Robotics algorithms CSE 410/510

Rob Platt robplatt@buffalo.edu

Times: T/TH, 12:30-1:45 Location: ? Course web page: http://www.cse.buffalo.edu/~robplatt/cse510_2013.html Office Hours: T/TH 1:45-2:45, 330 Davis Hall TA: Suchismit Mahapatra

What is robotics?

What is robotics?

What is robotics?

Also

The hard part?

Hardware? or Smarts?

The hard part?

Hardware?

bI

Smarts!

This course: objectives

1. Understand "the" basic problems in robotics

- 2. Understand a few key algorithms in detail
- 3. Learn mathematical/algorithmic tools that you can use elsewhere

Course Prerequisites

1. Ability to program in Matlab (or the ability to learn to do this)

2. Comfortable with linear algebra and math in general.

Reading material, notes

There is no single assigned text. I will assign papers and chapters as we go. This will be posted to the course website.

Course Requirements

1. Five or six homework/lab assignments

Final exam

 you can be tested on things that I say in class as well as what's in the notes and reading.

3. NO CHEATING!!!

Topics

- 1. Control
- 2. Planning
- 3. Localization and mapping
- 4. Optimization

Reinforcement learning

Given: the ability to take actions

<u>Given:</u> the ability to perceive state exactly

Given: "rewards"

<u>Objective:</u> gradually calculate a policy for acting optimally with respect to the reward function.

observation

(image from healthandphysicaleducationteacher.com as of 1/2013)

Cartesian Control

<u>Given:</u> a model of a robot arm

<u>Objective:</u> calculate how to move the joints in order to cause the end-effector (i.e. the hand) to reach a particular point.

Problem statement:

<u>Given:</u> model of state space

Given: a model obstacles in state space

Problem: find a path from start to goal

Applications:

1. mobile robot path planning

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Applications:

2. "Piano movers problem"

Applications:

3. articulated arm motion planning

Applications:

3. articulated arm motion planning

Two main algorithms:

- 1. Probabilistic Road Maps (PRM)
- 2. Rapidly Exploring Random Tree (RRT)

Also kinodynamic applications:

- inverted pendulum

Also kinodynamic applications:

- "Acrobot"

Problem statement:

<u>Given:</u> noisy sensors that measure partial information

<u>Given:</u> a model of the system

Problem: estimate state

For example:

<u>Given:</u> mobile robot with laser scanners moving in an office building

A Segway RMP equipped with laser range finders IMU.

For example:

<u>Given:</u> mobile robot with laser scanners moving in an office building

<u>Given:</u> a map of the building, model of how wheels move

A Segway RMP equipped with laser range finders IMU.

For example:

<u>Given:</u> mobile robot with laser scanners moving in an office building

<u>Given:</u> a map of the building, model of how wheels move

<u>Objective</u>: localize robot

A Segway RMP equipped with laser range finders IMU.

Potential algorithms: variants of Bayesian filtering:

- 1. Extended Kalman filter (EKF)
- 2. Unscented Kalman filter (UKF)
- 3. Ensemble Kalman filter
- 4. Histogram (Markov) filter
- 5. Particle filter
- 6. Others?

Human Robot Carrera 2 Carrera 2

Potential applications:

- 1. mobile robot localization
- 2. localization of object held in hand

3. ?

Mapping

In principle, same as localization:

<u>Given:</u> mobile robot with laser scanners moving in an office building

<u>Given:</u> no map!

<u>Objective</u>: localize robot, estimate map

Algorithms:

- same as for localization
- new problem: high dimensionality of estimation problem
- other problems too...
- solutions: various tricks to deal w/ high dimensionality

Mapping

Mapping

Ground truth

