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Abstract— Of central importance to grasp synthesis algorithms
are the assumptions made about the object to be grasped and the
sensory information that is available. Many approaches avoid the
issue of sensing entirely by assuming that complete information
is available. In contrast, this paper focuses on the case where
force feedback is the only source of new information and
limited prior information is available. Although, in general, visual
information is also available, the emphasis on force feedback
allows this paper to focus on the partially observable nature of
the grasp synthesis problem. In order to investigate this question,
this paper introduces a parameterizable space of atomic units
of control known as contact relative motions(CRMs). CRMs
simultaneously displace contacts on the object surface and gather
force feedback information relevant to the object shape and the
relative manipulator-object pose. This allows the grasp synthesis
problem to be re-cast as an optimal control problem where the
goal is to find a strategy for executing CRMs that leads to a
grasp in the shortest number of steps. Since local force feedback
information usually does not completely determine system state,
the control problem is partially observable. This paper expresses
the partially observable problem as ak-order Markov Decision
Process (MDP) and solves it using Reinforcement Learning.
Although this approach can be expected to extend to the grasping
of spatial objects, this paper focuses on the case of grasping
planar objects in order to explore the ideas. The approach is
tested in planar simulation and is demonstrated to work in
practice using Robonaut, the NASA-JSC space humanoid.

I. I NTRODUCTION

In many potential applications of robot grasping, approxi-
mate shape and pose parameters of the object to be grasped
may be known ahead of time while exact parameters may
be impossible to predict. For example, consider the problem
of manipulating a cup or mug. The exact pose or geometry
of the mug may be unknown, but the identity of the object
as a mug may be perfectly clear from task context or from
gross visual feedback. This characterization of the information
available to the robot is particularly relevant to materials
handling problems on the moon or Mars. Consider the task of
grasping a cylindrical connector or a piece of tubing. While
the robot may be ignorant of the exact diameter and pose, it
may be evident that the object is a long cylinder of some kind.
Similarly, a robot may know that a package is to be grasped by
a U-handle even if the exact pose or geometry of the package
is not known. In general, it is asserted that a large number
of manipulation problems exist for which the solution space
can be constrained by general information about the object or
problem context.

Although this type of general information is frequently
available, most current approaches to grasp synthesis do not
leverage it to improve efficiency or robustness. First, consider
planning approaches to grasp synthesis [1], [2], [3]. These
approaches typically require a complete description of the
object geometry before processing begins. Based on object
geometry, a set of desired contact positions relative to the
object (a contact configuration) that satisfies a grasp criterion
is identified. Then, based on the object pose, the contact
configuration is translated into a set of desired positions in
the robot base frame. Finally, a position controller moves the
manipulator contacts to this goal configuration. Approaches of
this type assume that complete information about object pose
and geometry is available; if only general information about
the object is known, then additional techniques are needed to
handle the uncertainty.

Grasp control methods are an alternative to grasp planning.
Whereas planning approaches assume that the complete object
geometry is known, grasp control approaches make only min-
imal assumptions (for example, that the object is convex) [4],
[5]. Grasp control methods compensate for the dearth of prior
information by using force feedback at the contacts. The ma-
nipulator is assumed to be equipped with sensors that measure
the object surface normal at the contacts. The robot starts
out in contact with the object. Based on force feedback, the
controller displaces the contacts tangent to the object surface
toward a quality grasp configurations. Ultimately, for arbitrary
convex objects, the controller is guaranteed to reach a force
closure grasp. In contrast to the grasp planning techniques
described above, grasp control does not require a complete
object model. However, grasp control methods do not use
approximate information that may be known about the object
to accelerate the process of finding good grasp configurations.
Instead prior information can only be used to decide upon a
grasp controller starting configuration.

