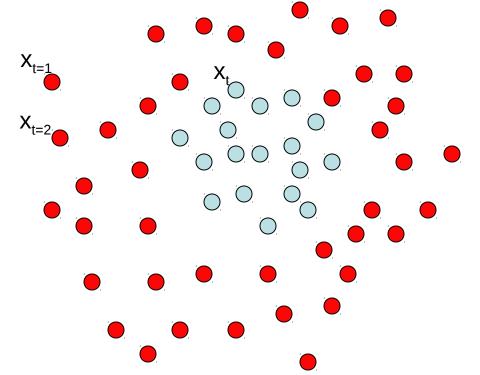
• Defines a classifier using an additive model:

• Defines a classifier using an additive model:

• We need to define a family of weak classifiers

 $f_k(x)$ from a family of weak classifiers

• It is a sequential procedure:



Each data point has

a class label:

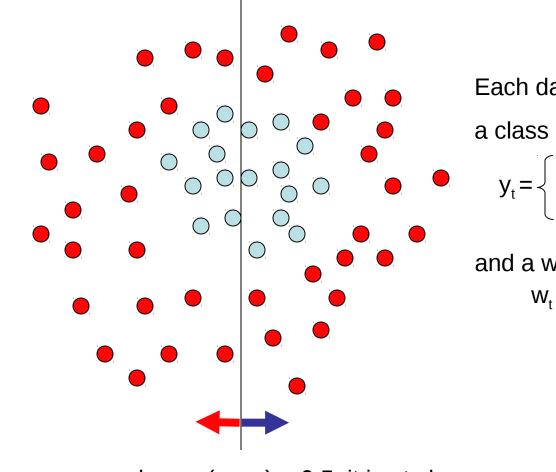
$$y_t = \begin{cases} +1 (\bullet) \\ -1 (\bullet) \end{cases}$$

and a weight:

 $w_t = 1$

Toy example

Weak learners from the family of lines



Each data point has

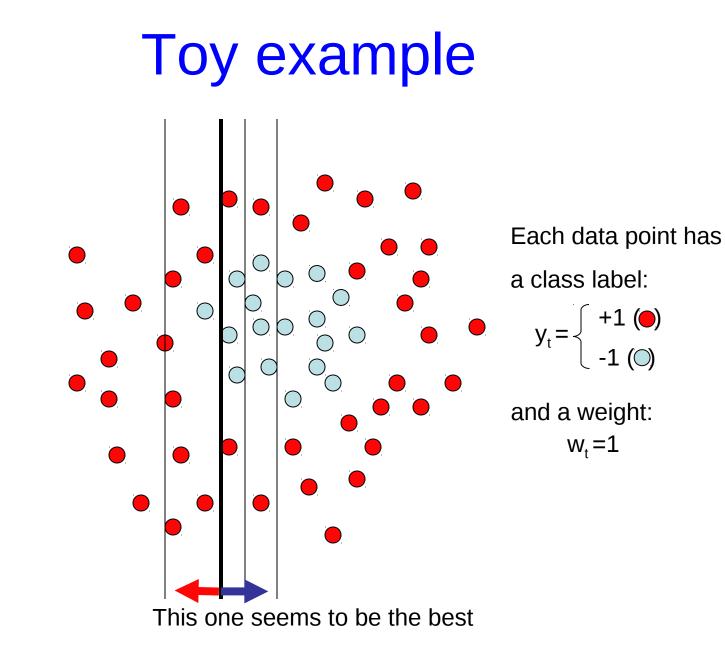
a class label:

$$y_t = \begin{cases} +1 (\bullet) \\ -1 (\bullet) \end{cases}$$

and a weight:

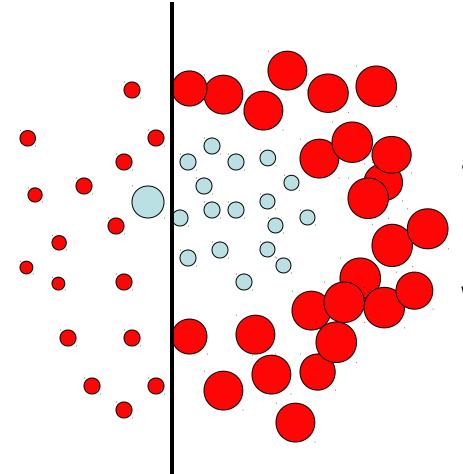
 $W_t = 1$

h => p(error) = 0.5 it is at chance



This is a 'weak classifier': It performs slightly better than chance.

