
Using prioritized relaxations to locate objects in points clouds for manipulation

Robert Truax, Robert Platt, John Leonard

Abstract— This paper considers the problem of identifying
objects of interest in laser range point clouds for the purposes
of manipulation. One of the characteristics of perception for
manipulation is that while it is unnecessary to label all objects in
the scene, it may be very important to maximize the likelihood
of correctly locating a desired object. This paper leverages
this and proposes an approach for locating the most likely
object configurations given an object parameterization and a
point cloud. While many other approaches to object localization
need to explicitly associate points with hypothesized objects,
our proposed method avoids this by optimizing relaxations of
the likelihood function rather than the exact likelihood. The
result is a simple, efficient, and robust method for locating
objects that makes few assumptions beyond the desired object
parameterization and with few parameters that require tuning.

I. INTRODUCTION

Range sensing has recently become the sensor modality
of choice for robot manipulation and assembly systems.
Popular choices include time-of-flight systems, “nodding”
LIDAR systems, or stereo depthmap systems that produce an
accurate and dense array of points in space. In the context
of robot manipulation, the goal of perception is to locate
and characterize a candidate object for manipulation. This
is a bit different than the standard objective of perception.
Our objective is not to label the entire image or range scan,
but rather to identify one or more occurrences of an object
of interest in the input data, and to verify that the objects
that are localized do in fact correspond to actual occurrences
of the objects of interest. An additional consideration is the
need to be robust to noise and occlusion. For example, in the
box stacking task (shown in Figure 1), we are less interested
in locating all boxes in the stack as we are in being sure
that a box identified and localized in the input data really
corresponds to a box in the world. In addition, we want an
approach that does not need to be adjusted depending upon
the expected amount of noise in the data.

Finding objects in 3D range data is a fundamental problem
in robotics and computer vision, and accordingly, the litera-
ture on the 3D object recognition problem is vast. Examples
of representative seminal works include (1) Besl and Jain [1],
[2], who developed techniques for object recognition from
range images, creating a system that analyzed surface curva-
ture and classified critical points; (2) Viola and Wells, who
developed gradient descent techniques for alignment of 3D
models with 2D and 3D data sets based on maximizing the
mutual information; and (3) Besl and McKay, who developed
a method for registration of 3-D shapes based on iterative
closest point (ICP) matching. Our work in this paper differs
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Fig. 1: Scenario in which a robot must estimate the pose and
shape of modeled objects with high confidence.

from these works, and from the majority of mainstream
object recognition research, in that our approach is situ-
ated in the task of mobile manipulation in semi-structured
environments. Specifically, our goal is to enable a mobile
manipulator to identify and locate parameterized objects
with a minimum set of assumptions about the environment
to enable subsequent manipulation (e.g., loading boxes of
various shapes and sizes onto pallets). In this context, recent
work aimed to support mobile manipulation is most relevant.

A common approach for finding objects in 3D range data
is to use a bottom-up procedure where planes or curves
are located in the data first and then the planes or curves
are fit to known models. For example, Vosselman et al.
adopt this approach for reconstructing ground plans based
on aerial point cloud data. After extracting roof planes using
a combination of a 3-D Hough transform and least squares
plane estimation, the resulting planes are fit to a priori
roof models [3], [4]. Liu et al. take a similar approach
to model the objects encountered by a mobile robot: EM
is used to locate planes in the scene and the planes are
mapped onto a known set of polygons [5]. Rusu et al.
apply a similar approach for the task of locating objects in a
household kitchen environment. Planes in the scene are found
using MLESAC [6]. Plane parameters are estimated using
regression, neighboring planes are merged, and the resulting
planes are matched to a given polyhedral model [7].

Rather than matching point data to models known a
priori, an alternative approach is to reconstruct object models
directly from point data. If only primitive planes or curves
are of interest, then RANSAC-based methods have been
demonstrated to be very effective [6], [8]. If more complex
objects are to be modeled, RANSAC methods can be used
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to find the subset of points that match a desired object.
Given these points, a superquadric can be used to model the
geometry of the object surface [9]. Alternatively, Marton et
al. propose using RANSAC methods to identify shape prim-
itives and then modeling objects as arbitrary constellations
of primitives [10].