Similar to grasp control, this paper explores an approach
to displacing contacts toward grasp configurations based on
force feedback measurements. However, the focus here is on
learning how to sequence displacements in order to reach a
grasp, rather than using a fixed policy. A parameterized space
of contact relative motions (CRMs) is proposed that are the
atomic units of control. CRMs simultaneously displace grasp
contacts and recover force feedback information relevant to
the state of the grasping task. Since a single observation



of force feedback need not uniquely determine the contact
configuration, finding an optimal policy for executing CRMs
is a partially observable problem. Optimal solutions to this
problem simultaneously recover relevant force information
and displace contacts toward grasp configurations. In this
paper, the partially observable problem is modeled as ak-
order Markov Decision Process and Reinforcement Learning
techniques are applied. As a result, the robot is able to learn
to grasp arbitrary classes of objects (not just convex objects)
through interactive trial-and-error. No prior knowledge or ob-
ject models are needed for this approach to work - all relevant
information is recovered through interactive trial-and-error
with the object. It should be noted that this approach is similar
to recent work by Hsiaoet al. who propose modeling the
grasping synthesis problem as a partially observable markov
decision process (POMDP) [6]. In that work, the underlying
state space of a particular grasping problem is identified in
a pre-processing step and Heuristic Search Value Iteration is
used to find optimal solutions.

The layout of the paper is as follows. Section II introduces
CRMs and proposes a specification for CRMs that operates
with two contacts in the plane. The relevance of CRMs to
grasping is demonstrated in an experiment where Robonaut
uses a single CRM to grasp a box. Section III poses grasp
synthesis as an optimal control problem and solves it as a
k-order Markov Decision Process. This approach is tested in
simulation for a planar grasping problem where force feedback
from multiple time steps is required in order to resolve ambi-
guity in the contact configuration. After learning this grasp
solution in simulation, the strategy is tested on Robonaut.
Although this paper restricts formal consideration to planar
objects, the approach can be expected to extend to spatial
objects and more than two contacts with little modification.

II. CONTACT RELATIVE MOTIONS

When a robot is in contact with an object, a reference
frame exists located at the point of contact that simultaneously
describes both the local manipulator surface and the local
object surface. This fact is relevant to grasping because it
is possible for the robot to directly sense some of the axes
of this shared reference frame using force sensing. A contact
surface that is instrumented with one or more force sensors
can identify the point of contact as well as the orientation of a
tangent plane (five out of six axes defining pose) [7]. The idea
of a CRM is to move the manipulator contacts relative to this
shared reference frame. The advantage of CRMs over motions
defined with respect to other types of sensor information (for
example, with respect to a visual reference frame) is that more
precise motions are possible. In open environments, while
visual processing is a good source of qualitative information,
it is almost always more accurate to measure local surface
information using force sensing.

In this paper, contact relative motions (CRMs) are the
atomic units of control. The manipulator must be in contact
with the object before the displacement executes and the CRM
must always re-establish contact before terminating. After

using force sensing to measure local surface characteristics
at the contacts, the CRM displaces the contacts in the shared
reference frames. Note that the shared frames only contain
information about the object surface geometry near the points
of contact. Since the CRM displaces the contact away from
this local reference frame, the new contact surface normals
(after executing the CRM) depend on the shape of the object.
The act of selecting a CRM so as to achieve a grasp necessarily
involves an implicit prediction about what the new object
surface normals will be after CRM execution based on a series
of prior force feedback observations. In this paper, the job
of making these predictions and selecting a CRM that leads
to a grasp configuration is posed as a learning problem in
Section III.

A. A CRM Specification For Two Contacts in the Plane

The general description of CRMs given above allows them
to be implemented in a number of different ways. This paper
proposes a set of CRMs for two contacts in the plane that
is parameterized by three variables,c, f , and r, as follows.
Suppose the two contacts are labeleda and b. The first
parameter specifies which contact is to be moved. A single
CRM may only move one contact, described by the binary
parameter,c ∈ {a, b}. The second parameter specifies the
reference frame in which the contact goal position is defined.
Again, since there are only two contacts, this parameter,
f ∈ {a, b}, is binary. The third parameter,r ∈ {−rmax, rmax}
is a real-valued scalar that specifies where in a planar reference
frame the desired contact position will be.

