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Abstract— We consider the partially observable control prob-
lem where it is potentially necessary to perform complex
information-gathering operations in order to localize state.
One approach to solving these problems is to create plans
in belief-space, the space of probability distributions over the

the underlying state space in terms of the information that
is likely to be gained during execution and the chances
of colliding with problem constraints [9], [10], [11]. In

domains with relatively simple observation dynamics, such

underlying state of the system. The belief-space plan encodes @S navigation domains with range beacons, the Gaussian as-

a strategy for performing a task while gaining information as
necessary. Unlike most approaches in the literature which rely
upon representing belief state as a Gaussian distribution, we
have recently proposed an approach to non-Gaussian belief
space planning based on solving a non-linear optimization
problem defined in terms of a set of state samples [1]. In
this paper, we show that even though our approach makes
optimistic assumptions about the content of future observations
for planning purposes, all low-cost plans are guaranteed to gain
information in a specific way under certain conditions. We
show that eventually, the algorithm is guaranteed to localize
the true state of the system and to reach a goal region with
high probability. Although the computational complexity of the
algorithm is dominated by the number of samples used to define
the optimization problem, our convergence guarantee holds
with as few as two samples. Moreover, we show empirically
that it is unnecessary to use large numbers of samples in order
to obtain good performance.

I. INTRODUCTION

sumption can be reasonable and the approach can work well.
However, when the observation function is complex, such
as in robot manipulation domains [1], this assumption can
easily become arbitrarily inaccurate. In these contexdbeb
space planning methods that assume Gaussian distributions
can make arbitrarily poor belief state estimates.

Recently, we proposed an approach to belief space plan-
ning with non-Gaussian belief state distributions that was
applied to a robust robot grasping problem [1]. The approach
creates belief space plans by solving a non-linear optimiza
tion problem that is defined in terms of a hypothesis state
and a set of additional samples. This paper analyzes the cor-
rectness and computational complexity of the algorithm. We
show that, under certain conditions, the algorithm termeisia
with probability one in a belief state where the probability
that the system has achieved task objectives is greaterathan
user-specified threshold. Moreover, we provide an analysis

A fundamental objective of robotics is to develop sysof how quickly belief state changes as a function of the
tems that can function robustly in unstructured environtenquality of the intermediate information-gathering plaibe
where the state of the world is only partially observed andomputational complexity of the algorithm is dominated by

measurements are noisy. For example, robust robot manighe number of samples that are used to define the optimiza-
lation is well modeled as partially observable problemsilt ition problem. It turns out that our convergence guarantee
common to model control problems such as these as partialiplds with as few as two samples. Moreover, our experiments
observable Markov decision processes (POMDPs). Howevéndicate that, for relatively simple problems at least,sit i
in general, finding optimal solutions to POMDPs has beeunnecessary to use large numbers of samples in order to
shown to be PSPACE complete [2]. Even many approximatgbtain good plans.
approaches are computationally complex: the time complex-
ity of standard point-based algorithms, such as HSVI and
SARSOP, is exponential in the planning horizon [3], [4], We are concerned with the class of control problems where
[5]. it is desired to reach a specified goal state even though state

A growing body of work is focused on planning in may only be estimated based on partial or noisy observations
belief spacethe space of probability distributions over theConsider a discrete-time system with continuous non-finea
underlying state space. Most of this work assumes thatfbelideterministic process dynamios, 1 = f(x,u), where state,
state can be accurately described by a Gaussian distributio, is a column vector ifR", and action,u € R'. Although
For example, in prior work, we and others have exploredtate is not directly observed, an observatimrs h(x) + v,
approaches to planning in belief space based on assumisgnade at each timeg whereze R™ is a column vector and
that belief state can always be described accurately asvais zero-mean Gaussian noise with covariare
Gaussian distribution [6], [7], [8]. Another recent class o Bayes filtering can be used to estimate state based on
approaches avoids the complexity of belief space plannirthe previous actions taken and observations perceived. The
by evaluating a large number of candidate trajectories iestimate is a probability distribution over state représeiy

a probability density function (pdfjz(x;b) : R" — R* with
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update can be written: We are interested in finding a sequence of actions that
720 0 )P(24.1/%, ) minimizes the probability of seeing the observation seqaen
m(f(xu); b)) = — % (1) expected in the sampled states when the system is actually

