
LQR-RRT∗: Optimal Sampling-Based Motion Planning with
Automatically Derived Extension Heuristics

Alejandro Perez, Robert Platt Jr., George Konidaris, Leslie Kaelbling and Tomas Lozano-Perez
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology

{aperez, rplatt, gdk, lpk, tlp}@csail.mit.edu

Abstract— The RRT∗ algorithm has recently been proposed
as an optimal extension to the standard RRT algorithm [1].
However, like RRT, RRT∗ is difficult to apply in problems with
complicated or underactuated dynamics because it requires the
design of a two domain-specific extension heuristics: a distance
metric and node extension method. We propose automatically
deriving these two heuristics for RRT∗ by locally linearizing
the domain dynamics and applying linear quadratic regulation
(LQR). The resulting algorithm, LQR-RRT∗, finds optimal
plans in domains with complex or underactuated dynamics
without requiring domain-specific design choices. We demon-
strate its application in domains that are successively torque-
limited, underactuated, and in belief space.

I. INTRODUCTION

The problem of planning dynamically feasible trajectories
from an initial state to a goal state has recently been the
subject of extensive study. Unfortunately, the general motion
planning problem is known to be PSPACE-hard [2], [3].
In an effort to solve problems of practical interest, much
recent research has been devoted to developing sampling-
based planners such as the Rapidly-exploring Randomized
Tree (RRT) [4] and the Probabilistic Road Map (PRM) [5].
These algorithms only achieve probabilistic completeness—
that is, the probability that a solution is found (if one exists)
converges to one as the number of samples approaches
infinity; however, they have good average-case performance
and work well on many problems of practical interest.

One of the key drawbacks of these sampling-based al-
gorithms is that they often produce suboptimal solutions
that “wander” through state space. In fact, Karaman and
Frazzoli have recently shown that RRT almost surely does
not find an optimal solution [1]. They introduced RRT∗,
an algorithm which extends RRT to achieve the asymptotic
optimality property, i.e., almost-sure convergence to the
optimal solution. Compared with the RRT, RRT∗ requires
only a constant factor more computation. Like RRT, RRT∗

requires the user to specify two domain-specific extension
heuristics: a distance metric and a node extension procedure.
These components play a significant role in the algorithm:
naive implementations (e.g., using the Euclidean distance)
may not reflect the dynamics of particular domain, and
therefore result in poor exploration and slow convergence
to the optimal solution. Indeed, it has been shown that the
performance of RRT-based algorithms is sensitive to the
distance metric used [6].

Prior research has characterized the effect of the distance
metric component on the convergence of RRT. Cheng and

LaValle [7] showed that RRTs efficiently explore the state
space only when this metric reflects the true cost-to-go.
LaValle and Kuffner have previously noted that cost-to-go
functions could be based on, among other options, optimal
control for linearized systems [4]. Glassman and Tedrake [8]
derived a cost-to-go pseudometric based on linear quadratic
regulators (LQR), which was used to grow a standard RRT
in domains with constrained and underactuated dynamics.

We propose an LQR-based heuristic to be used with
the RRT∗ algorithm similar to the one proposed by Glass-
man and Tedrake [8] for the RRT. As in Glassman and
Tedrake [8], we linearize the system dynamics about newly
sampled points and use the LQR cost function to select the
vertex in the tree to extend. However, in addition, we use
the infinite horizon LQR policy to perform the extension,
ultimately reaching a state that is potentially different from
the sampled state. Finally, we evaluate the finite horizon
LQR value function about this state and use it to evaluate
distance during the RRT∗ “rewiring” step. The results are
demonstrated on three underactuated robotics problems that
are difficult to solve using naive extension heuristics: the
torque-limited inverted pendulum, the acrobot, and a belief
space planning problem.

II. BACKGROUND

A. Problem Statement

Given a system with known (possibly non-linear) process
dynamics, the optimal motion planning problem is to find
a minimum cost feasible trajectory from an initial con-
figuration to a goal configuration. Let configuration space
be a compact set, X ⊆ X , that describes all possible
configurations of the system. Let U ⊆ U be a compact
control input space. We assume that we are given the non-
linear process dynamics:

ẋ = f(x, u).

