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Abstract— Control-based approaches to grasp synthesis create
grasping behavior by sequencing and combining control prim-
itives. In the absence of any other structure, these approaches
must evaluate a large number of feasible control sequences as
a function of object shape, object pose, and task. This paper
explores a new approach to grasp synthesis that limits consider-
ation to variations on a generalized localize-reach-grasp control
policy. A new learning algorithm, known as schema structured
learning, is used to learn which instantiations of the generalized
policy are most likely to lead to a successful grasp in different
problem contexts. Experiments are described where Dexter, a
dexterous bimanual humanoid, learns to select appropriate grasp
strategies for different objects as a function of object eccentricity
and orientation. In addition, it is shown that grasp skills learned
in this way generalize well to new objects. Results are presented
showing that after learning how to grasp a small, representative
set of objects, the robot's performance quantitatively improves Fig. 1. Dexter grasping a cylindrical object.
for similar objects that it has not experienced before.

I. INTRODUCTION

In the control-based approach to grasp synthesis, complexn most research that explores grasp learning, the robot
grasping behavior is represented in terms of parameterizalglerns a relationship between visual or object features and
reaching and grasping control primitives. For example, in ord#re precise positions where grasp contacts must be placed.
to pick up an object, a robot can execute a reach controlledr example, Kamon, Flash, and Edelman described experi-
followed by a grasp controller. Reach primitives move theents where a robot with a parallel jaw gripper learned the
manipulator to an offset from a visually-determined objecelationship between features derived from a two-dimensional
pose. Grasp primitives (i.e. grasp controllers) displace maniyisual object outline and desired grasp points [4]. Saxared.
ulator contacts based on tactile feedback so as to optimize tdarned sets of visual edge and texture features that predicted
grasp [1], [2], [3]. In order to grasp successfully, the readgboints on the object where a parallel jaw gripper may be cen-
controller must be parameterized with the appropriate gdared so as to grasp an object [5]. Moussa proposed learning an
pose and the grasp controller must be parameterized with Ghject-centric homogeneous transform that correctly positions
appropriate grasp type. Although it is possible for the systetine gripper based on object characteristics that he cglls
designer to hard-code parameter choices for known spedtures[6].
cases, a robot that learned appropriate controller parameterRather than learning precise goal locations for grasp con-
izations that generalized to new situations would be motacts, the work reported in this paper learns approximate
flexible and require less programming. This paper explorgsasp configurations as a function of coarse visual features.
autonomously learning context-appropriate parameterizatiofisis approach relies on a grasp controller that uses tactile
of reach and grasp controllers for grasp tasks where tfemdback to displace grasp contacts into precise positions [1],
specific objects to be grasped are not knosvipriori. The [2], [3]. The learning system delivers the manipulator to a
robot learns appropriate reach and grasp controller parartfreeighborhood” of good grasp configurations and the grasp
terizations as a function of coarse visual features includimgntroller finds a nearby precise contact configuration. The ad-
object pose and eccentricity. The quality of a grasp resultingntages of this approach are as follows. First, it decomposes
from a particular parameter choice is evaluated based on the grasp synthesis problem into an initial reach to a grasp
grasp controller error function, calculated using local tactileegion based on qualitative visual feedback and a subsequent
feedback. Essentially, the process of learning an associattprantitative refinement of contact positions based on tactile
between coarse visual features and appropriate parameterfeéslback. This allows the vision subsystem to be focused
“supervised” by tactile feedback. on detecting those features relevant to grasp strategy rather



than on precise positioning of the contacts. This more focuséHe reach-to-position control primitive,. |* (), moves the