These three parameters,C = (c, f, r), identify a CRM that
moves the contactc toward a linear manifold of positions
specified as follows. Consider the reference frame of the
contact specified by the binary parameter,f . Suppose that
contactf is located atxf . Let n̂f describe the object surface
normal at contactf pointing into the object surface (it is
assumed that the force sensor is able to sense this surface
normal directly). The line that intersectsxf and runs in the
direction of the surface normal,n̂f , is parametrically described
by, x = xf + tn̂f , wheret is the free parameter. We shift this
line perpendicular to its axis by some amount,r. If we restrict
ourselves to the plane, thenr is a scalar. In the plane, this
new shifted line is described byx = xf + tn̂f + r (n̂f × ẑ),
wherer is the amount by which the line is shifted andẑ is a
normal vector perpendicular to the plane. This line describes a
manifold of desired contact positions that the moving contact,
c, approaches.

The trajectory thatc takes to reach a point onx =
xf + tn̂f + r (n̂f × ẑ) is as follows. First,c backs away
from the surface along its local surface normal,n̂c, by some
preset distance,d. Then it moves to the point onx =
xf + tn̂f + r (n̂f × ẑ) furthest from the object surface (if
c = f , then this is the smallest value oft that can be
reached given the manipulator’s aperture; otherwise it is the
largest). Finally, the contact moves toward the object along
x = xf + tn̂f + r (n̂f × ẑ) until contact is re-established.
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Fig. 1. Illustrations of CRMs. In these figures, contacta moves onto the linear manifold of goal positions illustrated by the vertical dotted lines. In each
figure, contactA moves onto the goal manifold and terminates in contact with the object atA′. (a) and (b) illustrate the behavior of CRM,C1 = (a, b, 0).
(c) illustrates the behavior ofC2 = (a, b, r). (d) illustratesC2 = (a, a, r).

Figures 1(a) and 1(b) illustrateC1 = (a, b, 0). This CRM
moves contacta with respect to theb reference frame. Because
r = 0, the linear manifold of goal positions passes through
the origin of the f contact frame. This manifold of goal
positions is the same regardless of the initial position of
contacta. Figures 1(a) and 1(b) show contacta moving onto
this manifold from two different initial locations. Figure 1(c)
illustrates the behavior of a different CRM,C2 = (a, b, r).
As in C1 = (a, b, 0), contacta moves with respect to theb
contact frame. However, now the manifold of goals positions
is offset by a distance ofr perpendicular to the contact normal.
Finally, Figure 1(d) illustrates the behavior ofC3 = (a, a, r), a
CRM that moves thea contact to a new position expressed in
the reference frame of the same contact prior to moving. This
CRM movesa to a new position offset by r units perpendicular
to n̂a.

Figure 2(a) illustrates how this two-contact planar specifica-
tion for CRMs translates into displacements of a humanoid ro-
bot hand. In this case, the four fingers are grouped together to
act as a single virtual contact [8] and the thumb acts as the sec-
ond contact. Figure 2(a) illustratesC2 = (thumb, fingers, 0),
where the thumb moves onto a linear manifold of positions that
passes through the origin of the finger contact frame.

B. Experiment: Grasps Generated by a Single CRM

Figure 2(a) demonstrates that in some cases, an antipodal
grasp (i.e. a two-contact opposition grasp) can be realized by
executing a CRM that has a zeror parameter. In order for this
to be feasible, the surface normal of one of the contacts must
be co-linear with the surface normal of an opposing surface,
i.e. is must be possible to achieve the antipodal grasp by
moving just one contact. If this is the case, then a grasp can be
achieved by executing CRMsC1 = (a, b, 0) or C1 = (b, a, 0)
(for contacts labeleda and b). These CRMs will be referred
to as “opposition CRMs” because they can lead to antipodal
grasps.

Executing one of the above CRMs is an effective way to
synthesize a grasp in cases where it is known that an antipodal
grasp can be achieved by moving just one contact. Knowledge
of this sort is not unusual. This is the case, for example, when
it is known that two contacts are in contact with the sides of

(a) (b)

Fig. 2. (a) Illustration of the “opposition” CRM,C2 = (thumb, fingers, 0).
The Robonaut thumb moves to oppose the normal vector extending out from
the fingers. (b) Robonaut, the NASA-JSC humanoid, grasping a can.

a cylinder or a regular prism with an even number of sides.
For these objects, it is always possible to generate a grasp
by removing either contact and placing it opposite the other
contact.

