
CS 4100/5100: Foundations of AI
Adversarial Search (i.e. game playing)

Instructor: Rob Platt
r.platt@neu.edu

College of Computer and information Science
Northeastern University

September 5, 2013



Games

Kinds of games:

I stochastic vs perfect information

I fully observable vs partially observable

I most of the games we consider are zero-sum

Formally, a game is defined by:

I initial state

I transition function and description of feasible actions

I terminal test and utility function
I description of how players take turns

I this is the only thing specific to games



Game tree



Game tree

The only difference between game search and regular search is that
you need to take into account the actions of an opponent. How to
do that?

I assume in advance that the opponent always makes the best
possible move available to him/her.

I Both players are assumed to play optimally. An optimal
strategy is as good as you can do assuming you are playing an
infallible opponent.

I This is basically the same as AND-OR search. Why?



Minimax search

Minimax search is and-or search for game trees.

I recursively explore the tree (DFS)



Minimax search



Minimax search

Properties of minimax

I optimal

I complete

I time complexity?

I space complexity?

Chess: b ≈ 35, m ≈ 100.



Minimax example

There are six spaces on a board that must be filled in order. Player
1 (MAX) uses x, and Player 2 (MIN) uses o. Each player can place
at most 3 symbols per turn. Whoever places their symbol in the
last slot on the board wins. Draw the minimax search tree.



Alpha-beta search

Idea: prune parts of the tree that you know won’t change your
strategy.

A player is in the process of unrolling the search tree in order to
decide what to do...

I suppose that the best move that the player has found so far
has value v

I suppose that you already know that the node you are
currently expanding has a maximum value of w < v (how can
this happen?)

I then, you don’t need to explore that node any more and can
move on to the next one...



Alpha-beta search



Alpha-beta search



Move ordering in Alpha-beta search

Notice that the effectiveness of AB depends on the order in which
states are examined.

I minimax search complexity: bm

I AB search w/ random move ordering: b0,75∗m

I AB search w/ ”optimal” move ordering: b0.5m (killer move
heuristic)

But, how do you get a good move ordering?

I a heuristic

I iterative deepening...

Avoiding repeated search:

I tranposition table: hash table that stores the values for
previously explored states.



Doing better

Usually, AB isn’t enough. AB is complete and sometimes that just
isn’t possible.

I alternative: cut off search early w/ an approximated value for
that state.

Evaluation function: an estimate of the expected utility of a given
state.

I for example, in Chess: assign each board position an
approximate value in terms of the number of pawns, bishops,
knights, etc.

I cut off search after a certain depth and just use the evaluation
function



Doing better (specifically)

But how do you decide how to set the evaluation function?

Think of it as dividing up the state space into equivalence classes:

I all board states w/ 5 pawns, 2 bishops, etc. belong in a single
equiv class

I the value of each equiv class is equal to the probability of
winning from that state (i.e. the expected value in general).

I but, how do you calculate that? learn from experience?



Cutting off search

A simple way to cut off search is to use iterative deepening and
just return the best current answer when the time’s up.

I ID also helps w/ move ordering



Cutting off search

Don’t want to cut off search pre-maturely. Sometimes a given
state is likely to suffer a large change in value in the near future...

I only apply cutoff to states that are quiescent



Forward pruning

Look at evaluation function before expanding nodes. Just don’t
expand low-scoring nodes:

I for example: on each move, only do search on the top n
moves.

I alternative (probcut): estimate how likely a given node is to
be outside the (α, β) threshold based on past experience and
without searching the entire tree.



Minimax variations

Sometimes, strict minimax seems to be the wrong thing to do:

I alternative is to associate the evaluation function w/ some
measure of variance. Then, calculate the probability that the
node is actually better.


