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Abstract— It is frequently accepted in the manipulation planar pose (3 DOFs) of an inelastic fixtured part based on
literature that tactile sensing is needed to improve the preision  tactile measurements. The likelihood of a particular posit
of robot manipulation. However, there is no consensus on how was calculated by numerically integrating a Gaussian error

this may be achieved. This paper applies patrticle filtering . . N
the problem of localizing the pose and shape of an object that model over the contour of the object. The resulting liketiio

the robot touches. We are motivated by the situation where ta  Model was stored in a look-up table. Similarly, Petrovskaya
robot has enclosed its fingers around an object but has not yet €t. al. also localize an inelastic object by making repeated

grasped it. This might be the case just prior to grasping or contact with a single end-effector. In this work, localigat
when the robot is holding on to something fixtured elsewhere occurred in the space of spatial object poses (6 DOFs) [2].

in the environment. In order to solve this problem, we propog . . ; oo
a new model for position measurements of points on the robot The high-dimensional likelihood space caused Petrovskaya

manipulator that tactile sensing indicates are touching te €t. al. to propose a variant of particle filter annealing that
object. We also propose a model for points on the manipulator iteratively increases measurement model entropy while de-
that tactile measurements indicate arenot touching the object. creasing the search space. In related work, Chhatpar and
Finally, we characterize the approach in simulation and uset ; ; e L
to localize an object that Robonaut 2 holds in its hand. Branicky apply partlc!e filtering to the problem of localig

the pose of a peg with respect to a hole [3]. In contrast to

I. INTRODUCTION the above, their work samples measurements from across the
One of the fundamental barriers to autonomous robctate space on-line rather than creating an analytical mode

manipulation in unstructured environments is perceptioni®’ the measurement distribution.

Estimating the combined state of the manipulator and the

objects that the robot touches has proven to be difficult.

Attempts to estimate hand-object configuration visually ar i i

hampered by occlusions. Instead, force and tactile semsing Thls_paper expands on the work described above by
a natural way to track the combined state of the manipulat@ll'opos'ng a new measurement model that can be used to

and the objects acted upon during manipulation. Althougfack hand-object configuration during manipulation. We ar
this type of measurement is information-poor relative t pecifically interested in the case where the pose of thetrobo

camera images, it does not suffer from occlusions and i nd. is knovv_n bl_Jt the object configuratiqn is unkno_vvn _and
has the potential to enable more precise position and for,@é’ss'bly moving in the hand. A key step in pam_cle flltgrlng

estimates than is possible using only visual informatior> the \_/velghtmg pha_se where each particle is weighted
This paper focuses on the problem of tracking the pose af§Pending upon how likely the observed measurement would
shape of an object that a robot holds between complian? ',f lthe Osystem were in the dSt?t.e hypothes;]ze(ﬂkb?{hthzﬁ
fingers. We are motivated by the situation where the robot h& rticle. Our measurement mode mtegrate; the likeli foo”
enclosed its fingers around an object but has not yet grasp%da,Comact position mga}surement over the space ob a
it. This might be the case just prior to grasping or wherﬁ’oss'ble true contact positions on the surface of the object

the robot is holding on to something fixtured elsewhere iﬁ?lfr:s (iljlff?crent tglan thgt approgch tall<en 'g [2_]hwhere the
the environment. Our objective is to localize the objectenor 'K€linood of an observed contact is evaluated with resfect

precisely using force and position sensing in order to assig}? maX|mur|n likelihood point on the_sur_fa}ce of the object.
subsequent interactions with the object. The result shoeld This paper also proposes using negative information n

more accurate than the visual estimate alone and it shoJr(?m contacts that are knowmt to be touching the object.

account for displacements caused by the manipulator.itsel?‘S in the above, we integrate the likelihood of the negative

Particle filtering is a statistical approach to robust nongOntact measurement over the volume outside the object.

linear state estimation that is well suited to the problerftSO: We briefly describe a dynamic approach to particlerfilte
of tracking object configuration based on a series of forc@nealing that enables us to localize in five dimensionsgusin
and position measurements [1], [2], [3]. In [1], the authordhe particle filter. Finally, after de.monstratlpg the adeare
applied Markov localization to the problem of localizingeth of the new measurement m_odel in S|_mul_at|on, we apply the
approach to a practical object localization problem where
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Il. BAYESIAN FILTERING Let g = (q1...9g) € R — p be the contacts that are not