The practicality of using CRMs to synthesize grasps in
these situations was tested using the NASA-JSC Robonaut,
illustrated in Figure 2(b) [9]. Robonaut is a humanoid robot
designed to assist astronauts perform manual maintenance
and construction tasks in space and on planetary missions.
It is equipped with twelve degree-of-freedom hands similar in
shape, size, and dexterity to human hands. One of Robonaut’s
hands has recently been augmented with five fingertip load
cells that measure six-axis loads applied at the tips using semi-
conductor strain gauges [10]. Since the load cells that were
used in the current work were not compensated for temperature
variation, they could not be used to measure absolute force
magnitude. Nevertheless, good results were obtained using
a first-order high-pass filter on the strain gauge output to
eliminate low-frequency temperature variations. The high pass
filter made it possible to measure short-time-constant changes
in contact forces accurately. This enabled us to measure the
change in force as the finger made contact with the surface,



(a) (b)

Fig. 3. The Robonaut hand before, (a), and after, (b), executing an
“opposition” CRM. This illustrates the experimental scenario of Section II-B.

Fig. 4. Grasp quality histogram for 30 grasps. Grasp quality is measured in
terms of the minimum coefficient of friction required for force closure given
the contact configuration. Lower required friction values imply a better grasp.

and consequently to measure contact position and the local
object surface normal.

In this experiment, an opposition CRM was used to grasp
the same rectangular prism (a rectangular box) 30 times. On
each grasp trial, the opposition CRM was executed starting
in a configuration where the fingers were in contact with the
long side of the box, similar to that shown in Figure 3(a).
Figure 3(b) illustrates a typical final pose after CRM com-
pletion. Figure 4 shows a histogram of final grasp quality,
measured by the minimum coefficient of Coulomb friction
needed between the contacts and the object in order to achieve
a force closure grasp. As the grasp moves further away from
an antipodal grasp, larger coefficients of friction are needed
in order to achieve force closure (i.e. to hold the object). Poor
grasp configurations require a large coefficient of friction in
order to grasp while good grasps require very little friction.
The histogram shows that an opposition CRM is a practical
approach to grasping in situations where it is known that an
antipodal grasp is achievable by moving only one contact.

III. L EARNING SEQUENCES OFCRMS FOR GRASPING

As noted above, executing an opposition CRM only results
in a grasp when an antipodal grasp is achievable by moving
only one contact. When this is not the case, as illustrated in
Figure 5(a), multiple CRMs must be executed in sequence.
Consider the positions of contactsa and b in Figure 5(a).
In order to realize an antipodal grasp from this configuration,
both contacts must be moved. This can be achieved by execut-
ing C1 = (a, a, r) first (moving contacta to a′ in Figure 5(a))
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Fig. 5. A grasp synthesis problem that requires at least two CRMs in order
to reach a final grasp state. In (a), the two initial contact locations are labeled
a andb. (a) illustrates howC1 = (a, a, r) movesa to a′. (b) illustrates how
subsequently executingC2 = (b, a, 0) movesb to b′.
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Fig. 6. Pictures of the Robonaut hand in perceptually aliased configurations.
Although the hand-object relationship in these two pictures is qualitatively
different, the robot’s observations of contact force feedback are approximately
the same.

followed by C2 = (b, a, 0) (illustrated in Figure 5(b)).

Even when it is possible to realize a grasp in one step,
perceptual uncertainty may require the robot to execute mul-
tiple CRMs before reaching a grasp. When elements of the
set of observations do not uniquely correspond to particu-
lar contact configurations relative to the object,perceptual
aliasing can occur. Perceptual aliasing is the condition that
a single observation can be generated by more than one
underlying system state [11]. In these cases, it is necessary
to recall prior observations in order to resolve the ambiguity.
This is illustrated in Figures 6(a) and (b). In both figures,
Robonaut’s fingertip load cells make approximately the same
measurements. Nevertheless, the orientation of the box in
Figure 6(a) is 90 degrees different from its orientation in
Figure 6(b). These two contact configurations are perceptually
aliased.