P(z+1) in the hypothesis state. In other words, we want to find a
The Bayes update calculates a new belief state,, given sequence of actionsiy_1, that minimizes
b, w, and z,1. It will sometimes be written,b;,1 = K

G(bt,W,z+1). In general, it is impossible to implement j(xl,...,xk,ul;T_l) - ;N (h(xi,uT_1)|h(x1,uT_l),Q)
Equation 1 exactly using a finite-dimensional parametiorat i=

of belief-space. However, a variety of approximations EXi%NhereN
in practice [12].

Starting from an initial belief statdy,, the control objec-
tive is to achieve a task objective with a specified minimu
probability of successw € [0,1). Specifically, we want to
reach a belief statdy, such that

(-|u,Z) denotes the Gaussian distribution with mean
p and covariance& and Q = diag(Q,...,Q) is the block
diagonal of measurement noise covariance matrices of the
rTr%lppropriate size. When this sum is small, Bayes filtering will
more accurately be able to determine whether or not the
true state is near the hypothesis in comparison to the other
_ . sampled states.

ob.1.xg) _/xeBn(r) X+ g3 b) 2 @, @ The above expression for observation distance is only
defined with respect to the sampled points. However, we
would like to “confirm” or “disprove” states in regions about
the hypothesis and samples — not just the zero-measurespoint
themselves. This can be incorporated to the first order by
defining small Gaussian distributions in state space with un

) _ ) covariance and taking an expectation:
The algorithm that we proposed in [1] can be viewed as a

receding horizon control approach that creates and emcutd(xl, e ,Xk,ulzT—l)

nominal belief space plans. During execution, it tracks a k _

belief distribution over underlying state based on actions = ;EyNN<.|xi,|),yle(.|x1,|>N(h(V,UT_l)Ih(ylyuT—l)@)
and observations. If the true belief state diverges from the =

whereBy(r) = {x € R",x"x < r?} denotes the-ball in R"
for somer > 0, andw denotes the minimum probability of
success.

1. ALGORITHM

k

nominal trajectory, our algorithm re-plans and the process i 1
repeats. = ;N (h(y',ur-1)Ih(y*,ur-1),F (x,uT-1)), ®)
A. Creating plans where

The key to the approach is a mechanism for creating F(x,ur_1) = 2Q+H(X ur_1)H(Xur_1)"

horizonT belief-space plans that guarantee that new in-
formation is incorporated into the belief distribution on
each planning cycle. Given a prior belief stabg, define H(x u;;_1) = dh(x,u11_1)/dx denotes the Jacobian ma-
a “hypothesis” state at the maximum of the pdf, = trix of h(xuy;_1) at x. Rather than optimizing for
arg maxegn 7(X; b1). Then, samplé&—1 states from the prior j(x! ... xK usr_1) (Equation 3) directly, we simplify the
distribution, X' ~ ri(x;by),i € [2,k], such that the pdf at each planning problem by dropping the normalization factor in

sample is greater than a specified threshai@!;b;) > ¢ >  the Gaussian and optimizing the exponential factor only. Le
0, and there are at least two unique states amonds the.