role for vision reduces the need to place the camera neadsntroid of the contacts if, to a positionx,, along the object
the grasping interaction or to carefully align the cameramajor axis. Letr, € R> be the Cartesian object centroid and
with the interaction. Another advantage of augmenting visulgt o,,, € R be a vector pointing along the object major axis
information with tactile feedback is that the tactile informatiofrom the object centroid to the end of the object major axis.
can be used to provide feedback to the visual learning proceEBe reach-to-position control primitive moves the centroid of
The grasp controller error function reports the exact grasipe v, contact points to the reference position,
quality in terms of applied forces, rather than relying on less
direct or quantitative methods of assessing grasp quality.
The focus of the current work is on learning the relationshigherer, € [0,1] is the position ofz,.; as a fraction of the
between coarse visual features and context-appropriate ctaal length of the object major axis. The reach-to-orientation
troller parameterizations. A new learning algorithm, known asontrol primitive, ¢ 7,2(59), orients the set of contacts in
schema structured learnings used to learn this relationship.y, with respect to the object major axis. This primitive is
Section Il describes the reach and grasp controllers usedoitty defined for two or three contact points, | € {2, 3}. If
the current work and reviews schema structured learning,| = 2, then,, orients the two contacts such that a line
Next, Section Ill-A, characterizes this approach in a serigisat passes through both contacts has the specified offset angle,
of experiments where, Dexter, the UMass bimanual dexterous € [0, 7], with the object major axis. Ify,| = 3, thenm,,
humanoid, learns to grasp a vertically-presented cylinder,oéients the three contacts such that the normal of the plane
sphere, a vertical detergent bottle, and a horizontally-presenfetimed by the three contacts forms the specified offset angle
rectangular box. Finally, in Section IlI-B, the ability for graspwith the object major axis.
skills learned in this way to generalize to new objects is Sets of reach controller parameterizations are defined as fol-
explored in an experiment where Dexter learns to grasp a setmfs. 11, is defined to be the set of allowed parameterizations
training objects and tests its knowledge on a set of unfamiliaf the reach-to-position controller,
test objects

Tref = Ox + RzOml,

W,y = {mps|3¥ (k) 1 vy C T, ks € [0, 1]}

Il. LEARNING GRASP STRATEGIE . .
G GRASPS GIES whereT is a set of allowed contact resourcék.,y is the set

In this work, the robot learns which parameterizations @ff allowed parameterizations of the composite controller that
reach and grasp controllers maximize the probability of a sugpecifies both position and orientation,

cessful grasp as a function of grasp context. First, this section

describes the set of viable parameterizations of reach and grasp 100 = {”T‘)Wz (ko) < ”TIWZ (k) :

controllers. Next, based on general visual characteristics of the v, CT, kg € [07 q ke € [0,1]}.

object, a new learning algorithrschema structured learning

is used to determine which reach-grasp parameterization is

most likely to lead to grasp success. 2) GRASP. Grasp controllers displace contacts toward good

grasp configurations using feedback control [1], [2], [3]. This

A. Reach and Grasp Controllers approach uses tactile feedback to calculate an error gradient
1) REACH: The goal of the reach controller is to moveand displace grasp contacts on the object surface without a

the grasp contacts to a configuration from which the graggometric object model. After making light contact with the

controller will be able to realize a good grasp by makingbject using sensitive tactile load cells, the controller displaces

only small displacements. It is referenced with respect tmntacts toward minima in the grasp error function using

the visually determined object pose and is decomposed inligcrete probes [1] or a continuous sliding motion [3].

two component primitives: a reach-to-position control prim- Grasp controllers descend an artificial potentigl, derived

itive, m,,, and a reach-to-orientation control primitive,s. from wrench error,

When position control primitive;sr,,, operates alone, then .

the manipulator moves toward a designated position while Cw =P P P= Z

leaving orientation unspecified. When these two primitives are

concurrently combined using the subject-to operatgsar,.,, wherew; is the contact wrench applied by th& contact,

the resulting controller moves a set of manipulator contaassuming no surface frictions; is calculated directly from

points to a designated position and orientation relative tactile feedback by using the approach of Bicet, al, to

the object. (For more information on the subject-to operatastimate contact location [8]. The control law converges when

see [7], [3].) the contacts have been displaced to locations where the net
The reach control primitives are parameterized by a set applied wrench is minimized. If the minimum corresponds to

manipulator contact pointsy,, and position and orientation zero net wrench, then, in the presence of friction, such a grasp

offsets,x,. or kg, relative to the visual centroid and orientatiorachieves wrench closure because it fulfills the conditions for

of the major axis. They, contact points are moved to a confion-marginal equilibrium. Non-marginal equilibrium requires

figuration with the specified position and orientation offsetshe contact forces achieving net zero force lie strictly inside