Problems such as the above where observations are per-
ceptually aliased have been studied as partially observable
Markov Decision Processes (POMDPs). A POMDP encodes
the underlying problem as a Markov Decision Process (MDP).
However, the agent does not directly sense the underlying state
of the world; instead, the it makes observations that improve
its estimate of the state of the system. In the following,
the problem of grasping with CRMs is first formulated as a
POMDP. Then, a solution is proposed that treats the problem
as ak-order Markov Decision Process (MDP).



A. Action Space and Observation Space

The action space corresponds to the space of CRMs that has
already been defined. LetC = {a, b} be the set of contacts
(assuming the two-contact CRM specification) and letR =
[−rmax, rmax] be the location of the goal manifold in the
specified contact reference frame. Then the action space is:

A = C × C ×R. (1)

As has already been stated, this paper focuses on the
situation where the robot may only make observations derived
from force feedback, not visual information. This information
is summarized in terms of the squared magnitude of the
frictionless force residual and the frictionless moment residual
calculated over the two contacts. For two contacts, the squared
magnitude of the frictionless force residual is:

ρ =

(
2∑

i=1

n̂i

)T (
2∑

i=1

n̂i

)
, (2)

wheren̂i is the sensed surface normal at theith contact. This is
the square of the magnitude of the net force that two contacts
would apply to the object if they each applied unit forces
normal to the object surface (i.e. under a unit force frictionless
assumption). In order to calculateρ, it is necessary to calculate
the local contact surface normal at each of the contacts based
entirely on contemporaneous sensor information. As noted
earlier, one method is to use the approach of Bicciet al. to
calculate object surface normal from load cell information [7].

The frictionless moment about thejth contact is calculated
in a similar way:

mj =
2∑

i=1

~rij × n̂i, (3)

wheren̂i is the surface normal at theith contact and~rij is a
vector pointing from contactj to contacti. Since~rii× n̂i = 0,
mj essentially measures moment about thejth contact. The
robot makes observations of the moment about each contact.
For the two-contact system (C = {a, b}) considered here,
the quantities of interest arema and mb. Since we have
restricted consideration to the plane, bothn̂i and~rij exist in
the plane and only thez component of moment contains any
information. Hence, the relevant observations derived from the
frictionless moment residual are the scalarsma

z andmb
z.

Finally, in addition to the frictionless force residuals and
frictionless moments, the robot also observes error conditions
encountered by the CRMs during execution. In general,E =
{ε1, . . . , εk} denotes the set of possible error conditions that
a CRM might encounter. For the present,E is restricted to
indicate the presence or absence of only two error conditions,
ε1 and ε2. The first error condition,ε1, indicates that the
CRM could not reach its associated linear manifold of goal
configurations because of aperture limitations. The second
condition,ε2, indicates that the manifold of goal configurations
was not reached because of a collision with the object on
a non-contact part of the manipulator (i.e. a collision at the

palm). The absence of any error is indicated byE = ε0.
Combining these various sources of information, the robot
observes an element from

(ρ, ma
z ,mb

z, ε) ∈ O, (4)

whereO = R×R×R× E when it executes a CRM.

B. Learning a Policy

The above observation of force residual and moment infor-
mation does not instantaneously determine the complete state
of the hand-object system. Instead, problems involving this
sort of incomplete information are partially observable and
are typically studied as Partially Observable Markov Decision
Processes (POMDPs).

Two general approaches to solving POMDPs are generative-
model approaches and history-based approaches [12]. In gen-
erative approaches, it is assumed that the agent is aware
of the underlying structure of the MDP. The agent’s past
observations are summarized by a distribution that estimates
the probability that the robot is in each possible underlying
state. The agent then solves an optimization problem in the
space of all possible distributions (the belief space). While
this is an exact solution method for POMDPs, the resulting
optimization problem is usually high-dimensional. In addition,
it requires foreknowledge of the underlying system structure –
information that is not readily available in the grasp domain.
History-based approaches attempt to resolve the perceptual
aliasing problem by storing a partial history of previous ob-
servations and actions that can resolve perceptual ambiguities.
History-based approaches do not require ana-priori model of
the underlying system. However, they may require the agent
to store significant amounts of redundant information.