We search for a sequence of actions, 1 = (ug,...,ur_1), ®(x,ur—1) = [h(X,ur—1) = h(x, ur—) [Z e iy -

that result in as wide a margin as possible between thﬁ1e modified cost function is:

observations that would be expected if the system were in the '

hypothesis state and the observations that would be expecte il K Ut 1) = 1 K o P0dur_1) @

in any other sampled state. As a result, a good plan enables proe R ELT—1 kiZ\ '

the system to “confirm” that the hypothesis state is in fact o -

the true state or to “disprove” the hypothesis state. If théhe optimization problem becomes:

hypothesis state is disproved, then the algorithm selects aProblem 1:

new hypothesis on the next re-planning cycle, ultimately

causing the system to converge to the true state. . i i i
To be more specific, Ief (x,u;_1) be the state reached at subject o X1 = fQ‘t’”t)j' € (1K (6)

time t if the system begins in stateand takes actions;_;. Xt =g, X; =%, € [LK. @)

Recall that the expected observation upon arriving in state

X is h(x). Therefore, the expected sequence of observations ) i ) )
is: Equation 5 adds an additional quadratic cost on action that

. adds a small preference for short trajectories. The agsocia
h(x,ui—1) = (h(Fi(x,u1))T,....h(Ro1(x, u-1))") . weighting parameter should be set to a small vatme(1).

+H (Xl, ur_1)H (Xl7 UT,1)T,

Minimize  J(x}, ... X ur_1)+aul qur_1  (5)



Problem 1 can be solved using a number of planning tech- Input : initial belief state,b, goal statexy, planning
niques such as rapidly exploring random trees [13], differe horizon, T, and belief-state updat&.

tial dynamic programming [14], or sequential quadratic-pro? While ©(b,r,xg) < w do

gramming [15]. We use sequential quadratic programming X' = argmaxegn m(X;b);

to solve the direct transcription [15] of Problem 1. Althbug 3 Vi € [2,k],X ~ m(x;b) : 7I(X'; b) > ¢;

direct transcription is only guaranteed to find locally ol 4 bur,ur—1=DirTran(bx},... X, xg, T);
solutions, we have found that it works well for many of thes b1 =Db;

problems we have explored. The direct transcription smfuti 6  for t<1to T—1do

will be denoted 7 execute actionu, perceive observation 1;
8 b1 =G(br,u,z1);
1 K _
ut-1 = DIRTRAN(X, ..., X, Xg, T), @) o if Dy [7(X; br11), mM(X; brs1)] > 6 and
for samples,x!,...,x, goal state constraintg, and time J(&,u-1) <1—p then
horizon, T. Note that the dimensionality of Problem Ink— 10 break
linear in the dimensionality of the underlying state spaite w * end

a constant equal to the number of samples. This comparés end

favorably with the approaches in [6], [7], [8] that musf®  P=Dbu1;

solve planning problems in?-dimensional spaces (number end . . :
of entries in the covariance matrix). Algorithm 1: Belief-space re-planning algorithm

B. Re-planning

After creating a plan, our algorithm executes it while tracka particular iteration of the outevhile loop in Algorithm 1,
ing the belief state using the user-supplied belief-stptiate, suppose that the system begins in belief statewhile the
G. If the actual belief state diverges too far from a nominairue state isk, and executes a sequence of actiomss
trajectory derived from the plan, then execution stops an@u,...,uT,l) (subscript dropped for conciseness). During
a new plan is created. The overall algorithm is outlined il’éxecution, the system perceives Observatbﬁs(227_“’z-r)
Algorithm 1. The outerwhile loop iteratively creates and and ultimately arrives in belief stater. The probability
executes plans until the planning objective (Equation 2) isf a state)y = Fr(x,u), estimated by recursively evaluating
satisfied. Step 2 sets the hypothesis state to the maximyrguation 1 is:
of the prior distribution. Step 3 samplds— 1 additional
states. Step 4 finds a nominal belief-space trajectory, _ ax(z,u)
that optimizes Problem 1. Steps 6 through 12 execute the mi(y; br) = m(x;by) p(zu)’ 9)
plan. Step 9 updates the belief state given the new action and ’
observation using the user-specified Bayes filter implemeghere
tation. Step 10 breaks plan execution when the actual belief
state departs too far from the nominal trajectory, as measur Ok(z,u) = N(zlh(x,u), Q) (10)
by the KL divergenceD; Ln(-;bt+1),n(-;bt+1)] > 6. The
second condition)(x!,...,x*,u;_1) < 1— p, guarantees that is the probability of the observations given that the system
thewhile loop does not terminate before a (partial) trajectorgtarts in statex and takes actions), and
with costJ < 1— p executes. We show in the next section