W, 1)



their corresponding friction cones and has been shown gointing along the object major and minor axeg,( ando 2,
be a sufficient condition for wrench closure [9]. The grasgespectively) are calculated.
controller, ¢g|"9(”) is parameterized by a set of contact These vectors are used to calculate the parameters upon

7q(7y)’ B . . N
resources;y,, that are used to synthesize a grasp. The sehich estimates of expected grasp error and the probability
of feasible grasp controller parameterizations is, of lift success are conditioned. These parameters include blob

oy(1y) position, o, € R3, major axis lengthg; € R, major axis
I, = {¢, 9(%’ iy CTY | . E -

. 9lry(vy) - Ty elevation angleg, € [0, %], and eccentricityg, € R. These
where v, may include either physical contacts eirtual Parameters encode tioentextof the grasp synthesis problem
contacts. In the case of a virtual contact, multiple physicaNd areé used in predicting the reach controller parameters,
contacts are considered, for the purposes of grasp synthesis and the set of grasp contacts, that minimize grasp error

to occupy a single net position and apply a single net forcénd maximize the probability of lift success.
The expected grasp error and probability of subsequent lift

B. Application of Schema Structured Learning to Grasp Syqccess as a function of context and controller parameters can
thesis be approximated in a variety of ways. If context and controller
This work applies schema structured learning to the problgmarameters are discrete quantities, then these probabilities may
of determining which reach and grasp controller parameterizze approximated by a multinomial distribution. If they are
tions maximize the probability of grasp success as a functionntinuous quantities, then several approximation methods
of a coarse visual approximation of the object. Schema strunay be used. If the distribution is assumed to be kn@avn
tured learning takes a description of a generalized solutigrjori, then a parametric method may be used. Otherwise, a
known as armaction schemaas input. The action schema isnon-parametric, lazy-learning approach may be more appro-
a generalized solution that can be instantiated in differeptiate. This paper's experiments used k-nearest neighbor to
ways. Schema structured learning executes various differapproximate the expected error and the probability of transport
instantiations and estimates the probability that they will mesticcess as a function of problem context.
action schema goals as a function of state and problem con2) Sampling the Parameter Spacefter visually char-
text. Schema structured learning focuses exploration on th@szerizing the ellipsoid parameters that describe the object,
instantiations estimated to have the greatest probability sthema structured learning evaluates the expected grasp error
satisfying action schema goals. For a more detailed descriptamd probability of transport success for a set of different
of schema structured learning, see [10], [3]. reach-grasp parameter choices. In the case of a small and
In its application to grasp synthesis, coarse grasp contel$crete parameter space, it is possible to evaluate each reach-
is established by general visual features. The robot leagmasp candidate individually. However, note that the reach
which reach and grasp controller parameterizations minimizentroller parametersis, and x4, constitute a real-valued
expected grasp error and maximize the probability of liftarameter space that must be sampled. Three possible sample
success. At the start of learning, the robot executes randstrategies are: sampling from a regularly-spaced grid, sampling
parameterizations of the reach and grasp controllers and edmdomly from a uniform distribution over the parameter
serves the results. After each grasp, the outcome of executspgce, and sampling randomly from the estimated distribution.
each controller for the particular visual features is storeth sampling from the estimated distribution, the quantity to
On subsequent trials, this experience is used to calculate Hee evaluated (for example, grasp error) is converted into
expected grasp error and probability of successfully lifting thee probability distribution where the most valuable regions
object for various different reach-grasp parameter choices. 8& parameter space are given the highest probabilities. By
learning progresses, more and more experience accrues andémpling from this distribution, regions of the parameter space
ability of the robot to select high quality grasp configurationsstimated to have the highest value are the most densely
improves. sampled. At the start of learning, the robot has no relevant
1) Expected Grasp Quality as a Function of Coarse Visuakperience and the parameter space is sampled uniformly
Parameters: Before reaching, the object is visually characrandomly (assuming a uniform prior). As experience accrues,
terized in terms of coarse visual features. In the curretite distribution corresponding to the quantity being estimated
work, these features are the parameters of the ellipsoid tiproves and the sample strategy more densely covers high-
most closely matches the visual “blob” that corresponds talue regions of the parameter space. Eventually, the bulk of
the object. In order to calculate the ellipsoid parameters, tttee sample set becomes focused on high-value peaks in the
object is first segmented from the background in both imagarameter space.
planes. Next, the three-dimensional Cartesian object location
is determined by triangulating on the centroid of the “blob”
in each image plane. Next, the eigenvalues and eigenvector§wo experiments were conducted to evaluate this approach
of the covariance matrix describing the blob in each imade grasp learning. The first experiment evaluated the approach
plane are calculated. Essentially, this step characterizes timea set of four known objects for which a good ellipsoid
object as an ellipsoid, as illustrated in Figure 2. Finally, thit exists: a vertically presented cylinder, a 16cm diameter
spatial Cartesian location of the centroi@,, and vectors sphere, a vertical detergent bottle, and a horizontal rectangular