A dynamically feasible trajectory is a continuous function,
σ : [0, 1] → X , for which there exists a control function,
u : [0, 1] → U , such that ∀t ∈ [0, 1], σ̇(t) = f(σ(t), u(t)).
The set of all dynamically feasible trajectories is denoted by
Σtraj. Given an initial configuration, xinit, and a goal region
Xgoal, the motion planning problem is to find a dynamically
feasible trajectory, σ, and a control, u, that starts in the initial
configuration and reaches the goal region: σ(0) = xinit and
σ(1) ∈ Xgoal. Let c : Σtraj → R+ be a cost functional that
maps each feasible trajectory to a non-negative cost. The

optimal motion planning problem is to find a solution to the
motion planning problem that minimizes c(σ).

B. RRT∗

Rapidly exploring random trees (RRTs) are a standard ran-
domized approach to motion planning [4]. RRT∗ [1], shown
in Algorithm 1, is a variant of this algorithm that has the
asymptotic optimality property, i.e., almost-sure convergence
to an optimal solution.

Algorithm 1: RRT∗((V,E), N)

for i = 1, . . . , N do1

xrand ← Sample;2

Xnear ← Near(V, xrand);3

(xmin, σmin)← ChooseParent(Xnear, xrand);4

if CollisionFree(σ) then5

V ← V ∪ {xrand};6

E ← E ∪ {(xmin, xrand) };7

(V,E)← Rewire((V,E), Xnear, xrand);8

return G = (V,E);9

Algorithm 2: ChooseParent(Xnear, xrand)

minCost←∞; xmin ← NULL; σmin ← NULL;1

for xnear ∈ Xnear do2

σ ← Steer(xnear, xrand);3

if Cost(xnear) + Cost(σ) < minCost then4

minCost← Cost(xnear) + Cost(σ);5

xmin ← xnear; σmin ← σ;6

return (xmin, σmin);7

Algorithm 3: Rewire((V,E), Xnear, xrand)

for xnear ∈ Xnear do1

σ ← Steer(xrand, xnear) ;2

if Cost(xrand) + Cost(σ) < Cost(xnear) then3

if CollisionFree(σ) then4

xparent ← Parent(xnear);5

E ← E \ {xparent, xnear};6

E ← E ∪ {xrand, xnear};7

return (V,E);8

The major components of the algorithm are:
• Random sampling: The Sample procedure provides

independent uniformly distributed random samples of
states from the configuration space.

• Near nodes: Given a set V of vertices in the tree and a
state x, the Near(V, x) procedure provides a set of states
in V that are close to x. Here, closeness is measured
with respect to some metric as follows:

Near(V, x) :=

{
x′ ∈ V : ‖x− x′‖ ≤ γ

(
log n

n

)1/d
}
,

Fig. 1. “Near” neighborhood of nodes for xnew (red circle) on an iteration
of the torque-limited pendulum. Nodes found using Euclidean distance as
the cost metric (green circles) are closer to xnew. However, extension is not
feasible from any of the considered states as these did not account for the
dynamics of the system. The LQRNear calculation provides a neighborhood
of nodes (blue circles) that are able to reach xnew with minimum effort.
Policies in the tree are false-colored (red through blue) as cost increases.

where ‖ · ‖ is the distance using the metric, n is the
number of vertices in the tree, d is the dimension of the
space, and γ is a constant.

• Steering: Given two states x, x′, the Steer(x, x′) pro-
cedure returns a path σ that connects x and x′. Most
implementations connect two given states with a straight
path in configuration space.

• Collision checking: Given a path σ, CollisionFree(σ)
returns true if the path lies in the obstacle-free portion
of configuration space.

The algorithm proceeds as follows. Firstly, a state is sam-
pled, denoted as xrand, from the configuration space (Line 2),
and near neighbors are evaluated using the Near function
(Line 3).1 Next, RRT∗ calls ChooseParent (Algorithm 2)
to find a candidate for a parent node to xrand (Line 4).
ChooseParent searches through the nodes in the set Xnear

of near nodes and returns the node, denoted as xmin, that
reaches xrand with minimum cost along with the path σmin

connecting xmin to xrand. After that node is found, the
algorithm checks σmin for collision (Line 5). If the path
is obstacle-free, the algorithm adds xrand to the tree and
connects xmin to xrand, and attempts to “rewire” the nodes
in Xnear using the Rewire procedure (Algorithm 3). The
Rewire procedure attempts to connect xrand with each node
in the set Xnear of near nodes. If the path that connects xrand
with a near node xnear reaches xnear with cost less than that
of its current parent, then the xnear is “rewired” to xrand by
connecting xrand and xnear.