Toy example



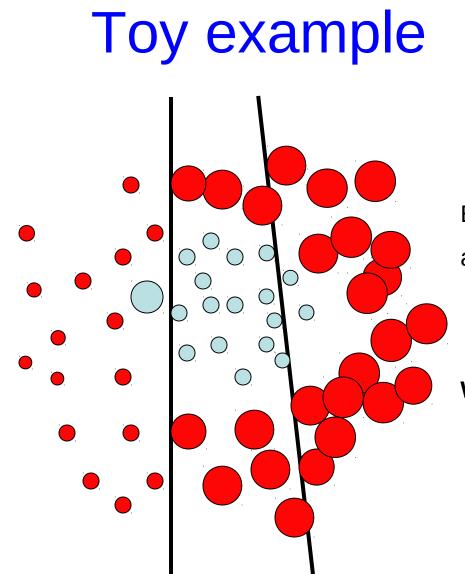
Each data point has

a class label:

$$y_t = \begin{cases} +1 (\bullet) \\ -1 (\bullet) \end{cases}$$

We update the weights:

 $w_t \leftarrow w_t \exp\{-y_t H_t\}$



Each data point has

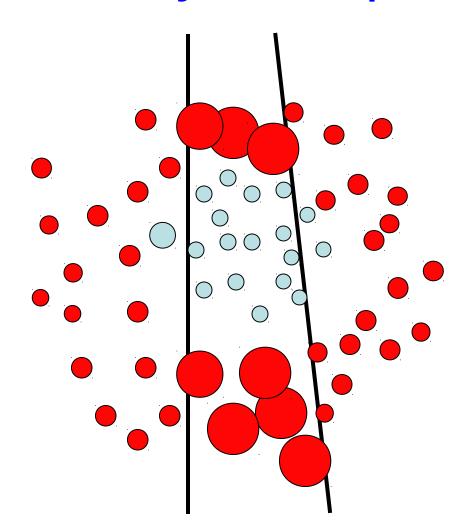
a class label:

$$y_t = \begin{cases} +1 (\bullet) \\ -1 (\bullet) \end{cases}$$

We update the weights:

 $w_t \leftarrow w_t \exp\{-y_t H_t\}$

Toy example



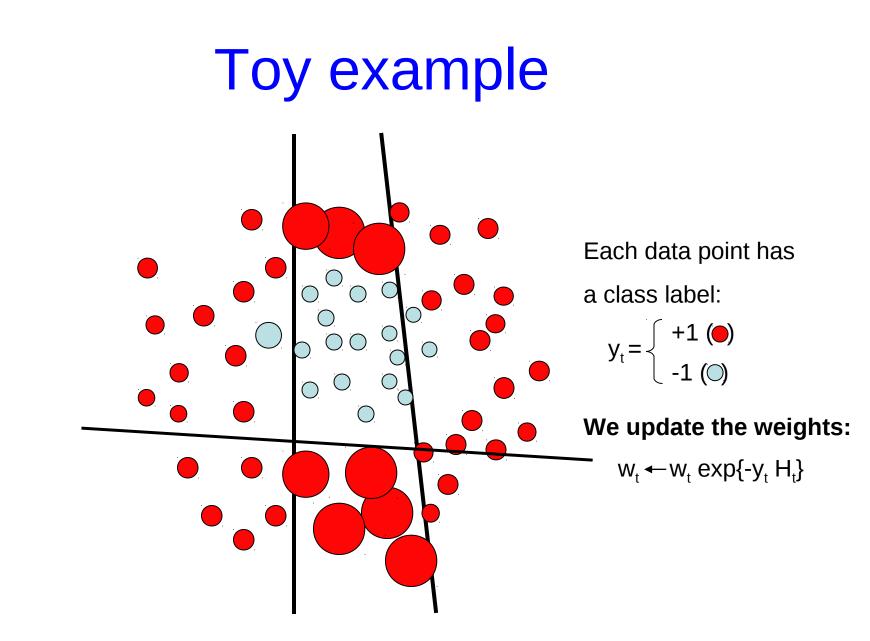
Each data point has

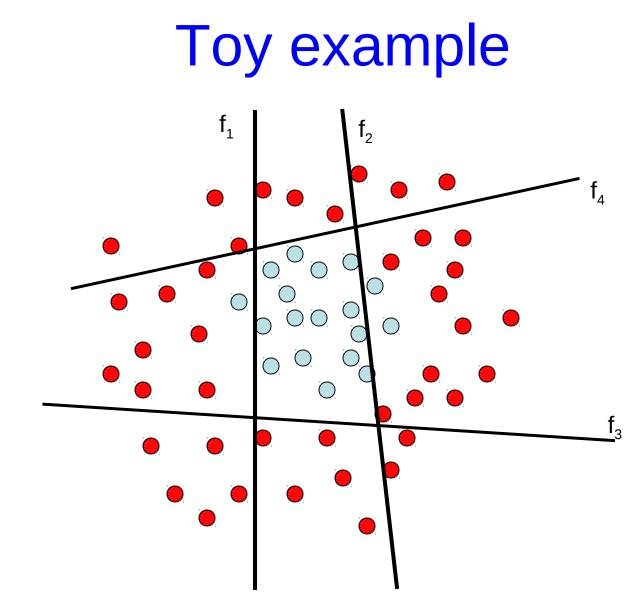
a class label:

$$y_t = \begin{cases} +1 (\bullet) \\ -1 (\bullet) \end{cases}$$

We update the weights:

 $w_t \leftarrow w_t \exp\{-y_t H_t\}$





The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.

- Different cost functions and minimization algorithms result is various flavors of Boosting
- In this demo, I will use gentleBoosting: it is simple to implement and numerically stable.

Overview of section

• Object detection with classifiers

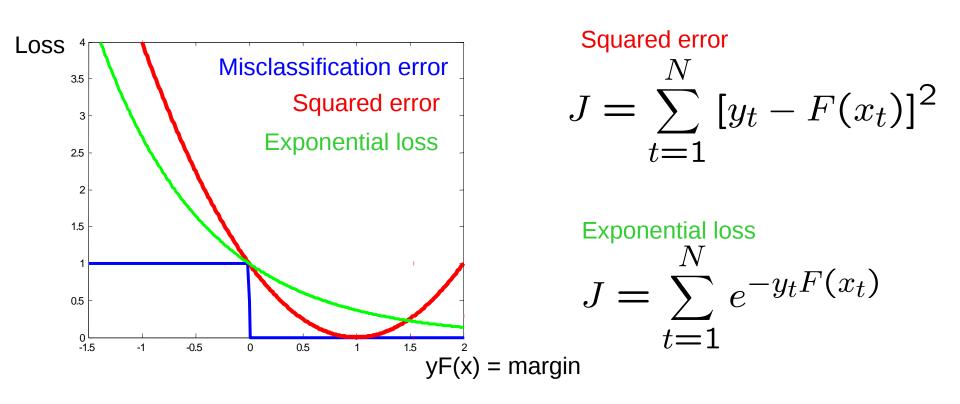
- Boosting
 - Gentle boosting
 - Weak detectors
 - Object model
 - Object detection

Boosting fits the additive model $F(x) = f_1(x) + f_2(x) + f_3(x) + \dots$

by minimizing the exponential loss $J(F) = \sum_{t=1}^{N} e^{-y_t F(x_t)} \uparrow^{Training samples}$

The exponential loss is a differentiable upper bound to the misclassification error.