The goal of Bayesian filtering is to track the state of ouching. Assume that and ¢ are noisy measurements of
stochastic system as it changes. It is assumed that stage, P @nd ¢, but that there is no uncertainty regarding mem-
a stochastic Markov function of time. At every timestep, th&€rship inp and¢. This corresponds to an assumption that
measurements;, depend only on the current state. StartingPerfe‘_:t contact force sensors de_t_ermlne whether a corstact i
with a prior distribution over stateP(z,), Bayesian filter- touching or not but that the position of the contacts cannot
ing recursively updates a posterior distributidP(z;|z1.;), be measured accurately._ In our hardwgr_e experiments (see
where z; is the state at time and zy.; = {z1,..., 2]} is Section VI), the uncertainty in the position measurements
the set of measurements between tilmand timet. The Was caused by modeling inaccuracies in the manipulator
update to the posterior (also called the “belief state”) igeometry and kinematics.
accomplished in two steps. First, the prediction step wgsdat Assume that the contact position measuremeptsnd

the distribution by applying a system model: 4, are independent and identically distributed given object
configuration,z. Then the likelihood of the measurement

P(x¢|z1:4-1) = /P(xt|xt_1)P(:Ct_1|21;t_1)d:vt_1 (1) can be written as a product:

The above uses the Markov assumption that o P . Q R

P(xy|zi_1,2140-1) = P(x¢|zi—1). In the second step, P(p, ) = [[ P@ile) [T PGsl2)- 3)
the posterior distribution is updated in proportion to the =1 J=1

likelihood of having generated the observed measuremenif.an accurate model of the manipulator-object interaction

2t were available, then the likelihood of a given position mea-
P(alzie) = nP (2| P(we]21:0-1), (2)  surement could be evaluated in terms of its proximity to an
where expected position measurememit(p;|model(x,u)), where
n= L model(x,u) denotes the expected contact position given an
P(zt|z1:4-1) object configuration: and manipulator control parametets,
is a normalizing constant. However, since the ultimate position of manipulator cotgac

Equations 1 and 2 constitute an optimal solution to theN an object is a complex function of the second-order
problem of tracking state in a Markov system. Howeverimpedances of the manipulator and object, creating such a
they ignore the question of how the posterior distributioinodel can be prohibitively difficult. Instead, we propose a
is represented. Two popular solutions to this problem a@mpler (but less informative) measurement model creaged b
the Kalman filter and the particle filter. The Kalman filterintegrating over all possible contact positions as a famcti
is optimal, but makes strict (linear system, Gaussian jois€f object pose:
assumptions regarding the system and measurement models.

The particle filter does not make these assumptions, but P(p;lx) = /P(ﬁi|pi)P(pi|a?)dpi.

relies on Monte Carlo methods that depend on an adequate

sampling the posterior distribution. This paper uses the principle, p; depends orboth 2 and «, and we should
sample importance resampling (SIR) version of the particliategrate oven:

filter [4] to track hand-object state.

l1l. LIKELIHOOD OF CONTACT POSITIONS P(pilz) = /P(Pi|ua$)P(U|fC)du-

In the context of mobile robot localization, range mea- . .
surements are functions of the relative configuration of thgOWever, in the absence of a model, assume iak|z) is
robot in the environment. Since relative robot configuratio Uniformly distributed over all possible contact positicors
is generally the variable of interest, the likelihood of theén€ surface of the object:
measurements can be used to infer robot configuration. How-
ever, in manipulation, contact positions amet functions of P(pilz) = / P(pilp)dp, (4)
object configuration alone. These measurements also depend pess(@)
on manipulator configuration. Rather than requiring a modglheres S () is the set of points on the surface of the object.
of how the manipulator and the object interact, we evaluaigimilarly, since the contact pointg, do not touch the object,
the likelihood of contact positions by integrating over allagssume that they are uniformly distributed over the set of

possible manipulator configurations. possible contact positions outside of the object (but i
A General case gross region about the object):

Let « describe the object configuratioine shape and . .
pose). LetR be a set of contact positions on the robot ma- P(gilz) = ~/p€S(z) P(gilg)dq, ®)
nipulator equipped with force sensors that measure whether
a pointr € R is touching the object or not. Let = whereS(z) is the finite set of points outside of but within

(p1...pp) C R be the portion of contacts that are touchinga gross region of the object.