C. LQR

Linear quadratic regulation (LQR) is an approach to
computing optimal control policies for linear systems with
Gaussian process noise. In general, the problem of finding
optimal control policies for arbitrary stochastic systems is has
polynomial computational complexity in the number of value
function parameters. However, when the system dynamics
are linear, it is possible to solve for the optimal value function
efficiently in closed form. Furthermore, it is possible to apply
this approach to non-linear systems by linearizing the non-
linear process dynamics about an operating point.

1Although it is not explicitly noted here, we assume that the algorithm
proceeds to the next iteration if the Near function returns an empty set.

Suppose that we are given a continuous-time non-linear
system,

ẋ = f(x, u),

and we are interested in computing a local policy that approx-
imately optimizes a quadratic cost function defined about a
point, (x0, u0). Taking the first-order Taylor expansion of f
about (x0, u0), we have:

ẋ ≈ f(x0, u0) +
∂f(x0, u0)

∂x
(x−x0) +

∂f(x0, u0)

∂u
(u−u0).

If we notice that ẋ0 = f(x0, u0) and define a change of
variables, x̄ = x− x0 and ū = u− u0, then this becomes:

ẋ ≈ ẋ0 +A(x0, u0)x̄+B(x0, u0)ū,

or simply
˙̄x ≈ A(x0, u0)x̄+B(x0, u0)ū,

where
A(x0, u0) =

∂f(x0, u0)

∂x

and
B(x0, u0) =

∂f(x0, u0)

∂u
.

Given a cost function of the form:

J =

∫ ∞
0

x̄TQx̄+ ūTRū,

we can compute the locally optimal policy by solving the
algebraic Riccati equation for the matrix, S:

ATS + SA− SBR−1BTS +Q = 0,

where A = A(x0, u0) and B = B(x0, u0). It is possible to
solve this equation for S efficiently, and many software alge-
bra packages provide standard functions to do so, including
the lqr function provided by Matlab. Given a solution, S,
the optimal value function is:

V (x̄) = x̄TSx̄.

The optimal policy is

π∗(x̄) = −Kx̄, (1)

where
K = R−1B(x0, u0)TS

is known as the LQR gain matrix. In this paper, it will be
important to recognize that the value function can be used to
compute a cost to go from any point to the goal. Following
Glassman and Tedrake [8], we note that this cost can be
used as a measure of “distance”: states with a high cost to
go are further from the goal than those with a lower cost to
go. Using cost to go as a distance metric results in efficient
exploration of the state space [7]. It is these locally linearized
dynamics that we use in LQR-RRT∗ to estimate distances
and perform extensions. Initially in our algorithm, when the
distances between the new node and the “near” nodes in
the tree are large, this distance measure will be inaccurate.
However, as the tree covers the state space more densely,

the distances shrink and the local LQR policy becomes more
closely optimal. In the following, we will use the notation

[K,S] = LQR(A,B,Q,R),

to denote the function that calculates the LQR gain matrix,
K, and the cost matrix, S.

III. LQR AS AN EXTENSION HEURISTIC FOR RRT∗

We present a variation of the RRT∗ algorithm that incor-
porates LQR for “near” and “nearest” node calculations as
well as for extensions among nodes, given in Algorithm 4.
In each iteration, the algorithm first samples a state, de-
noted as xrand, from the configuration space (Line 2), and
finds its nearest neighbor using the LQRNearest function
(Line 5). Then, the algorithm calls the LQRSteer function
to create a xnew state. This state represents the end of a
trajectory executed with the LQR-policy generated from the
LQRNearest function with a pre-specified step size based on
the cost. The LQRNear procedure is then called on xnew to
search for a neighborhood of nodes around this state. Then,
ChooseParent finds a candidate for a parent node to xnew
(Line 6). The ChooseParent procedure, presented in detail
in Algorithm 5, simply searches through all the nodes in the
set Xnear of near nodes and returns the node, denoted as
xmin, that reaches xnew with minimum LQR S cost along
with the trajectory σmin that connects xmin to xnew. After
that node is found, the algorithm checks σmin for collision.
If the path is obstacle-free, the algorithm adds xnew to the
tree and connects xmin to xnew, and it attempts to “rewire”
the nodes in Xnear using the Rewire procedure, which is
provided in Algorithm 6. The Rewire procedure attempts to
connect xnew with each node in the set Xnear of near nodes.
If the trajectory that connects xnew with a near node xnear
reaches xnear with cost less than that of its current parent,
then the xnear is “rewired” to xnew by connecting xnew and
xnear.