Ill. EXPERIMENTS
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Fig. 2. The robot characterizes objects in terms of an ellipsoid fit to the segmented object. (a) and (b) illustrate the left and right camera views of a squirt
bottle. (c) and (d) illustrate the corresponding segmented “blobs” and their ellipsoids.
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Fig. 3. Dexter learned to grasp a vertical cylinder using a three-contact grasp. (a) shows the median (over eight learning runs) moment residual error (grasp
error) after the reach executed but before the grasp controller as a function of grasp number. (b) is a contour graph that shows the expected grasp error as
function of the reach controller parametess, and xg.

object. Results characterize the average speed of learning apd: [0, 1] was specified. If a reach controller was an element
the grasp skills that are learned as a result for each of the II,.4, then bothx, € [0,1] and kg € [O,g] were
four objects. The second experiment evaluated how well graspecified. After reaching to the object, Dexter executed the
strategies learned for particular objects generalized to nenasp controller. Each trial terminated after the grasp controller
objects. In this experiment, the system trained on a set afnverged to a good grasp configuration or was prematurely
five objects and tested on 19 new objects. The results shtasminated by the human monitor to prevent collisions with
that the grasp knowledge learned using the training objetk® table or object.
measurably improves performance on the new test objectsigure 3(a) shows median moment residual grasp error
when compared with the performance of random reach-gragier executing the reach controller, but before executing the
parameterizations. grasp controller, for eight learning runs as a function of
All experiments were performed using Dexter, the UMasgrasp number. In this experiment, Dexter was constrained
bi-manual humanoid robot [11]. Dexter consists of a 4-degregr- attempt to grasp using three fingers. The drop in median
of-freedom (DOF) bisight head and two Barrett Technolanoment residual error as a function of grasp number indicates
gies whole-arm manipulators (WAMs). Each Barrett WAM ishat this approach is able to learn to select reach controller
equipped with a 3-finger, 4-DOF Barrett Hand. Mounted oparameterizations that lead to low grasp errors quickly.
the tip of each Barrett hand finger is a 6-axis force-torque Figure 3(b) is a contour graph that shows expected compos-
sensor. ite grasp error as a function af, and, (the parameters of
the ¢ <7, reach controller). Recall that, is a proportional
distance along the object major axis between the center of the
1) Vertical Cylinder: Dexter learned to grasp a verticallymajor axis and either end of the major axig. is the angle
presented cylinder 10cm in diameter and 20cm high in keetween the object major axis and the normal of the plane that
series of reaches and grasps. On each reach, Dexter selectealsaes through the three contacts. This graph shows the grasp
reach controller parameterization from the $gt, U II,,4. error that the system learned (over the course of 20 attempted
If the selected reach controller left orientation unspecifie@aches and grasps) to expect as a function of the pose that
(i.e. a member ofll,., was selected), then only the parametddexter reached toward. In order to create the contour plot of