B. Positive contact on a polyhedron

In general, Equations 4 and 5 have no closed form solution
and must be evaluated numerically or approximated by
a simple surface. This section explores approximations to
Equation 4 for polyhedrons. Lat' be the set of faces that
comprise the polyhedron. Then Equation 4 becomes:

Likelihood

o1
rrrrrrrrrrrrrrr

P(pile) =) P(pilf), (6)
feF (@) (b)
with
P(p; = P(pi|p)dp, 7 Fig. 1. The dotted line in (a) shows a hypothetical path of atat
(pl|f) /pef(m) (pl |p) P () measurement in the neighborhood of a planar rectangle ll{sjrates the

) o likelihood of the measurement along this path. The dip in ltkelihood
where f(x) is the set of positions on fac¢ when the function occurs as the path turns the corner.

object is in configurationt. Suppose the contact position

measurement noise is Gaussian:
N .- where f;(x) is the set of tangent coordinates of the points
Ppilpi) = N(pmj“ %) in face f and f,, = p, € f.(x) is the constant position of
= N(pilpi, ¥), (8) points in facef measured along the normal vectar,
where N'(-|;,¥) denotes the normal distribution about If the facetf is indefinite, then the integral in Equation 12
with a covariance matrixy. For each facet, define an 90€s to one and
orthonormal basis described by the rotation matfiy, = . .
(tz,ty,m), Wheren is a basis vector normal t6 andt, and Pilf) = N (pnlpn, Enn)- 13)

t the pl taini Let
» Span the plane containing Le If the facet, f, is bounded by a rectangle,

T
y YIRS 2 € [fEh,Il] /\pt € [yhayl]a

be the projection op onto the plane and let and,, is isotropic, then Equation 12 becomes:

pn=n"p .
be the projection onto the normal. As a result, we can write: Ppilf) = 3N (palpn, Znn) Yy X7, (14)
P(pilp) = P(plp:) where
= P(pt|pn7f)i)P(pn|ﬁi)' (9) . N T
Yn — D Yy —p
P(p¢|pn, pi) andP(p,|p;) can be evaluated using standard Yy = [ETf ( 3o y) —erf ( oy y) ;
y v /|

Gaussian manipulation techniques [5]. The Gaussian distri
bution in Equation 8 can be treated as a joint distributioq,
over p; andp, with a covariance matrix:

Th — Pz T, — Pz
(3 3 xi= o () et ()]
Then anderf denotes the error function and, ando, are the
P(pnlp) = N(pnlpn; Znn), (10) singular values of associated with eigenvectors directed
along the rectangle axes, and t¢,. Note that in order
and K ) to apply this technique on multiple differently oriented
P(pelpn, pi) = N (pelbein, Zijn), (11) rectangular faces, the requirement f0y;,, to be isotropic
where essentially requireX to be isotropic. Also, note tha® (p|f)
Siin = St — Sen St Sy tends toward Equation 13 as the facet becomes larger eelativ
to o, ando,.
and R A . A Figure 1 illustrates the behavior of the likelihood funetio
Ptin = Pt = Xin Xy, (P — Pn)- in the neighborhood of a planar rectangle. The dotted line

Substituting Equations 10 and 11 into Equation 7, we hav&? Figure 1(a) illustrates a hypothetical path of a contact
measurementp, through the space around the rectangle.

P(p|f) = / N (elbrjns Sejn )N (Pnln, Snp)  Figure 1(b) illustrates the likelihood function for the pat
(pt.pn)Ef(2) The dip in Figure 1(b) occurs as the path turns the corner
. . and shows that the likelihood of the measurement decreases
= n|Pn; Enn ns by n 2 : :
Nl )/pteft(w)N(mpt' 112 e neighborhood of the corner.



C. Negative contact on a polyhedron Combining positive and negative contact information is a

Whereas it is possible to give a good closed-form appm*l_nifi(_ed way of combining the information apout where the
imation of the likelihood of contacts touching a polyhedraManipulator touches the object and the available free space

object, there is no similar closed form expression for they, M AINTAINING PARTICLE DIVERSITY USING DYNAMIC
likelihood of negative contacts (contacts that do not touch ANNEALING

such the object). Our ar_lalysis in Section I!I-B was possible ntil this point, the proposed measurement model can
because of the constraint that the Ga_us_3|an was m;egrai%y applied equally well in the context of a particle filter,
over rectangular surfaces. However, it is not possible tRaI

thi thod t luate the int | th man filter, monte carlo maximum likelihood estimate, or
use this method fo evaluate the Integral over e SPAGE o ant form of inference. Exactly which method should

gmtsh'detsf the ob{‘ect. unIesls thetobjelct |ts§_lf 'f‘ rectangulane used depends on the exact nature of the localization
ather han considering only rectanguiar objects, we Fmapoproblem. For problems where object configuration is known

approximating the likelihood function by integrating owr to be fixed, a filtering solution should be discarded in favor

approprlatg half plane. .of a maximum likelihood or maximum a priori estimate.