This paper takes a history-based approach to solving the
partially observable grasp synthesis problem. In particular, the
system is approximated as ak-order Markov Decision Process.
An internal state of the robot is constructed from a history of
the lastk actions and observations,

st = (ot, at−1, ot−1, . . . , ot−k+1, at−k). (5)

The internal state space isSk = Ot×At−1× . . .×Ot−k+1×
At−k. The optimization problem is now solved as a fully
observable MDP using the constructed internal state repre-
sentation of Equation 5 and the action space described by
Equation 1.

With a history-based system using a fixed time window, it
is frequently necessary to trade off the amount of perceptual
aliasing against the size ofk. In order to keep the state
space small (and therefore keep the problem computationally
tractable), it is convenient to makek as small as possible. In
this paper’s grasping experiments, a value ofk = 2 is used.
The drawback of this approach is that thek-order system may
“forget” important information because it does not store the
full history of actions and observations. This would lead to
perceptual aliasing. In general, the smaller the value ofk, the
more perceptual aliasing there will be.



Reinforcement Learning (RL) is used to find a policy that
solves the POMDP directly in the space ofSk and A for
two principle reasons. First, RL learns all relevant problem
structure. There is no need to explicitly estimate or model
underlying states, actions, or transition probabilities. Instead,
based on the assumption of thek-order states, it is possible
to estimate transition probabilities using straightforward max-
imum likelihood estimates. Second, RL has been shown to
work robustly in non-stationary domains (domains where the
underlying transition probabilities are not constant.) To the
RL agent, the non-stationary transition probabilities caused by
perceptual aliasing will appear to an RL agent as a stochastic
or non-stationary transition function. On-policy versions of
RL such as SARSA have been shown to work well for these
problems [13], [14].

C. Experiment: Learning a Grasp Policy in a Perceptually
Aliased Space

An experiment was performed where a policy for grasping a
prismatic rectangular box using a two-contact manipulator was
learned in a planar simulation. Then, one of the trajectories
generated by the policy was demonstrated on the physical
Robonaut system. Learning the grasp policy was non-trivial
for two reasons. First, because of the limited aperture of
the manipulator, it was only possible to form an opposition
grasp on the rectangle by making contact on each of the
long sides; the rectangle was too long for the manipulator to
grasp it lengthwise. Second, in some contact configurations,
the force feedback did not uniquely determine which contact
was touching which side of the rectangle. As a result, the
robot did not know which contact should be moved without
considering a history of actions and observations.

1) Learning in Simulation:The robot had four CRM ac-
tions available to it. Two of the CRMs were “opposition”
CRMs as described in Section II-B. Labeling the two contacts
a andb, these CRMs wereC1 = (a, b, 0) (move thea contact
opposite theb contact) andC2 = (b, a, 0) (move theb contact
opposite thea contact). The remaining two CRMs displaced a
contact in its own reference frame by a predetermined amount.
C3 = (a, a, r) displaced thea contact to a fixed orthogonal
distancer in the reference frame of thea contact. Similarly,
C4 = (b, b, r) displaced theb contact to a fixed orthogonal
distancer in its own reference frame. Taken together, the space
of available actions was:

A = {C1, C2, C3, C4}.

The robot made observations of the form of the tuple
in Equation 4,(ρ,ma

z ,mb
z, ε) ∈ O. In this experiment, the

space of observations was manually discretized by allowing
each of the three variables,ρ, ma

z , andmb
z to take only two

possible values each. As described in Section III-A, the error
variable took on one of three values. Combining the above,
each observation had2 × 2 × 2 × 3 = 24 possible values.
The complete second-order system state was given by the
following tuple, describing the history of the last two actions
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Fig. 7. Learning curve showing the number of steps needed to grasp the
object as a function of earning episode averaged over 20 trials.
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Fig. 8. Two grasp strategies learned in simulation. In (a), the robot is initially
unsure about which contact should be opposed against the other. The robot
arbitrarily chooses one contact to oppose. If that fails, then it opposes the
other contact. In (b), the robot knows that the contact that is far away from
the corner of the box must be on the long side. Therefore, it moves that
contact closer to the corner and subsequently opposes the other contact.

and observations,

st = (ot, at−1, ot−1, at−2).