A. Experiment 1: Learning to Grasp Different Objects



Figure 3(b), the two components of grasp error, force residual4) Horizontal Rectangular ObjectDexter also learned to
error, e, and moment residual erroe,,., were combined grasp a horizontally oriented eccentric object (presented at

using the following weighted sum: an arbitrary orientation in the horizontal plane). Note that,
because the reach controllers are referenced to the visually-
€g = €fr + 1506, (2) perceived object position and orientation, it should be unneces-

i . sary to learn how the grasp horizontal objects if the system has
Figure 3(b) shows that, was minimized when Dexter reached,ready learned to grasp vertical eccentric objects. However,

to a configuration where the normal of the plane containing,q important difference exists that changes the way these
the contacts is approximately pargllel to the object major axigo objects must be grasped — the magnitude of the moment
(nearr, = 0). In this graph, executions of the grasp controllegyqted by gravity when the object is grasped and lifted at one
that failed to converge were assigned error valuesypf= 4 jts ends. When a horizontal eccentric object is grasped and
ande,,, = 0.05. lifted at one end, the distance between the grasp point and
Although the contour graph of grasp error shown in Fighe CG causes gravity to exert a moment. This does not affect
ure 3(b) is learned over relatively few reaches and graspsydtically presented eccentric objects because the direction of
is similar to the true function. Figure 4(a) shows the weightagle gravitational force is not perpendicular to the major axis.
sum of grasp error for three-contact grasps as a function §fyce this effect can cause the object to slip out of the grasp
k. and kg after five times as much experience (106 grasphen the object is lifted, Dexter must learn to grasp horizontal
experiences). Note that, grasp error is still minimized whegycentric objects near the center.
the normal of th_e plane qf defingd by_ the three contacts is|y 5 series of 50 grasps where Dexter attempted to grasp
nearly parallel with the object major axis. and lift a rectangular horizontal eccentric object using different
2) 16cm Diameter Spherefhe same learning process waseach controller parameterizations, the system learned that
tested on a 16cm diameter sphere. In a series of 60 reacpgsitions near the center of mass were associated with the
and grasps, Dexter executed reach controller parameterizatigifhest probability of a successful lift. After lifting the object,
drawn from the setl,, U IL,¢,, followed by an execution of the grasp was only considered to be a success if the moment
the three-contact grasp controller. In this implementation, theduced by gravity was beneath a specified threshold. The
sphere was perceived to have a longer vertical extent tha’ults are illustrated in the contour graph of Figure 5(b). This
actually existed because shadows cast by the object wgrgph shows the expected probability of grasping the object
perceived by the vision subsystem to be part of the objegid successfully lifting it as a function of the reach controller
itself. This effect caused the vision system to consistentyarameterss, andry. Note that this quantity is different from
perceive the spherical object to have a short, vertically directgfe grasp error of Equation 2 shown in previous contour plots.
major axis. The graph shows that the probability of grasp and lift success
Although the sphere was consistently perceived to be vég-maximized when the contacts are oriented perpendicular to
tically oriented, Dexter learned that manipulator orientatiothe object and positioned near the object’s ceniter Wwhen
relative to the object had little effect on expected grasp errgy, is near 0 andsy is nearZ.)
Figure 4(b) is a contour plot showing the expected grasp errors
as a function ofs, andx,. It shows that low-error grasps existB- Generalizing to New Objects
for the 16cm sphere at a large range of orientations — betweerThe previous experiments where Dexter learned to grasp
approximatelyy and0 radians. This result contrasts with thespecific objects begs the question regarding whether these
contour plot from the vertical cylinder in Figure 4(a) whergyrasp skills can generalize to new objects. Whether this is
low-error grasps exist only in configurations where the normgbssible depends on how object and object pose is repre-
of the plane of the contacts is nearly parallel to the major axisented to the system. Grasp skills will generalize well when
i.e. whenky is close to zero. objects and object poses that afford similar grasp strategies
3) Vertical Detergent Bottle:In the same way, Dexter are given similar representations. This paper proposes rep-
learned which reach-grasp parameterizations were associat=sinting objects in terms of coarse blob parameters. While
with low grasp errors for the vertically presented detergetitis representation does not capture complex detail of object
bottle illustrated in Figure 6(b). Dexter explored different reacshape, this paper proposes that it does capture “first order”
controller parameterizations in 56 reaches and grasps whpreperties that correlate to basic grasp strategies. Even though
the two-contact grasp controller was executed after each reatie. estimate of an object’s size and eccentricity cannot be
Expected grasp error as a function of the reach controllesed to precisely place grasp contacts, for simple objects that
parametersk, andky, are illustrated in the contour graph ofare well approximated by an ellipsoid, they can be used to
Figure 5(a). Dexter learned that the smallest grasp controlk®lect a grasp strategy and to position the contacts in a region
errors are associated with manipulator orientations whereaund likely good grasp configurations. Even for objects that
line passing through the contacts is nearly perpendicular do not “neatly” correspond to an oriented ellipsoid, it may be
the object major axisi.e. when g is near3). This reflects possible, in future work, to describe grasp strategies for these
the grasp knowledge that the line of opposition between th&re complex objects in terms of strategies that have been
two contacts must roughly be perpendicular to the major axlsarned for “constituent” simpler objects.