i . _ . The scaling series approach in [2] performs inference in
Cartesian 3-space) outside the object that contains thedar a six dimensional space. However, since we are interested

part of the probability massV(q|g, X). Cons_ider the set of rimarily in tracking the unknown motions of an object
half planes bounded by planes that contain the faces of t,ﬁ_Sptured by the robot hand, our focus is on a filtering
polyhedron. If§ is inside the object, then the largest part o olution '

the probability mass is contained in the half plane assediat Although the particle filter has had success in three-
with the closest face. |f is outside the object, then this is the . : . oo L
half plane that containgand is bounded by the planefurthestdImensmnaI tracking problems, it is not clear that it is

¢ : Let be the ol that tains that f P suitable for localization problems in five, six, or higher di
|_r2tm g'( f)e bce({ %e ial fepllaa?lréeas:ocﬁgtneglr\;vskth f? tr?ft §doe.s mensions (as in the present object localization scenarie.

: : k bl th ticl t t d
not contain the object. Leb(q) — { f|d € ¢+ ()} be the set ey problem is ensuring the particle set maintains a ditsersi

of faces that bound half planes containipgLet d(f, q) be suitable for the level of “confidence” present in the system.
y q . . . .
the distance fronj to c( f). We integrate\'(q|q, 3}) over the When system state is uncertain, a higher entropy partitle se

i iate while a | t ling i th
half plane outside the object associated with the fOIlOWinésc(?srpargﬁg?aeh\iﬂéhlIs-gor?;?(/jeern??ra:(glfy;;‘l:?spcgltglallm;drg;/eesss ©
face: : '

this problem in the context of human motion tracking (a
f(q) = { argmaxen(q) d(f,¢) i ¢ outside object.  very high dimensional state space) by proposing an anmgalin
argminyecp d(f, q) if ¢ inside object. technigque where the entropy of the measurement distrifutio

5 s gradually decreased over time by taking the distributamn
Now, we expand Equation 5 by integrating over then increasing power [6]. While this approach assists initia

positive half plane for facg™(¢): localization, it does not help if the track gets “lost” besalit
A . . is impossible to increase the expected entropy of the sample
P(glr) —/( i) N (@l rns Zejn )N (@0 |Gns Znn)- set. While this is irrelevant to the problem of locating a
qt,qn) €S (q

static object, it is important when the object is moving in
Since we are integrating over the entire half plane, thgn unknown way in the robot hand.

tangent integral goes to one and we have: We address this problem with a dynamic annealing ap-
o0 proach that adjusts measurement model entropy as a func-

P(glr) = N (@nlGn, Znn)dgn tion of the normalized likelihood of the most recent mea-

o . . surements. Large measurement likelihoods indicate treat th

_ ! {1 —erf (M)} 7 (16) Particle set is distributed in a likely region of space and it
2 V2o, is possible to decrease measurement model entropy. Small

whereg’ is the normal coordinate of facg*(¢) ando, is Measurement likelihoods indicate that the particles ate no
n

the square root of the variance in the normal direction gagaifocused in likely regions of space and a higher entropy
we have assumed an isotropic covariance makjx, distribution is needed in order to “find” the peaks. We cohtro

One interesting point about using negative contact infofh® entropy of the distribution by varying the eigenvalues
mation is thatall hand surfaces are known to be outside th@f the measurement model covariance matkix,in Equa-
object — not just those hand surfaces equipped with fordions 16 and 14 between a minimum,,;,, and maximum,
sensors that indicate they are not touching. If a large numb@maz- This happens in inverse exponential proportion to
of appropriate negative contact surfaces are used, then it measurement likelihood of Eq2uat|on 3. Assuming an
principle, good object localization is possible just usindgSOtropic covariance matrixt, let o= denote the variance
negative information and without using contact force semso®f . Then setr according to:
at all. Essentially, these negative (;ontacts roughly eacod _ o) _P(ﬁ,(ﬂx) — Sin o
the geometry of the hand or manipulator and extrapolate” = (Omaz — Tmin)ezp [ Tmin

. . . . max man

the object configuration based on the available free space. a7




Avg error
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Fig. 2. lllustration of simulation setup. Three fingers (lines) tracked the Fig. 3.  Comparison of the maximum likelihood model (dottéue) for
rotating motion of a rectangle (in the plane) by applying breinulated  positive contacts with the likelihood model proposed irstpaper (solid
inward forces. line). Results are averaged over ten runs for each liketihmodel.

where S,,,;,, and S, are convenient minimum and maxi-
mum values for the likelihoodP(p, §|x).