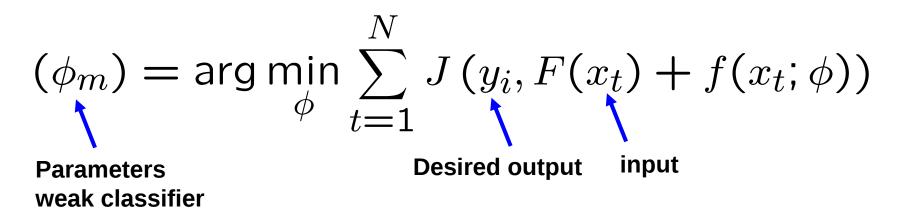
Exponential loss



Sequential procedure. At each step we add

$$F(x) \leftarrow F(x) + f_m(x)$$

to minimize the residual loss



For more details: Friedman, Hastie, Tibshirani. "Additive Logistic Regression: a Statistical View of Boosting" (1998)

gentleBoosting

• At each iteration:

We chose $f_m(x)$ that minimizes the cost: $J(F + f_m) = \sum_{i=1}^{N} e^{-y_t(F(x_t) + f_m(x_t))}$

t = 1

$$J(F) \propto \sum_{t=1}^{N} e^{-y_t F(x_t)} (y_t - f_m(x_t))^2$$

Weights at this iteration

At each iterations we just need to solve a weighted least squares problem

For more details: Friedman, Hastie, Tibshirani. "Additive Logistic Regression: a Statistical View of Boosting" (1998)

Weak classifiers

• The input is a set of weighted training samples (x,y,w)

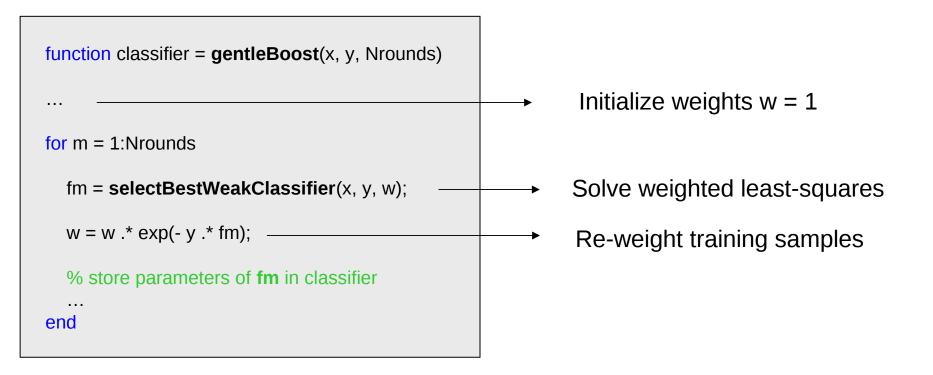
Regression stumps: simple but commonly used in object detection.

$$f_m(x) = a[x_k < \theta] + b[x_k \ge \theta]$$

Four parameters: $[a, b, \theta, k]$
$$a=E_w(y [x < \theta])$$

fitRegressionStump.m

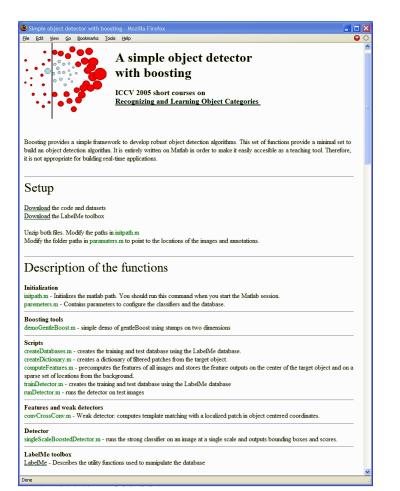
gentleBoosting.m



Demo gentleBoosting

Demo using Gentle boost and stumps with hand selected 2D data:

> demoGentleBoost.m



Flavors of boosting

- AdaBoost (Freund and Shapire, 1995)
- Real AdaBoost (Friedman et al, 1998)
- LogitBoost (Friedman et al, 1998)
- Gentle AdaBoost (Friedman et al, 1998)
- BrownBoosting (Freund, 2000)
- FloatBoost (Li et al, 2002)
- •