A key difficulty with the compositional methods described
above is that while shape primitives are used to locate
complex objects, there is no flow of information in the other
direction: object information does not inform the search
for primitives. In manipulation, we are often interested in
deciding which grasp action has the greatest chance of
succeeding. If object models are given, then we must decide
which modeled object in the scene is most likely: our
objective is to find the object model(s) that maximize the
likelihood of the point cloud data. However, in order to
maximize the likelihood of matching points in the cloud to
object surfaces, it is necessary to associate each hypothesized
object with a subset of points. For example, Liu et al.
solve the data association and the optimization problems
simultaneously using expectation maximization (EM) [5].
The need to associate points with objects makes object
localization more complex because a bad association will
cause localization to fail.

Instead, this paper explores relaxations of the exact like-
lihood function. Although optimizing the exact likelihood
function requires an association between points and hypoth-
esized objects, it turns out that relaxations of the likelihood
function exist that do not require this data association. This
paper considers two relaxations that have joint optima near
optima of the exact likelihood. The first requires that no
point in the cloud be contained within the region occluded
by an object (given the location of the ranging system).
The second relaxation counts the expected number of points
on the object surface. Both of these relaxations may be
optimized for an arbitrary number of objects by optimizing
for each individual object independently over all points in the
cloud. In an approach reminiscent of Blake and Zisserman’s
graduated non-convexity algorithm [11], both relaxations are
optimized simultaneously by ascending the gradient of the
second relaxation in the tangent space (the null space) of
the gradient of the first relaxation. The result is that we
optimize for the number of points on the surface of objects
subject to keeping the correct occlusion relationships. The
paper develops this approach and illustrates its performance
in the context of a robotic box lifting task.

II. PROBLEM STATEMENT

Our basic problem is to locate objects in the environment
based on a set of range measurements. The range measure-
ments are produced by a sensor such as a “nodding” LIDAR,
stereo cameras, or time-of-flight ranging systems. The range
measurements are typically expressed as a collection of
spatially-located points known as the “point cloud.” Let P be
the domain of the points in the point cloud. The range sensor
locates a collection of points, Z ⊆ P, that can be assumed
to lie on the surfaces of objects in the environment. Our

objective is to identify those parts of the point cloud where
certain modeled target objects are located.

Let X be the configuration space of an object. X may
include position, orientation, and shape parameters. For
example, a cuboid in space has a nine-dimensional parame-
terization: the position in R3, the orientation in SO(3), and
the face extents in R3. The possibility of different types of
objects can be accommodated by optimizing for different
object parameterizations at once. One way to view the object
localization problem is in terms of maximizing the likelihood
of a function defined over possible object configurations.
Assume that all points in the point cloud lie on the surface
of the object in question. Then the maximum likelihood
configuration of the object is:

xmax = argmax
x∈X

P(Z ⊆B(x)), (1)

where B(x)⊆P denotes the surface (boundary) of the object,
x.

Unfortunately, since the point cloud will typically include
points that lie on the surface of many objects and not just
on the surface of the object in question, using Equation 1
requires a preprocessing step where points belonging to the
object are first segmented from the rest of the points in the
cloud. As an alternative, one might create a hypothesis space
that describes all objects that affect the point cloud. For
example, let

H = {Xk : 1≤ k ≤ K}

be the set of all multi-object hypotheses (up to a maximum
number of objects, K), where for simplicity we assume that
all objects in the cloud belong to the class described by X .
The localization problem is now expressed by:

hmax = argmax
h∈H

P(Z ⊆B(h)), (2)

where B(h) =∪x∈hB(x) describes the surfaces of all objects
in h. Since h is a hypothesis that accounts for all points in
the cloud, it is no longer necessary to segment the cloud.