that the second condition guarantees that the algorithnesnak p(z,U) = / 77(x; by )N(zlh(%, u), Q) (11)
“progress” on each iteration of thehile loop. ’ Jxern Y
IV. ANALYSIS is the marginal probability of the observations givenThe

We are interested in the correctness of Algorithm 1. Cafllowing Lemma shows thatr(y; br) can be lower-bounded
we guarantee that Algorithm 1 eventually reaches a beliéh terms of the proximity ok to the true statex.
state where it is very likely that the system has achieved Lemma 1:Suppose we are given an arbitrary sequence
its goal? We show that ifG is an exact implementation of actions,u, and an arbitrary initial statex € R". Then,
of Equation 1, and if IRTRAN in Algorithm 1 (step 4) the expected probability of = Fr(x,u) found by recursively
always finds plans with a cost strictly less than one, theevaluating the deterministic Bayes filter update (Equatipn
the algorithm terminates with probability one in a beliefis
state where the probability that the system has achieved
task objectives is greater tha_lrj the user-specified _thrdshol E {Tl'(y;.bl')} > exp(D1(0k, P) — D1(0k, )
w. Moreover, we find a specific bound on how quickly the mi(x;by)
system localizes true state as a function of the quality ef th
intermediate plans. whereqgy, Ox, and p are defined in Equations 10 and 11 and
We start by providing a lower bound on the expected1 denotes the KL divergence between the arguments.
probability of states in a neighborhood of the true state. On  Proof: The log of the expected change in the probability




of x is: maximum eigenvalue of the Hessianhois A, thendi € [1,K]

) such thatvr € R*,¥d;, & € By(r):
IogEZ{ mi(y; br) } = IogEz{qx(z’u)} .
TI(X; by) p(z,u) Hh(XI +d1,u) _h(xl+62’u)||?(xi,u)
= |09/16Rm qK(Z;;iflsgz’ d > {\/— logd —2(r +cr2)] 7

> / 0k (2) (logax(z,u) —logp(z,u))  wherec=A||1]|p/2 andBy(r) = {x € R,;xTx < r2}.

ZERM We now state our main theoretical result regarding Al-
= D1(0k, P) — D1(ak. O), gorithm 1 correctness. Two conditions must be met. First,
e planner in step 4 of Algorithm 1 must always find

w-cost plans successfully. Essentially, this guarastbat
each plan will acquire useful information. Second, step 8 of
Algorithm 1 must use an exact implementation of the Bayes
D1(qx, p), with respect to the true state, However, since %ﬁter. In practice, we expect that this secqnd.conditiori wil

2 . ' rarely be met. However, our experiments indicate that good
K is unknown ahead of time, we must find a lower bound

on the divergencd: (qy, p) for arbitrary values ofy. The result_s can be obtained using practical filter implemeaouteti
following lemma establishes a bound on this quantity. We us(esiﬁtlon V)ll'S have:
the notation thaf|aj|a = vaT A-1a denotes the Mahalanobis eorem L. SUppose we have-

where the third line was obtained using Jensen’s inequali
and the last line follows from algebra. Taking the exporadnti
gives us the claim.

distance with respect té. 1) a prior diStribUtiO?ﬂ(Xi bkl)?