Fig. 4. Contour graphs showing expected grasp error for (a) a vertical cylinder after experiencing 106 reaches and grasps and (b) a 16cm diameter sphere

after experiencing 60 reaches and grasps.
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Fig. 5. Contour graphs showing (a) expected grasp error for the vertical detergent bottle shown in Figure 6(b) and (b) the expected probability of grasp and
lift success for the horizontal box shown in Figure 6(e).

(b) (d)

Fig. 6. The five training objects used in the generalization experiment.

The extent to which grasp strategies generalize between tat applied the necessary grasping forces, and a transport
jects with similar blob parameters was tested in an experimentroller that lifted the object. During the eight executions
where Dexter was trained to grasp the five objects illustratéuht tested performance without experience, Dexter essentially
in Figure 6 and tested on the set of 19 new objects illustratedlected random reach controller parameterizations from the
in Figure 7. For each test object, 16 reaches and grasps wsstll,., UIlL,.¢,. Note that for two of the training objects (the
executed — eight using the experiences acquired from the foetergent bottle in 6(b) and the horizontal eccentric box in
training objects and eight without this experience. On eaéife)), the reach-grasp parameterizations learned have already
trial, a parameterization of the reach controller was executdmben described in Section IlI-A.

followed by the two-contact grasp controller, a controller During testing, the objects were placed in approximately the



Fig. 7. The 19 test objects used in the generalization experiment.

0.015

without learning for each of the 19 test objects shown in
Figure 7. This is the moment residual error after complet-
ing the reach to the object, but before executing the grasp
controller. The rightmost bar in each of the 19 pairs shows
the mean initial moment residual averaged over eight grasps
that did not benefit from the skills learned on the training set.
The leftmost bar in each pair shows the mean initial moment
residual over the eight grasps that did use the training data.
The error bars give a 95% confidence interval around the mean.
0.00sk | Since the confidence intervals for many of the objects overlap,
the statistical significance of the results for each object was
analyzed using a two-sampiéest. Table | shows thestatistic
andp-value for each object. Thevalue is the probability that
learning did not improve grasp performance. Objects 1, 8, 10,
o &l 13, 15, and 19 have values feprless than0.05, indicating
SR T Chject Number 0™ that there is a more than 95% probability that learning has
improved performance for these objects. If the requirement is
Fig. 8. Generalization: results show that experience grasping a few traink@yvered t00.10 (90% percentile), all of the objects except for

objects improves the robot's ability to grasp objects that it has never sesng 17, and 18 show improved grasp performance.
before. The pairs of bars on the horizontal axis show grasp error with (the