Unfortunately, the large dimensionality of H suggests
that the maximization problem will be computationally in-
tractable unless some structure can be found in P(Z⊆B(h)).
For example, one might express P(Z ⊆B(h)) in terms of
a single object, P(Z ⊆B(x)), and attempt to optimize the
likelihood of all objects independently. Assuming that each
point in the point cloud is independent of every other point,
we have:

P(Z ⊆B(h)) =
|Z|

∏
i=1

P(zi ∈B(h))

=
|Z|

∏
i=1

[1−P(zi 6∈B(h))]

=
|Z|

∏
i=1

[
1−∏

x∈h
P(zi 6∈B(x))

]
, (3)

Unfortunately, this equation shows that the likelihood does
not factor into object likelihoods that may be optimized
independently. For example, it is impossible to optimize this
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D(z,s,x)
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Fig. 2: Calculation of the distance, D(zi,s,x), of point z from
the region not occluded by the object. The object hypothesis
is illustrated in green; the region occluded by the object with
respect to the source is shaded.

function by independently ascending gradients, ∂P(Z⊆B(h))
∂x ,

associated with each object, x ∈ h, because the gradients
depend on the parameters associated with all objects, not
just object x.

III. RELAXATIONS OF THE LIKELIHOOD FUNCTION

Rather than attempting to optimize Equation 3 directly,
this paper proposes a combination of two relaxations. The
relaxations have a structure that makes the likelihood opti-
mization more tractable.

A. Primary relaxation: occlusion regions

Our first relaxation of Equation 3 is based on the fol-
lowing: a necessary condition for all points to be on the
surface of hypothesized objects is that there are no points
that are contained in a region occluded by hypothesized
objects. Let O(s,h) ⊆ P be the region of point space that
is occluded by objects contained in hypothesis h when the
range sensor source is located at s (see Figure 2). Because
of the “necessary” aspect of the above condition, we have:

P(Z ⊆B(h)) = P(Z ⊆B(h))
≤ P(Z∩O(s,h) = /0). (4)

This relaxation can be factored according to the set of ob-
jects, x∈ h. Assume that the extent of the objects comprising
h do not overlap so that the occlusion or non-occlusion of a
point by a particular object has no bearing on the likelihood
of its occlusion by another object. In this case, we have:

P(Z∩O(s,h) = /0) = ∏
x∈h

P(Z∩O(s,x) = /0). (5)

Since Equation 5 can be expressed as a product of in-
dependent likelihoods between zero and one, each factor
can be optimized independently. That is: if each factor,
P(Z∩O(s,x) = /0), in Equation 5 is minimized, then P(Z∩
O(s,h) = /0) must be at a minimum as well.

Once P(Z ∩O(s,h) = /0) has been factored, calculating
each P(Z ∩O(s,x) = /0) is straightforward. Assuming inde-

pendent observations, we have:

P(Z∩O(s,x) = /0) =
|Z|

∏
i=1

P(zi 6∈ O(s,x)). (6)

P(zi 6∈O(s,x)) is the likelihood that point zi is not included
in the region occluded by x. Let D(zi,s,x) be the distance
of point zi to the region not occluded by the object (see
Figure 2). Then, the likelihood that a point, zi, is occluded
by object x is proportional to:

P(zi 6∈ O(s,x))∼N (D(zi,s,x),Wz) , (7)

where N (x−µ,Σ) evaluates the PDF of the Gaussian with
a deviation from the mean of x− µ and covariance Σ. In
the next section, we will optimize Equation 6 using gradient
ascent. The gradient of Equation 6 is:

∂P(Z∩O(s,x) = /0)
∂x

(8)

= ∑
zi∈Z

∂N (D(zi,s,x),Wz)
∂x ∏

z j∈(Z−zi)
N (D(z j,s,x),Wz) .

B. Subordinate relaxation: point percentage

The relaxation described in Equation 4 is clearly insuf-
ficient to completely localize objects in the point cloud.
Our approach is to introduce a subordinate relaxation that
operates in the regions where the first relaxation is optimized.
Essentially, a new likelihood function is defined implicitly by
the intersection of the first and second relaxations.

The subordinate relaxation simply counts the expected
percentage of the points in the cloud on the surfaces of the
hypothesized objects,

P(Z ⊆B(h)) =
|Z|

∏
i=1

P(zi ∈B(h))

≤ 1
|Z|

|Z|

∑
i=1

P(zi ∈B(h)), (9)

(one may verify that this inequality is correct). Since the
expected number of points on all hypothesized objects is just
the sum of the expected number of points on each object,
we have:

|Z|

∑
i=1

P(zi ∈B(h)) = ∑
x∈h

[
∑

zi∈Z
P(zi ∈B(x))

]
. (10)

The form of Equation 10 demonstrates that we can optimize
this relaxation by optimizing the term in brackets for each
object, x ∈ h. Let B(zi,x) denote the distance between the
non-occluded surfaces of x and the point zi. Then, we have:

P(zi ∈B(x)) = N (B(zi,x),Wz),

where we have again assumed that point in the cloud have a
covariance of Wz caused by measurement noise. The gradient
of the term in brackets in Equation 10 is:

∂ ∑zi∈Z P(zi ∈B(x))
∂x

= ∑
zi∈Z

∂N (B(zi,x),Wz)
∂x

. (11)
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Fig. 3: Illustration of localization in two dimensions for a collection of rectangles. Green boxes represent hypotheses, laser
return points are circles, and the laser source is located at the star in the upper left corner.

While neither Equations 5 nor 10 are sufficient on their
own to localize objects well, the intersection is. Our approach
is to use constrained gradient ascent where the second-
priority relaxation is optimized in the tangent space of the
gradient of the primary relaxation. Let ∂R1

∂x be the gradient
in Equation 8 and let ∂R2

∂x be the gradient in Equation 11.
We ascend the gradient of relaxation 2 in the tangent space
of the gradient of relaxation 1:

∂R12

∂x
=

∂R1

∂x
+

∂R2

∂x
N1, (12)

where

N1 =
∂R1
∂x

T ∂R1
∂x

∂R1
∂x

∂R1
∂x

T

is the tangent space projection matrix for ∂R1
∂x .

C. Planar illustration

Figure 3 illustrates the localization process in the plane.
The point cloud (the green circles in Figure 3) was col-
lected indoors using a Hokuyo UTM laser scanner mounted
in a fixed configuration in front of a collection of three
rectangular boxes. The objective is to locate a maximum
likelihood rectangular objects in the scene. Since this is a
planar problem, the hypothesis space for a single rectangle

is five dimensional (position in R2, orientation in SO(2), and
the extents of the two sides in R2),

x = (px, py,dx,dy,θ)T ,

where px and py are the coordinates of the center of the
rectangle, dx and dy are the extents of the rectangle sides,
and θ is the orientation of the rectangle. As explained in
Section III-A, the distance function, D(zi,s,x) in Equation 7,
is the nearest distance to a region not occluded by the object
hypothesis. D(zi,s,x) is calculated with respect to the sides
of the rectangle hypothesis visible to the laser source and
the occlusion boundary lines (see Figure 2).

Figure 3 shows four frames from the planar localization
example. The starting sampling of hypothesis assumes noth-
ing about the actual locations of the objects. It begins with
uniformly spaced samples of identical small size. As the
iterations progress, relaxation 1 (the high-priority relaxation)
causes the hypotheses to migrate toward regions within the
occluded regions in the point cloud. Hypotheses that do not
migrate quickly enough shrink because the decreasing side
extents decreases the number of points in the hypotheses
occlusion regions. Hypotheses are removed if their like-
lihoods fall below a threshold. Once within the occluded
regions in the point cloud, hypotheses slowly migrate toward
configurations that maximize the number of points on their
sides.
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Fig. 4: For a scene (a) a final state of the hypotheses (b) is illustrated. The time history of the point match likelihoods for
for each hypothesis are plotted in (c) with arrows to their corresponding locations in space. Notice a spurious maxima below
the floor but with low likelihood when compared to other hypotheses.

Notice that some of the hypotheses converge to maxima
that do not correspond to object locations. This reflects the
fact that optimizations of the relaxed likelihood functions can
find any local minimum. Not all optima of the combined
relaxations correspond to objects in the scene. However,
maxima that do not match the measurements well are given
a low likelihood and can be removed.

IV. EXPERIMENTS

The approach proposed in this paper was used to locate
maximum likelihood rectangular boxes in a manipulation
scenario.

A. Platform

A nodding Hokuyo UTM laser was mounted to the “head”
of the manipulator (see Figure 1). Each “sweep” of the
nodding head took approximately five seconds and collected
approximately 100k points. After restricting points to a

bounding box around the work area, including removing
many of the ground plane points, and subsampling so that
no two points were closer than about a centimeter, the point
cloud was reduced to about 1800 points. While our algorithm
should be unaffected by including more points, this greatly
reduced the computational load.