As a result, the second order state space had24×4×24×4 =
9216 theoretically-possible states. However, because the latent
structure of the problem made many theoretically conceivable
sequences of action and observation impossible in practice,
the actual state space was likely much smaller.

The robot learned a policy for grasping the planar rectangle
using RL. SARSA was used with a learning rate of 0.3, a
discount factor of 0.9, and a reward of -1 in all states. All
states were initialized with an optimistic initial value of zero.
On each episode of learning, the robot started in a random
starting contact configuration. An episode terminated when the
robot reached an equilibrium grasp configuration or after ten
actions.

Figure 7 shows the average number of steps needed to grasp
the object averaged over 20 trials as a function of episode.
As the number of episodes increased and the system acquired
commensurately more experience, performance improved until
a policy was learned that grasped the rectangle an average of
1.8 steps. Two of the grasp strategies learned are illustrated in
Figures 8a and 8b. If the robot started in a configuration such
that the two contacts were near a corner on orthogonal sides,
then the robot used the strategy in Figure 8a. In this case, it
was impossible to know based only on the current observation
which contact was on the short side and which was on the



Fig. 9. Trajectory taken by the Robonaut hand as it executed the learned
grasp policy for the rectangular box. The horizontal axis illustrates frictionless
force residual. The vertical axis illustrates frictionless moment about the
fingers. Each dot represents the configuration of the system at some point
during policy execution for one of the eleven trials. The top right cluster
corresponds to initial configuration. The cluster below that corresponds to the
configuration after executing the first CRM. The lower left cluster corresponds
to the configuration after the second CRM has executed. The clusters are
associated with the pictures as indicated.

long side. The learned strategy chose a contact to oppose at
random (the value of each action was approximately equal). If
the CRM worked, then the episode terminated. Otherwise, the
policy noted the failure and completed the grasp by opposing
the other contact.

The situation was different for a contact configuration where
the distance of one contact from the corner exceeded the length
of the short side of the rectangle, as illustrated in Figure 8b.
For the rectangle, this “distance from the corner” was encoded
by the magnitude of the frictionless moment in the observation
vector. This observation immediately disambiguated which
contact was on the long side and which was on the short side.
Nevertheless, it was not possible to move the contact on the
short side into opposition immediately because it would cause
non-contact surfaces of the manipulator (the “palm”) to collide
with the object. Instead, the learned policy first moved this
contact closer to the corner usingC3 or C4. Then the policy
opposed the other contact usingC1 or C2

Figure 7 shows that an optimal grasp strategy was learned
within about 60 episodes. This learning time can be shortened
with more sophisticated versions of RL including using eligi-
bility traces or by performing dynamic programming iterations
such as in DYNA-Q [15].

2) Testing on Robonaut:The learned strategy illustrated
in Figure 8(b) was tested on Robonaut. The Robonaut hand
was treated as a two-contact planar manipulator. The thumb
acted as one of the contacts and the four fingers were grouped
together to become a second virtual contact [16], [8]. In order
to continue to use the planar approximation, the hand was
constrained to move roughly parallel to the ground plane and
interacted only with the prismatic rectangle (the box).

The trajectory of the Robonaut hand as it executed the two-

CRM sequence is illustrated at the top of Figure 9. Robonaut
starts in the configuration illustrated on the right where the
distance of the thumb from the corner along the long side of
the box exceeds the length of the short side. The picture in
the center of the three at the top of Figure 9 illustrates the
intermediate configuration where the thumb has moved closer
to the corner, thereby enabling the fingers to oppose the thumb
in its new location. Finally, the picture on the top left illustrates
the final configuration of the manipulator.

The repeatability of this policy on the physical system was
tested in an experiment where the above grasp strategy was
executed eleven times. The plot in Figure 9 illustrates the
trajectory of the manipulator as a function of frictionless force
residual and moment. The horizontal axis is the measured
frictionless force residual between the two contacts. The
vertical axis is the measured frictionless moment of the thumb
tip about the fingertips. Each point in the space corresponds
to the state of the manipulator before the first action, before
the second action, or after the second action on one of the
eleven trials. Note that there are three clusters in the space.
The cluster in the upper right (ρ ∼ 0.7 andm ∼ 1.2) illustrates
the initial contact configurations where the distance of the
thumb from the corner exceeds the length of the short side
of the box. The cluster directly below that (ρ ∼ 0.5 and
m ∼ 1.2) illustrates the intermediate configurations where
the thumb has moved closer to the edge. Finally, the cluster
in the lower left illustrates opposition configurations where
both frictionless force residual and moment are close to zero.
These results indicate that the learned policy transferred to the
physical robot system in a consistent way.