Lemma 2:Given an arbitrary and a distributionst, sup- ~ 2) kK= 2 sa+mples,x ..., X, from m(x;by) such ithat
pose3A1, A2 C R" such thatvxg, xs € Aq x Ag, [|h(xg, u) — ?sr,bfp)eR;p where V3By(r),i € [1,k] we haverm(x' +
h(x,u)||2 > 2 and m(x) > v, m(x) > y. Then i01) = @ _

Ca.Wlig hep, ) hiena M) 3) a trajectoryur_1, with costd = J(x},... XK ur_1).
min Dy (qy, p) > 2722 (1_ 87%52)27 If an exa_ct implem_entation of Ba_yes_ian filf[eri_ng were tq krac
YERN state while executing,1_1 resulting in a distribution at time

) ) T of n(x;br), then the probability of all states within a ball
where n = 1/,/(2m"Q| is the Gaussian normalization of radiusr about the true state at time is expected to

constant. increase by a factor of

Proof: By Pinsker's inequality, we know that KL
divergence can be bounded by total variati@n:(ay, p) > exp {anyz (1_6—%(\/_I7— ogJ—2<r+crz))z>} 12)
2sup (oy(z,u) — p(z,u))?. We lower bound the total vari-

ation by considering only those parts of the distributions |, . : . _ TS
where3x € Ay UA; such thatz — h(x, u): relatlvg to its valug attime 1, where=1//(2m)"|Q| is the
Gaussian normalization constapt= eVol,(r), Voly(r) is the

: volume of ther-ball in n dimensionsc = %)\ I1]lo, and A
D1(ay, p) = 25;1p</xel\ T(x)0y(2) — 7(x)p(2) is the maximum eigenvalue of the Hessianh@f (x,ur_1))
! 2 over allt, x, andut_j.
o T(X)0y(2) — 1(X) p(z)) . Proof: Lemma 3 gives us two sampled,andx* such
XeNp

thatvVd;, & € Bn(r),
||h(xi + 61a U) - h(Xl+ 62au>||?(xi"u)
> (X + &, u) —h(x" +&,u) |13

The right hand side above is minimized whgre Ay or
y € N\o. Without loss of generality, assume that Aj:

2
. 2
minDa(ay.p) > 2sup( | m9a (@)~ mp(a) > [V Togi- (o).
2
> 2(yr7(1—e*%52)) ) Lemma 2 gives us a lower bound &f;(qy, p) by setting

{ =+/—TogJ —2(r +cr?). Lemma 1 gives us the conclusion
m of the Theorem by noting thdd1(qg«,dx) = 0 whenx = k.

As a result of Lemmas 1 and 2, we know that we can lower ]
bound the expected increase in probability of a region about The above theorem enables us to conclude that Algo-
the true state by finding regiong\s and A, that satisfy rithm 1 is guaranteed to terminate in the goal region of belie
the conditions of Lemma 2 for a given. The following space.
lemma shows that these regions exist for anwith a cost Theorem 2:Suppose that Algorithm 1 executes witb 2
(Equation 3)J < 1. For the proof of this Lemma, we refer samples. Suppose thatiEXRAN (step 4) always finds a
to reader to [16]. plan with a maximum costg < 1: J(xl,...,xk,ul;T,l) <

Lemma 3:Suppose thatu is a plan with costd = € < 1. Suppose thaG (step 8) is implemented using an
J(xL,..., X u) defined over the samples, i € [1,K. If the exact implementation of Bayes filtering. Then Algorithm 1



