiful identity

Joseph Lagrange was both a mathematician and an astronomer,
who made significant contributions to just about everything. Yet
like all of us he could make mistakes: he once thought he had
proved Euclid’s parallel postulate. He wrote a paper, took it to
the Institute, and as they did in those days, he began to read it.
But almost immediately he saw a problem. He said quietly:

Il faut que j’y songe encore.

“I need to think on it some more.” He put his paper away and
stopped talking.

Today Ken and I thought we would talk about a beautiful identity
of Lagrange, not about the parallel axiom.

Many of you may know the identity, almost all of you probably
know one of its consequences, the famous Cauchy-Schwarz inequal-
ity:

(a, b)2 ≤ ||a||2||b||2.

Here (a, b) is the usual inner product and ||a||2 is the square of the
L2 norm, ∑

k

a2
k.

The finite-dimensional case of this inequality for real vectors was
proved by Cauchy in 1821. Then his student Viktor Bunyakovsky
obtained the integral version, by taking limits. The general result
for an inner product space was proved by Hermann Schwarz in
1888.

Bunyakovsky worked in theoretical mechanics and number theory.
He conjectured, in 1857, a very natural result, one that is surely
true, but even after its sesquicentennial anniversary, it remains
completely untouched. The conjecture is:

For each integer polynomial f(x) there are an infi-
nite number of primes in the sequence

f(0), f(1), f(2), . . .

provided the polynomial satisfies certain trivial con-
straints.
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These are: (i) it must be a polynomial that tends to positive
infinity—primes are positive, (ii) it must be irreducible, and (iii) it
must not always be divisible by a fixed prime. The first two con-
straints are trivial and the last avoids polynomials like x(x+ 1). It
is still open for all polynomials of degree at least two.

Cauchy’s student made a beautiful conjecture, but a very hard one.
We wonder how it was to work with Cauchy as an advisor?

The Identity

Lagrange’s identity is quite pretty. For any real numbers a1, . . . , an
and b1, . . . , bn:(

n∑
k=1

a2
k

)(
n∑
k=1

b2k

)
−

(
n∑
k=1

akbk

)2

=
n−1∑
i=1

n∑
j=i+1

(aibj − ajbi)2

Using notation for the norms and inner product we can shorten it
to:

||a||2||b||2 − (a · b)2 =
∑

1≤i<≤j≤n

(aibj − ajbi)2

The importance of the identity is that it immediately implies the
famous Cauchy-Schwarz inequality over the real numbers.

For a historical note, the case n = 2 was known going back to
antiquity:

(a2
1 + a2

2)(b21 + b22)− (a1b1 + a2b2)2 = (a1b2 − a2b1)2.

Wikipedia names this for Brahmagupta, whom we recently men-
tioned, and for Fibonacci, but notes that it goes back (at least) to
Diophantus. Brahmagupta actually stated and proved this identity
for any n as well:

(a2
1 + na2

2)(b21 + nb22) = (a1b1 + na2b2)2 + n(a1b2 − a2b1)2.

Incidentally, this shows that not only are numbers that are sums
of two squares closed under multiplication, but also numbers of
the form x2 + ny2, for any fixed n. Also we recently mentioned
Lagrange’s use of a lemma that numbers that are sums of four
squares are also closed under multiplication, on the way to proving
that they encompass all whole numbers.

Two Complex Versions

The identity shows that an inner product can be reduced to the
computation of only sums of positive quantities. This works also
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in the complex case, but there are two interesting versions that are
not immediately interchangeable. First, let

S =
∑
k∈[N ]

akbk

where we will have in mind that a, b are unit vectors. Then by the
identity we get that S2 is equal to(

N∑
k=1

a2
k

)(
N∑
k=1

b2k

)
−
N−1∑
i=1

N∑
j=i+1

(aibj − ajbi)2

This consists of only two sums, each of which is a sum of squares.
Now we may interchange each ak by its conjugate āk, so that we
get a proper complex inner product

S′ =
∑
k∈I

ākbk,

which is thereby equal to(
N∑
k=1

ā2
k

)(
N∑
k=1

b2k

)
−
N−1∑
i=1

N∑
j=i+1

(āibj − ājbi)2.

Note that the conjugates do not go away even though they are
squared, so we do not obtain sums of positive quantities. To get
this, we need a different version that was also found by Lagrange:(

N∑
k=1

|ak|2
)(

N∑
k=1

|bk|2
)

=

∣∣∣∣∣
n∑
k=1

ākbk

∣∣∣∣∣
2

+D,

where

D =
N−1∑
i=1

N∑
j=i+1

|aibj − ajbi|2 .

This is the same as Wikipedia’s formula with ak replaced by āk,
which in turn fixes an apparent typo in its source. We note that the
brute-force proof of this for n = 2 leads to Lagrange’s four-square
lemma. Namely, let

a1 = s+ it

a2 = u+ iv

b1 = w + ix

b2 = y + iz.

Then the left-hand side becomes

(s2 + t2 + u2 + v2)(w2 + x2 + y2 + z2),
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which represents an arbitrary product of sums of four squares that
we want to write as a sum of four squares. The right-hand side D
becomes

|sw + xt+ uy + vz + i(sx+ uz − tw − vy)|2+|sy + vx− tz − uw + i(sz + ty − ux− vw)|2 .

This is a sum of four squares, and to verify that it equals the left-
hand side, one need only see that all twenty-four cross-terms in D
cancel.

Toward New Applications?

Written more compactly using inner product and norm notation,
what we have is

P = |S′|2 = |(a, b)|2 = ||a||2||b||2 −D.

Thus we have written the squared inner product as a difference
of two positive real terms, where each term is a sum of squared
real subterms or a product of the same. Ken and I have been
trying to use this to improve some known simulations of quantum
algorithms. So far we have no new results, but the above manipu-
lations make a tighter connection seem plausible. The question for
the applications we seek is:

Under what conditions can good approximations to
the squared subterms yield a good approximation to P?

In general, the sticking could be the minus sign, together with the
presence of situations where each of the two terms on the right-hand
side has magnitude much higher than P . Thus approximations of
these terms to within (1 + ε) will not help unless ε is truly tiny.

However, in quantum algorithms, we can expect a and b to be unit
vectors. Depending on the algorithm, we may be able to arrange
for the squared inner product |(a, b)|2 to yield the acceptance prob-
ability, so that P is a number between 0 and 1. Then ||a||2||b||2
simply equals 1. Thus we have:

P = 1−D = 1−
N−1∑
i=1

N∑
j=i+1

|aibj − ajbi|2 .

Thus we can hope that good approximations to the squared terms
in the sum can yield a good approximation to P . Moreover we are
helped by the promise for a BQP algorithm that either P is close
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to zero (so the sum is close to 1) or P is close to one (so the sum
is close to 0). What can go wrong?

The sticking point again could be the minus sign, together with
what could be exponentially many complex “cross terms” of the
form aibj . It may be hard to get enough of a handle on those
terms to approximate all their (squared) differences. Two further
complications are that sometimes our acceptance probability in-
volves not just one inner product (a, b) but many, though in some
cases we can arrange polynomially many, and that the indices i, j, k
may be limited to some subset I of [N ]. What could help us most
would be a further manipulation of D, taking into account the BQP
“promise” condition that D be near 0 or 1.

Open Problems

Did you know this identity? Besides Cauchy-Schwarz, what use-
ful inequalities and estimates can be derived—in the presence of
certain promise conditions?
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