The algorithm primitives are outlined in detail below:
• Nearest Vertex: Given a set of vertices in the tree, V ,

and a state x, the LQRNearest(V, x) function returns
the nearest node in the tree in terms of the LQR cost-
to-go function. We locally linearize the system about x
and the zero action, u = 0, and evaluate the LQR gain
matrix, K(x), and cost matrix, S(x):

[K(x), S(x)] = LQR(A(x, 0), B(x, 0), Q,R).

We use the cost matrix to evaluate the distance between
vertices in the tree and the sample point:

xnearest = arg min
v∈V

(v − x)TS(v − x).

• Near Vertices: This function returns the set of vertices
that are within a certain distance of a state, x, calculated
by evaluating the LQR cost function about that state:

LQRNear(V, x)

=

{
v ∈ V : (v − x)TS(v − x) ≤ γ

(
logn

n

)1/d
}
,

where n is the number of vertices in the tree, d is the
dimension of the space, and γ is a constant.

• Steering: Given two states, x, x′, the LQRSteer(x, x′)
function “connects” state x with x′ using the local LQR
policy calculated by linearizing about x.

Algorithm 4: LQR− RRT∗((V,E), N)

for i = 1, . . . , N do1

xrand ← Sample;2

xnearest ← LQRNearest(V, xrand);3

xnew ← LQRSteer(xnearest, xrand);4

Xnear ← LQRNear(V, xnew);5

(xmin, σmin)← ChooseParent(Xnear, xnew);6

if CollisionFree(σ) then7

X ← X ∪ {xnew};8

E ← E ∪ {(xmin, xnew)};9

(V,E)← Rewire((V,E), Xnear, xnew);10

return G = (V,E);11

Algorithm 5: ChooseParent(Xnear, xnew)

minCost←∞; xmin ← NULL; σmin ← NULL;1

for xnear ∈ Xnear do2

σ ← LQRSteer(xnear, xnew);3

if Cost(xnear) + Cost(σ) < minCost then4

minCost← Cost(xnear) + Cost(σ);5

xmin ← xnear; σmin ← σ;6

return (xmin, σmin);7

Algorithm 6: Rewire((V,E), Xnear, xnew)

for xnear ∈ Xnear do1

σ ← LQRSteer(xnew, xnear) ;2

if Cost(xnew) + Cost(σ) < Cost(xnear) then3

if CollisionFree(σ) then4

xparent ← Parent(xnear);5

E ← E \ {xparent, xnear};6

E ← E ∪ {xnew, xnear};7

return (V,E);8

Although not explicitly noted in the algorithm descrip-
tions, we also employ a branch-and-bound technique. In
Karaman et al. [9], branch-and-bound is implemented to
prune parts of the tree that are evaluated with a cost-to-go
function and found to result in a higher cost than that of
current solutions available in the tree. In this paper, a cost-
to-go function is not implemented. Instead, the cost of the
current best solution in the tree is used as a lower bound,
and all nodes with a total cost above this value are removed.
The branch and bound method concentrates the search on
finding a trajectory that reaches the goal optimally.

IV. RESULTS

In this section we evaluate LQR-RRT∗ in three domains
with complex dynamics: one which is torque-limited, one

which is underactuated, and one which requires planning in
belief-space.

A. Torque-limited Pendulum

Our first domain is a torque-limited pendulum. The ob-
jective is to swing up the pendulum from rest to a vertically
balanced position. This domain has a two-dimensional state
space, (θ, θ̇), where θ denotes the orientation of the pendu-
lum. The equation of motion for this system is: θ̈ = u−bθ̇−
g cos(θ), where gravity is g = 9.81, the constant of viscous
friction is b = 0.1, torque is constrained to u ∈ [−3, 3],
and we have assumed unit mass and unit length. Since this
problem is low dimensional, we are able to compare the
solution found using our approach with the solution found
using dynamic programming (which is optimal for a given
discretization) using a state-space grid of 100× 100 and 10
discrete actions.

−4 −3 −2 −1 0 1 2 3 4
−8

−6

−4

−2

0

2

4

6

8

θ

θ do
t

Iteration: 5000 Nodes: 2976 Radius: 0.51842 Lower Bound: 302.8823

(a) R = 1

−4 −3 −2 −1 0 1 2 3 4
−8

−6

−4

−2

0

2

4

6

8

θ

θ do
t

Iteration: 1200 Nodes: 2191 Radius: 5.9252 Lower Bound: 2305.2161

(b) R = 50

Fig. 2. The search tree and solution trajectories (thick red lines) found
by our approach after 5000 iterations. (a) shows the solution found by the
algorithm when torque is cheap. (b) shows the solution found when the
action costs are high. Policies in the tree are false-colored (yellow through
magenta) as cost increases.