parametrized the planner. Figure 1(a) illustrates the rexpe
imental scenario. A two-link robot arm moves a hand in the
plane. A single range-finding laser is mounted at the center
of the hand. The laser measures the range from the end-
effector to whatever object it “sees”. The hand and laser are
s ¢ constrained to remain horizontal. The position of the hand i
@ ®) assumed to be measured perfectly. There are two boxes of
known size but unknown position to the left of the robot (four
Fig. 1. (a) the experimental scenario. (b) a path found by Higm 1 dimensilons of gnobserved ;tate). The boxes are constrained
with a nine-sample planner. It starts in the upper right ardseat a point t0 be aligned with the coordinate frame (they cannot rotate)
directly in front of the right-most box. The red circles demathere re-  The control input to the system is the planar velocity of the
planning occurred. end-effector. The objective is for the robot to localize the
two boxes using its laser and move the end-effector to a
point directly in front of the right-most box (the box with
the largestx-coordinate) so that it can grasp by extending
and closing the gripper. On each time step, the algorithm
specified the real-valued two-dimensional hand velocity an
perceived the laser range measurement. If the laser missed
both boxes, a zero measurement was perceived. The (scalar)
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S e 0 measurements were corrupted by zero-mean Gaussian noise
with 0.31 standard deviation.
Fig. 2. Belief state entropy as a function of time step. Thédulack line Figure 1(b) illustrates the path of the hand (a point digectl

corresponds to the trajectory shown in (b). The dashed bies torrespond  petween the two jaws of the gripper) found by running our
to five additional nine-sample runs. algorithm parametrized by nine samples. The state space
was four dimensional and comprised of two box locations
terminates with probability one in a belief state, where r?;‘)?ilsngTEZtV\rlleaig_slt:alr}tsoiZ ttzeexljaxirarri]dh[t_éﬁ]neorn Ege
Ob,rxg) = . and end int directly in front of the | -(?t)b
Proof: Notice that if J_(xl X uTo1) < €, then and ends qt a point directly in front of the OWer right box.

. . AR The blue line shows the path and the red circles identify
there exists some strictly positive radiusy> 0, such that the points along the path at which re-planning occurred
the expression in Equation 12 strictly_greater than a low?{here are 14 re-plan events in this example). The tracking
bound,@ > 1. Let ky denote the location of the true StateBayes filter was implemented using a gridded histogram filter

gtt';lmeT. Using tT)?t reﬁult IOf T?eorem 1,dwe IT(now ttuattcomprised of 62500 bins over the four-dimensional space
( oh Kr) grows ar Itranly close 1o one, and we know a(the position of each of the two boxes was denoted by a
Algorithm 1 must ultimately terminate foranp <1. &

. .__point in a 10x 25 grid). At the start of planning, the prior
At the end of Section Ill-A, we noted that the plannlnQ'histogram distribution was assumed to be uniform. The cost

problem solved in step 4 of Algorithm 1 was linear in th unction optimized by the IRTRAN planner (Equation 5)
dimensionality of the underlying space. Theorem 2 asserts. parametrized by — 0.01 andV — diag(0.5) (Equa-

that the algorithm is correct with as few as two samples. on 3). The planning horizon wa§ — 50. The algorithm

a result, we know that the linear constant can be as small 8/ not terminate until the histogram Bayes filter was 90%

two. confident that it had localized the right-most box to within
+0.3 of its true location ¢o = 0.9 in step 1 of Algorithm 1).
Figure 3(a)-(d) show snapshots of the histogram distidouti
From a practical perspective, the preceding analysis & time steps 10, 100, 200, and 300. (This is actually a two-
useful because it tells us that if we execute wtele loop in  dimensional projection of the four dimensional distriouti
Algorithm 1 a sufficient number of times, we can expect tdllustrating the distribution over the location ohebox only.)
localize the state of the system with arbitrary accuracy (weigure 3(e)-(h) show the nine samples used to parametrize
can driveO(b,r,xg) arbitrarily low). However, for this result the planning algorithm at the four snapshots. Initially) (i
to hold, we require the planner to find low cost paths eachigures 3 (a) and (e), the distribution is high-entropy arel t
time it is called and for the tracking Bayes filter to be arsamples are scattered through the space. As time increases,
exact realization of Equation 1 (the premise of Theorem 2jhe distribution becomes more peaked and the sample sets
Since these conditions are difficult to meet in practice, ahecome more focused. The solid black line in Figure 1(b)
important question is how well the approach works foshows the entropy of the histogram distribution as a functio
approximately accurate Bayes filter implementations amd f@f time step. As expected, entropy decreases significantly
planners that only succeed some of the time. Furthermoraver the trajectory. For comparison, the five additionakblu
we are interested in knowing how the performance of thdotted lines in Figure 2 show entropy results from five
algorithm changes with the number of samples used tadditional identical experiments. Note the relatively 8ma