leftmost bar in each pair) and without (the rightmost bar in each pair) learning
experience for each of the 19 test objects. The error bars show a 95%rgKken over all objects, the average improvement in grasp
confidence interval around the mean. . L . S
performance is significant. Figure 9(a) shows the initial mo-
ment residual with and without learning averaged over all
19 objects. The figure shows that after having trained on the
same position on the table. The three horizontally presentsst of five objects, when presented with a new (but related)
eccentric objects (objects 8, 10, and 19) were placed agiject, the system can be expected to select an instantiation
arbitrary orientations in the horizontal plane. The two verticalf the reach controller that leads to an initial moment residual
objects with dissimilar non-principle axes (objects 15 and 16f 0.0015N-m with a 95% confidence interval of less than
were always presented in the orientation shown in the Figured/0005N-m. Without learning, Dexter can be expected to
The training experiences acquired for each of the five trainin almost three times worse, reaching to an initial moment
objects were stored as a function of the blob parameters — m@sidual of 0.0042N-m with a 95% confidence interval of
jor axis length, major/minor ratio (eccentricity), and elevatio0.0008N-m. The same trend exists when the performance of
angle. When presented with a new object, schema structuggdsping in terms of the probability of successfully holding
learning accessed experiences of objects with similar blapd lifting the object is considered. Figure 9(b) shows the
parameters and used this information to make grasp decisignsbability of a successful lift averaged over all 19 objects
for the new object. with and without learning. When the identity of the object to
Figure 8 illustrates the results. The pairs of bars on thee grasped is unknown, Figure 9(b) shows that the probability
horizontal axis correspond to moment residual error (graspsuccessfully lifting the object is much better when the robot
error) at the beginning of grasp controller execution with aridverages its previous experience with the training objects.

0.01- N

Init. Moment Residual




Object | 1 2 3 4 5 6 7 8 9 10 | 11 |12 | 13 | 14 | 15 | 16 | 17 | 18 | 19

tvalue | 25| 1511532011417 |25|05|33|15|16|27[16|26|16| 02| 11| 34

pvalue| .01 | 07| .08 | 01| 46| .09 | .05| .01 | .30| .01 | .08 | .06 | .01 | .06 | .01 | .07 | .42 | .16 | .01
TABLE |

GENERALIZATION: ¢ VALUES AND p VALUES THAT CALCULATE THE STATISTICAL SIGNIFICANCE OF THE IMPROVEMENT IN INITIAL MOMENT RESIDUAL
ERROR FOR EACH OF THEL9 OBJECTS

Init. Moment Residual
Prob. of Hold Success

Random

With Learning

@)

Fig. 9.

With Learning

(b)

Generalization: (a) shows the initial moment residual with and without learning averaged over all 19 objects. (b) shows the average probability of

successfully lifting each object with (the leftmost bar) and without (the rightmost bar) training experience. In both plots, the error bars show 95% confidence

intervals.

IV. CONCLUSION

_ [1]
This paper takes a control-based approach to grasp syn-
thesis, whereby the problem is recast as that of correctllﬁ]
sequencing and combining reach and grasp controllers. Based
on visual information, the reach controller moves the grasfs]
contacts into a neighborhood around a good grasp. Then the
grasp controller uses tactile feedback to place the contaqig
in a precise grasp configuration. A strategy is proposed for
learning through trial-and-error which parameterizations OIL
the reach and grasp controllers are appropriate for differe t]
objects and object poses. This grasp knowledge is organized
in terms of ellipsoidal parameters that describe the objeé’f’]
that was grasped. Each object encountered by the system
is characterized in terms of the ellipsoid that most closely7]
matches the visually segmented object. New objects Wit[é
similar ellipsoidal parameters are assumed to be graspable II]I
similar ways. Experimental results show that this approach
is capable of learning, for specific objects, which reach anf!
grasp controller parameterizations are likely to be successful.
In addition, results show that it is possible to learn reach-gragg]
skills based on experience with a limited set of objects and
successfully apply these skills to new objects. [11]
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