
CS 4100/5100: Foundations of AI
Constraint satisfaction problems 1

Instructor: Rob Platt
r.platt@neu.edu

College of Computer and information Science
Northeastern University

September 5, 2013

1These notes draw heavily from Hwee Tou Ng’s slides
(http://www.comp.nus.edu.sg/~nght/). I also draw from Gillian Smith’s
slides (http://sokath.com/main/).

http://www.comp.nus.edu.sg/~nght/
http://sokath.com/main/


What is a constraint satisfaction problem (a CSP)?

You need to assign discrete values to a set of variables such that a
set of constraints is satisfied:

I each province gets a color assignment

I no two adjacent provinces can have the same color.



Examples of why CSPs are useful: scheduling

I what are the variables?

I what values do those variables take?

I what are the constraints?



Examples of why CSPs are useful: pcb board layout

I what are the variables?

I what values do those variables take?

I what are the constraints?



Examples of why CSPs are useful: puzzles

I what are the variables?

I what values do those variables take?

I what are the constraints?



Examples of why CSPs are useful: Sudoku

I what are the variables?

I what values do those variables take?

I what are the constraints?



Types of CSPs

I discrete vs continuous
I in this course, we assume CSPs are discrete.
I linear programming, quadratic programming, etc. can be

viewed as continuous CSPs

I constraints branching factor: unary constraints, binary
constraints, etc..

I what type of constraint is in the coloring problem?
I what type of constraint in Sudoku?

I any constraint graph with more than binary constraints can be
converted into a binary constraint graph.

I don’t always do this, but is it often convenient
I assume from here on out that we are dealing w/ binary

constraint graphs



Solving CSPs

How do you think we might do it?



Solving CSPs

How do you think we might do it?

I DFS again...

I How would that work?



Backtracking search

Example:

Each ply of the tree corresponds to a single variable that will be
assigned (because the tree is *commutative*).



Backtracking search

Example:

Each ply of the tree corresponds to a single variable that will be
assigned (because the tree is *commutative*).



Backtracking search

Example:

Each ply of the tree corresponds to a single variable that will be
assigned (because the tree is *commutative*).



Backtracking search

Example:

Each ply of the tree corresponds to a single variable that will be
assigned (because the tree is *commutative*).



Backtracking search



Improving backtracking efficiency

There are a few heuristic strategies that generally speed up
backtracking.

Minimum remaining values (MRV) heuristic:
I Which variable does the algorithm expand next?

I Plain backtracking allows you to expand any unassigned
variable...

I choose the variable with the fewest legal values



Improving backtracking efficiency

Degree heuristic:
I choose the variable with the highest branching factor.

I MRV is typically more useful, but Degree can help if multiple
variables have the same MRV.



Improving backtracking efficiency

Least constraining value (LCV) heuristic:

I this heuristic chooses the order in which values (not variables)
are assigned

I assign values in the least constaining order



What else can we do to improve backtracking efficiency?

Notice that as we expand the search tree, our prior value choices
constrain future choices.

For example, what should be the branching factor for the leftmost
leaf nodes?



Forward checking

Keep track of remaining legal values for unassigned variables.
Terminate search when any variable has no legal values.



Forward checking

Keep track of remaining legal values for unassigned variables.
Terminate search when any variable has no legal values.



Forward checking

Keep track of remaining legal values for unassigned variables.
Terminate search when any variable has no legal values.



Forward checking

Keep track of remaining legal values for unassigned variables.
Terminate search when any variable has no legal values.



Arc consistency

Given a pair of variables, x and y , that are connected by a binary
constraint: variable x is *arc consistent* with variable y if for
every value in the domain Dx , there is a value in Dy that satisfies
the binary constraint, (x , y).

Example: y = x2, x = {0, . . . , 10}, y = {0, . . . , 10}
I x is not AC wrt y . y is not AC wrt x .

I if x = {0, 1, 2, 3}, then x is AC wrt y (but not vice versa).

I if y = {0, 1, 4, 9}, then y is also AC wrt x .

You can make a variable AC wrt to its neighbors by deleting values
which are inconsistent w/ the neighbors.

I this is what we’re doing w/ forward checking.

I each time we assign a variable, we do ONE step of AC w/ all
of that variable’s neighbors (make the neighbors AC wrt to it)



Forward checking

I Notice forward checking must get to the very end before it
recognizes that there is a conflict.

I Constraint propagation can detect this kind of failure earlier.



Constraint propagation: AC3

AC3: makes every variable in the graph arc consistent w/ every
other variable.

I there is also such a thing as node consistency. Guess what
that does...

Algorithm: AC3

I initialize a queue w/ the set of all constraint arcs in the graph
(both directions)

I pop an arc (x , y) off of the queue and make x AC wrt y .

I if Dx is unchanged, then move on to the next arc in the queue

I if Dx gets smaller, then add all arcs GOING INTO x to the
end of the queue. Then, move on to the next arc in the queue.

I if the domain of any variable reaches zero, then the graph is
no longer AC!



Constraint propagation: AC3

You can use AC3 before doing any search to reduce the amount of
search that needs to be done.

You can also use AC3 after each step of search to ”update” the
values to be searched with the latest information: this is MAC
(maintaining arc consistency).

I suppose that backtracking search has just assigned a value to
x

I create a queue comprised only of arcs going from the
neighbors of x to x .

I do AC3 on that queue.

Constraint propagation is strictly more powerful than forward
checking.



Constraint propagation: AC3



Local search

Min conflicts heuristic:
I choose a random variable that is in conflict
I assign that variable the value which minimizes the number of

pairwise conflicts
I repeat

Slightly different from hill climbing:
I remember in HC, we had a complete assignment to the

variables and made incremental changes in queen locations.
I here, we are adding queens in a least-constrained way.
I works well for n-queens because solutions are fairly dense in

the search space...



Problem structure

So far, we’ve talked about search for general CSP problems. But,
some problems have special structure...

I disconnected componenents in the constraint graph

I tree struture.



Problem structure: trees

Trees can be solved in time linear in the number of variables

I First, do a topological sort of the nodes.

I Starting w/ the leaf node (last node in the sorted list), make
the parent AC w/ it.

I Continue w/ the next node in the list...

I complexity?



Problem structure: almost trees

Suppose you have a problem that is *almost* a tree, except for
one or two nodes. Then:

I Exhaustively set all possible values for the ”exception nodes”.

I For each value setting, do CSP-Trees.



Value symmetry

Many CSPs have value symmetries.

I for example, the australia problem has symmetry in the colors

I you can avoid searching the extra variables by imposing an
arbitrary symmetry-breaking constraint on the variables; for
example: NT < SA < WA.