V. EXPERIMENTS
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Histogram probability distributions (a-d) and pi@n sample sets (e-h) at time steps 10, 100, 200, and 300 dhengath shown in Figure 1(b).

improvement is statistically significant. The comparisdn o
Figure 4(c) with Figure 1(b) suggests that (in this experithe

at least) the trajectories produced by the high-samplenglan
are better than those produced by the low-sample planner
because the high-sample planner does a better job covering
the space in front of the boxes. These results show that
it is valuable to expend computational effort planning an
information-gathering trajectory, even in this simple mxa
ple. The results also show that the performance of our
algorithm smoothly degrades or improves with fewer or more
samples used during planning. Even with the minimum of
two samples, the algorithm is capable of making progress.

0 200 200 600 800 1000 0 200 400 600 800 1000
Time step Time step

(@) (b)

Fig. 4. (a) comparison of entropy averaged over six runs for thfferent
planner sample set sizes (36 samples, solid black line; 9 sapdshed
blue line; 4 samples, dotted magenta line; 2 samples, dashreen dine).
(b) comparison of the six thirty-six-sample runs (solid blaekth the six
two-sample runs (dashed blue).

VI. CONCLUSIONS

Creating robots that can function robustly in unstructured
variance amongst trajectories. Even though the algorithghyironments has always been a central objective of rahotic
finds a very different trajectory on each of these rungp order to achieve this, it is necessary to develop algarith
performance is similar. These results help answer two of tr&pame of actively localizing the state of the world while
questions identified at the beginning of the section. Firsg|gq reaching task objectives. Recently, we proposed afbeli
Figure 3 suggests that in at least one case, the histogragace planning algorithm that is capable of planning in non-
filter was adequate to represent the belief state in the xbntgs 5 ssian belief spaces [1]. The non-Gaussian aspect of this
of this algorithm even though it is a coarsely discretizedgorithm is essential because in many robot problems it is
approximation to the true distribution. The black line inpgt possible to track belief state accurately by projecting
Figure 2 suggests thatIRTRAN was an effective tool for gnto an assumed Gaussian density function (this is the
planning in this scenario. The six additional runs illusth case. for example, in many robot manipulation problems).
in Figure 2 indicate that these results are typical. However, since non-Gaussian belief space is potentiatly ve

The other question to be answered concerns the effduigh dimensional, it is important to know how effective the
of the number of samples on algorithm performance. Talgorithm is and what its computational complexity is. This
find an answer, we have run the algorithm in the scenarigaper provides a novel sufficient condition for guarantgein
described above for four contingencies where the planndrat the probability of the true state found by the Bayes
was parametrized by two, four, nine, and thirty-six sampledilter increases (Lemma 1) and we show that this condition
Figure 4(a) compares the average (over six runs eacis) met each time a low-cost plan executes. As a result, we
information-gathering performance for the four contingencan guarantee that the probability of the true state ineseas
cies. Although increasing the number of samples improvdsy a bounded amount on each re-planning iteration (Theo-
algorithm performance, the gains diminish as the numbeem 2). The algorithm is eventually guaranteed to converge
of samples increases. Figure 4(b) compares the two-sampiea goal region in belief space. We also characterize the
runs with the thirty-six-sample runs and demonstratestiigat expected computational complexity of the algorithm, which



is dominated by the number of samples used to define the
optimization problem. It turns out that our theoreticalules
hold with as few as two samples. In addition, we find that, for
some problems, algorithm performance is nearly optimized
using very few (between two and nine) samples.
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