V. SIMULATIONS

The first experiment compared the positive contact mea-
surement model proposed in this paper to the maximum
likelihood model used in [2] and [3]. Let

* = N(plp, 2
P’ =arg max (plp, %)
be the most likely point on the object surface given the po-
sition measuremeng, Then, under the maximum likelihood
model, the likelihood of this position measurement is:

P(plx) = N(plp", %)

Figure 2 illustrates the experimental setup. A three finger
manipulator touches a moving rectangle two inches wide
and one inch high. The fingers apply small inward forces
such that the contacts always touch the object but do not
impede its motion. The objective is to localize and track Fig. 4. Robonaut 2.
the rectangle using measurements of the three fingertip
positions. The rectangle rotates betweeh and %’r radians
about an interior point in 86 time steps while the “palm”
position remains fixed. Localization occurred over the ehre occurs after one of the contacts moves over the a corner of
dimensional space of planar object poses. The height atite rectangle. The other reason that localization takesrakv
width of the rectangle were assumed to be known. steps is that the particle filter update occurs only oncedctt ea
Simulation results are illustrated in Figure 3. The figurgime step. Although it is possible to execute multiple filter
shows localization error (measured as an L2 norm in statgpdates on each time step, notice that position measurement
space) averaged over ten trials for identical runs using ttege plentiful in this scenario and there is no need to comserv
maximum likelihood model and the proposed measuremetitis information. It is a better use of computational resesr
model. The results show that measurably better performante track using the latest data. The second feature that is
is obtained by the proposed model. Beyond that, a couple apparent in Figure 3 is that the localization error actually
features are apparent. First, localization convergenkesta begins to increase after time step 50. It turns out that this i
30 or 40 time steps. This is surprising since, in principlean artifact of measurement aliasing after timestep 50.ruri
a minimum of only three measurements are needed this period, the rectangle was in a configuration relative to
localize the planar rectangle. However, note that three #fie contacts similar to that shown in Figure 2. As a result,
the right measurements are needed. For example, when tihievas impossible for the system to localize position error
manipulator is in the configuration shown in Figure 2, italong the long axis of the rectangle and error slowly began
is impossible to accurately localize displacement alorgy tho integrate. This would continue until a contact again éarn
long axis of the box. Therefore, complete localization onha corner of the rectangle.
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Fig. 6. Localization error for position (cyan), radius (gn¢, and orientation
(blue) as a function of time (tenths of a second). The top ghaiws error;
VI. EXPERIMENTS WITH HARDWARE the bottom plot shows standard deviation of the particlei¢iorhe results

. . are averaged over the nine different tube orientations showlable I.
Experiments were performed using Robonaut 2, shown In

Figure 4. All hardware experiments used the positive and
negative contact measurement likelihood models desciibed
Sections II1-B and I1I-C. Although our goal is to track objec posed in this paper operate on polyhedra only, the shape of
pose in dynamic scenarios (for example, when the objetite tubing was approximated by an infinite length prismatic
moves in the hand), our experiments consider the converdgxagon for the purposes of localization. Figure 5 illussa
problem: localizing a fixed object by moving the hand ovethe contact points used during localization. The six cantac
the object surface. This is slightly easier than the origindositions on the index finger, middle finger, and thumb are
problem because the robot measures hand velocities eelatRquipped with embedded force sensors that measure contact.
to the object. If the object were moving in the hand, thisThese positions were included fnwhen the corresponding
information might not be available. Our experiments evalua force sensor registered an above-threashold force ard in
the efficacy of localization when the Robonaut 2 hand makeé¥herwise. The contact position on the palm did not have a
the same sequence of compliant moves for nine differeferce sensor and was always assumed to be out of contact.
relative tube configurations. .
B. Experiment