We tested our algorithm in two scenarios where differ-
ent cost functions were used in LQRNearest, Near, and
LQRSteer. In the first, we set Q equal to identity and R = 1.
In the second, we set Q equal to identity and R = 50.
Figure 2 illustrates the results. In Figure 2(a), we see that
the solution trajectory found by LQR-RRT∗ when action
cost is small involves only three swings to reach the upright
position. Figure 2(b) shows that the resulting trajectory for a
higher action cost involves many more swings. The algorithm
finds a trajectory that takes longer to reach the upright
position, but expends less action cost in the process. All

solutions were simulated and we observed that the goal was
reached without violating the torque constraint during all
runs. Figure 3 shows the solution cost over time for both
problem instances. We also show the average solution cost
found by RRT (which is cost-insensitive) using the same
extension heuristics and the solution cost found by dynamic
programming. These graphs show that the solution cost found
by our approach decreases rapidly over time, improving
significantly on the solution cost found by the RRT and
converging to the approximately optimal solution cost as
obtained by dynamic programming.

(a) Torque-limited Pendulum R = 1

(b) Torque-limited Pendulum R = 50

Fig. 3. Solution cost over time for LQR-RRT (blue) and LQR-RRT∗

(red) for the torque-limited simple pendulum with R = 1 (a) and R =
50 (b). Averages are over 100 runs, and error bars are standard error. An
approximately optimal solution cost, obtained by dynamic programming, is
shown in black. Average times to initial solutions for LQR-RRT and our
approach were 4.8 and 22.2 seconds, respectively.

Although pendulum is a low-dimensional domain, solving
it using RRT∗ requires good extension heuristics: our attempt
to solve it using extensions based on Euclidean distance
failed, running out of memory before a solution was found.

B. Acrobot

In the second domain, the planner must bring an acrobot
(a double inverted pendulum actuated only at the middle
joint) from its initial rest configuration to a balanced vertical
pose. The two joints are denoted q1 and q2. The state space
is four-dimensional: (q1, q2, q̇1, q̇2). Since the first joint is
completely un-actuated, the acrobot is a mechanically un-
deractuated system. The equations of motion for the acrobot
are described in detail in Murray and Hauser [10].

Figure 4 shows the solution found using our approach,
and Figure 5 shows the solution cost over time. Again,
average cost rapidly improves, starting from a cost similar to
that of RRT (with the same extension heuristic) and rapidly
improving. The Acrobot is a difficult domain for which
to design extension heuristics because it is dynamic and

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 4. A solution found after 5000 iterations of LQR-RRT∗ on the acrobot.
Earlier state configurations are shown in lighter gray. Torque is presented
as a false-colored arc where red represents higher values.

underactuated. Attempts to use standard Euclidean distance-
based heuristics ran out of memory before a solution could
be found.

Fig. 5. Acrobot solution cost over time for LQR-RRT (blue) and our
approach (red). Error bars indicated standard error over an average of 50
runs. Average times to initial solutions for LQR-RRT and our approach were
109 and 136 seconds respectively.

C. Light-Dark Domain

The Light-Dark domain (adapted from Platt et al. [11]) is
a partially observable problem where the agent must move
into a goal region with high confidence. Initially, the agent
is uncertain of its true position. On each time step, the
agent makes noisy state measurements. The covariance of
these measurements is a quadratic function of the minimum
distance to each of two light sources located at (5, 2) and
(5,−2) (see Figure 6): w(x) = min((x− b1)2, (x− b2)2),
where b1 and b2 are the locations of the first and second
light sources, respectively.

x

y

−1 0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

3

4

Fig. 6. The Light-Dark domain, where the noise in the agent’s location
sensing depends upon the amount of light present at its location. Here the
agent moves from its start location (marked by a black circle) to its goal
(a black X), first passing through a well-lit area to reduce its localization
uncertainty (variance shown using gray circles).