IV. D ISCUSSION

The approach to grasping proposed in this paper occupies an
interesting place in the pantheon of grasp synthesis methods.
Most grasp synthesis approaches make very strict assumptions
about the kind of foreknowledge available to the system.
Grasp planning approaches typically assume that complete
information about object geometry and relative hand pose
is available. In contrast, grasp control methods assume that
nothing is known about the object (aside from a general
convexity assumption). This paper takes an approach related to
grasp control while also using prior information to accelerate
grasp synthesis.

In this paper, the manipulator reaches a grasp configuration
by executing a sequence of CRMs according to a policy
learned using Reinforcement Learning (RL). Although more
experiments are needed to bear out these claims, it is expected
that the policy that RL learns will depend on the “allowed”
space of problem variation. For example, if the shape of the
object is assumed to be constant in a particular situation, then
RL may formulate the policy that grasps only the given object.
However, if the shape of the object is allowed to vary within
constraints, then RL can be expected to learn a policy that
works throughout the space of object variation. For example,
if the robot is grasping a cup of unknown radius and height,
then the learned policy must reach grasp configurations for any



shaped cup. In order to achieve this, the learned policy may
need to differentiate various classes of cups based on force
feedback.

A key advantage of using RL to learn these grasp policies
is that it is not necessary to encode the geometry of the
object, what parameters are free to vary, or exactly what
information is relevant to the problem. If the RL learning agent
is presented with problem instances drawn uniformly from the
space of variations (i.e. the robot is presented with randomly
shaped cups presented in arbitrary orientations), then it will
learn policies that minimize the average time/cost to grasp
completion over all variations. So, if RL finds that a particular
CRM sequence effectively grasps in the majority of problem
instances and that the cost of grasp failure is small, then the
agent will learn to use that sequence initially in all cases and
only execute other strategies when the first strategy is found to
fail. However, if the infrequent failures come with a high cost,
then the agent will take steps in every case to determine ahead
of time which situation it is in and then act appropriately.

V. CONCLUSION

This paper proposes a grasp synthesis strategy based on
two ideas: contact relative motions (CRMs) and the notion
of grasp synthesis as a partially observable optimal control
problem. CRMs are units of control where a desired contact
displacement is expressed in a shared robot-object reference
frame. When the robot is in contact with the object, it is able
to sense the local contact reference frame (shared between the
object and the robot) directly. Since force feedback is usually
more precise than visual feedback regarding the local object
surface, CRMs are a mechanism for generating precise contact
displacements over the local object surface. An experiment is
presented that demonstrates that in certain situations, executing
a single CRM is a practical way to synthesize a grasp that
does not require precise foreknowledge of object parameters
or manipulator pose.

This paper also explores the case where it is not possible to
grasp an object by executing only one CRM and a sequence
of CRMs is necessary instead. In these cases, selecting the
correct sequence of CRMs may depend on the ability of the
robot to sense the shape of the object. Sensing is a key issue
for grasp synthesis techniques because it is frequently not
possible to sense all aspects of object pose and geometry as
accurately as desired. This paper focuses on issues related
to incomplete sensing by allowing the robot to consider
only force feedback and not visual information. Since the
problem of selecting the correct sequence of CRMs is partially
observable, this paper formulates it as a Partially Observable
Markov Decision Process (a POMDP) where the robot makes
a series of observations derived from force feedback alone.
We solve the POMDP as ak-order Markov Decision Process
using Reinforcement Learning. The advantage of this approach
is that the robot needs no foreknowledge of the underlying
structure of the grasp problem in order to find an optimal
solution. Reinforcement Learning simply searches for policies

that optimize the optimize the chance of grasp success in the
space of variation to which the robot is exposed.
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