A Setup The robot interacted with the tubing in the nine different

In all hardware experiments, Robonaut 2 interacted with eelative configurations shown in Table I. In each localizati
piece of rubber tubing fixtured to the ground approximatelyrial, the tube was fixtured in a different orientation and th
1.5 inches in diameter. Robonaut 2 is equipped with acobot executed the same sequence of compliant motions.
tively compliant fingers [7] that allow the stiffness of theThe filter used a set of 1000 particles. Figure 6 shows
finger joints to be controlled programmatically. In additio localization error averaged over nine trials in each of the
Robonaut 2 has torque-controlled arm joints that similarlgifferent relative configurations. Position measuremereie
allow the stiffness of the palm Cartesian position to benade every0.1 seconds. The results show that particle
specified programmatically. This arm and hand compliancgariance has converged after 20 iterations of the filter (two
enabled Robonaut 2 to compliantly move along the surfaceconds of data). Localization converges to a position and
of the tube. After wrapping its fingers around the object, theadius error approximately one tenth of an inch. Orientatio
manipulator reference configuration was adjusted accgrdirrror converges to approximately 8 degrees. Orientation
to a fixed pattern that pulled the manipulator approximatelgrror seems large because the kinematics of the hand-tube
along the length of the tubing in a twisting motion. Becaussystem are poorly configured to measure orientation. When
of the manipulator compliance, the resulting motion of th¢he robot grasps the tube, a change of 8 degrees in tube
robot hand was a function of the cylinder pose and radiusorientation results in littte movement of the contacts. €On

The pose and radius of the rubber tubing was estimatevight imagine placing two hands on a tube to measure its
using a particle filter operating in a six-dimensional staterientation more precisely.)
space comprised of 5 pose DOFs (no axial orientation) and The underlying cause of localization error was a result
one dimension describing radius. Pose localization oedurr of modeling errors measuring contact location. First, eath
in five dimensions rather than four (the pose configuratiotihan calculating the exact contact location on the (conjplex
space of an infinite cylinder is only four dimensional) foopr surface geometry of the finger, our experiments simplified
gramming convenience. Since the measurement models ploealization by assuming contact locations at the center of



Label A B C D E F G H ]

Angle | 0° [ 8 | 16° | 8° | 16° | 8° | 16° | 8° | 1f°

Axis NA z z z z X X X X
TABLE |

THE NINE DIFFERENT TUBE ORIENTATIONS USED IN EXPERIMENT. THE  AND z AXES ARE AN ORTHOGONAL BASIS PERPENDICULAR TO THE

CYLINDER AXIS WHEN IT IS THE ORIENTATION IS AT ZERQ.

./I\-\-\-

we provide a new model of the likelihood of contact position
measurements and demonstrate a measurable improvementin
localization accuracy. Second, we propose modeling negati
contact information to improve localization. Finally, we
demonstrate that the methods can be used to localize an

0 5 10 15 20 25 30 35 40 45 50
Time (0.1s)
[1
L L - — L L L I}
20 25 30 35 40 45 50
Time (0.1s) [2]
Fig. 7. Comparison of localization using only positive @mitmeasure- 3]

ments (dashed line) and localization using positive andatie contact
measurements (solid line). The results show orientatioor @veraged over

ten runs in tube orientatio”. The top plot shows error; the bottom plot [4]
shows standard deviation of the particle cloud.

[5]

(6]
the finger on the corresponding phalanges. If all finger
contact surfaces were spherical, then this assumptiondNOL!l,]
be accurate for a corresponding extruded object. However,
for the actual Robonaut 2 hand, this approximation is cjearl
a source of error. More significant, however, were errors
caused by incorrect kinematic modeling or incorrect joint
calibration. Given the large number of joints in the hand and
the particularly complex kinematics of the thumb, maintain
ing a very accurate kinematic model in the context of period
recalibration of the finger joint angle sensors proved to be
difficult.

Figure 7 compares the accuracy of localization using only
positive contact measurement and using both positive and
negative contact information. The cylinder was fixtured in
configurationF' (see Table I). Performance of localization
using only positive contact information improves when neg-
ative information is incorporated.

VII. CONCLUSIONS

This paper considers the problem of hand-object state
estimation during mechanical interactions between thetrob
hand and the object. We are particularly interested in ‘ocal
izing a partly or incompletely grasped part that is moving in
an unknown way. This capability could be used to identify
or characterize objects that the robot touches. Or, it could
be used during grasping to confirm that the robot is holding
the part correctly and to provide information about how to
adjust the grasp. Or, it could enable the robot to achieve a
desired hand-object relative pose in the context of a task or
assembly. The paper makes three main contributions. First,

object touched by a humanoid robot hand.
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