A key concept in solving partially observable problems
is that of belief state, a probability distribution over the
underlying state of the system. Since the agent is unable
to sense state directly, it is instead necessary to plan in the
space of beliefs regarding the underlying state of the system
rather than the underlying state itself. In this example, it
is assumed that belief state is always an isotropic Gaussian
such that belief state is three-dimensional: two dimensions
describe the mean, x, and one dimension describes variance,
v. The dynamics of the belief system are derived from the
Kalman filter equations and describe how belief state is
expected to change as the system gains more information:
ṡ = (u1, u2, v̇)T , where v̇ = −v2/(v + w(x)).

The goal of planning is to move from an initial high-
variance belief state to a low-variance belief state where
the mean of the distribution is at the goal. This objective
corresponds to a situation where the agent is highly confident
that the true state is in the goal region. In order to achieve
this, the agent must move toward one of the lights in order
to obtain a good estimate of its position before proceedings
to the goal. The domain, along with a sample solution
trajectory, is depicted in Figure 6.

Fig. 7. Light-Dark solution cost over time for LQR-RRT (blue) and our
approach (red). Error bars indicated standard error over an average of 100
runs. Average times to initial solutions for LQR-RRT and our approach
were 0.2 and 2.1 seconds respectively. All algorithms were implemented in
MATLAB and tested on a Intel Core 2 Duo (2.26 GHz) computer.

Figure 7 shows the solution cost for the Light-Dark
domain over time. As in the other examples, our approach
finds a solution quickly and rapidly improves. Figure 8 shows
an example tree. Notice that it would be difficult to create
heuristics by hand that would be effective in this domain: it is
unclear how much weight should be attached to differences
in variance against differences in real-world coordinates. Our
approach avoids this question because it obtains its extension
heuristics directly from the dynamics of the problem.

V. SUMMARY AND CONCLUSION

This paper has proposed an approach to using LQR with
RRT∗ in the context of domains that have underactuated, or
complex dynamics. Although RRT∗ is guaranteed to find the
optimal solutions asymptotically, in practice its performance
is crucially dependent on the careful design of appropriate
extension heuristics. By contrast, LQR-RRT∗ solved all three
problems using the same automatically derived extension
heuristics—without the need for significant design effort.
The use of such automatically derived heuristics eliminates a

−2 0 2 4 6 8
−5

0

5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration: 5000 Nodes: 1578 Radius: 16.7508 Lower Bound: 3006.4426

Fig. 8. The search tree for Light-Dark after 5000 iterations of planning.
The belief space is represented in 3-dimensionals, where the mean of the
agent’s location estimate is the “floor”, and the vertical axis represents
the variance of the agent’s belief distribution; lower points represent less
location uncertainty. The algorithm builds a search tree to find a trajectory
through belief-space. The optimized solution is shown as a thick yellow
line, where the agent moves towards the goal while lowering the variance
of its location distribution (descending the vertical axis). Policies in the tree
are false-colored (green through magenta) as cost increases.

major obstacle to the application of sampling-based planners
to problems with complex or underactuated dynamics.

ACKNOWLEDGEMENTS

We would like to thank Gustavo Goretkin and Elena
Glassman for valuable technical discussions. This work was
supported in part by the NSF under Grant No. 019868, ONR
MURI grant N00014-09-1-1051, AFOSR grant AOARD-
104135, and the Singapore Ministry of Education under a
grant to the Singapore-MIT International Design Center.

REFERENCES

[1] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research (to
appear), June 2011.

[2] J. T. Schwartz and M. Sharir, “On the ‘piano movers’ problem:
II. General techniques for computing topological properties of real
algebraic manifolds,” Advances in Applied Mathematics, vol. 4, pp.
298–351, 1983.

[3] S. Lavalle, Planning Algorithms. Cambridge University Press, 2006.
[4] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”

International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[5] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[6] S. M. Lavalle, “From dynamic programming to RRTs: Algorithmic
design of feasible trajectories,” in Control Problems in Robotics.
Springer-Verlag, 2002.

[7] P. Cheng and S. M. Lavalle, “Reducing metric sensitivity in ran-
domized trajectory design,” in In IEEE International Conference on
Intelligent Robots and Systems, 2001, pp. 43–48.

[8] E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic
for rapidly exploring state space,” in Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, May 2010.

[9] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
motion planning using the RRT*,” in IEEE International Conference
on Robotics and Automation, 2011.

[10] R. Murray and J. Hauser, “A case study in approximate linearization:
The acrobot example,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/ERL M91/46, 1991.

[11] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space
planning assuming maximum likelihood observations,” in Proceedings
of Robotics: Science and Systems, June 2010.