B. Spatial localization
In general, the configuration space for a cuboid in three

dimensions is nine dimensional: position of the cuboid
center in R3, orientation of the cuboid in SO(3), and side
extents in R3. We simplified the math in our experiments by
constraining orientation to rotation about the vertical axis.
The resulting free degrees of freedom of the cuboid are:

x = (px, py, pz,dx,dy,dz,θ)T ,

where px, py, and pz, are the coordinates of the position of
the center of the cuboid, dx, dy, and dz, are the extents of
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Fig. 5: A single cylindrical obstacle in front of a box (a) causes a failure for the RANSAC method (b) but is located in our
method (c).
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Fig. 6: Two boxes where one edge aligns with the face of another (a) causes a bad hypothesis with the RANSAC method
(b) but proper dimensions are found in our method (c).
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Fig. 7: A crowded scene with many boxes and obstacles (a) interferes with all but one box in the RANSAC method (b) but
poses minimal challenge to our method (c).
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the sides, and θ is the orientation about the vertical axis.
Figure 4 illustrates the process of localizing a pair of

stacked boxes (shown in Figure 4(a)) in the seven di-
mensional object configuration space. The process begins
with 15 uniformly seeded object hypotheses. Figure 4(b)
illustrates the hypotheses (shown in black) in their final
configuration after they have converged to the maxima of
the relaxed likelihood functions. Notice that the hypotheses
cluster around the true locations of the two boxes. Figure 4(c)
illustrates the optimization process in terms of hypothesis
likelihood over time. Initially, all hypotheses have similarly
low likelihoods. Over time, the likelihood of the boxes rises
and ultimately clusters in two high-likelihood configurations.

C. Comparison with a compositional method

As discussed in the introduction, the primary localiza-
tion methods used in robotic manipulation scenarios are
compositional methods where modeled objects are located
by first identifying shape primitives using methods such as
RANSAC, Hough transforms, EM, etc. and then identifying
the objects in terms of those primitives. Since our imple-
mentation of the robotic porter (Figure 1) was based on the
Robot Operating System (ROS) [12], maintained by Willow
Garage, we compared our performance with what we were
able to achieve using compositional methods found in the
Point Cloud Library (PCL) [13]. The general approach is
related to what is proposed proposed by Rusu [7]: a variant of
RANSAC is used to find planes in the image, the planes are
merged and the overall parameters of the plane are estimated
using regression, and boxes are hypothesized to exist in
places where the appropriate combination of planes is found.

We presented both systems with localization scenarios that
were difficult because of obstacles or confusing combinations
of planes. Figures 5, 6, and 7 illustrates the comparison.
The three figures show an image of the scenario on the left,
the box located by our compositional method in the center
(the green outline superimposed on the point cloud), and
the objects found by our method on the right. In Figure 5,
the compositional method is confounded by the cylinder that
prevents the robot from finding planes sufficiently nearby to
be considered a box. In Figure 6, the compositional method
finds only a single box that extends to the floor because it
overestimates the size of the planes. Finally, in Figure 7,
compositional methods fail to find enough planes to locate
all boxes.

One way to improve performance of the compositional
method on the above might be to modify the plane-finding
parameters so that a larger number of planes are found.
However, this would risk finding boxes where none exist.
In our experimental use of the compositional method during
manipulation, we found it unsafe to raise these thresholds
too high for fear that the robot would find and attempt to
grasp objects were none really existed.

One potential failure of our approach in the scenarios
above is that the occluding poles in the image are misinter-
preted as boxes. This is a consequence of the optimization
process. Since all points in the cloud are assumed to belong

to a modeled object, the poles are interpreted as boxes. Of
course, since the poles are not really boxes, they are given a
low likelihood and can be identified as poor box candidates.

D. Effect of seeding on optimization
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Fig. 8: A comparison of the two types of seeding of hy-
potheses used for experiments. A uniform sampling produces
many more samples who find spurious local maxima, but
still slowly find the correct box locations. The measurement
proximity seeding produces fewer spurious local maxima,
and requires fewer total hypotheses to characterize the envi-
ronment.

The fact that our optimization process begins with ran-
domly chosen hypotheses suggests that performance can
be improved by starting with more intelligent estimates.
A number of heuristics are possible: hypotheses may be
initially seeded more densely in regions where the point
cloud is more dense; hypotheses may be seeded more densely
close to the laser source; shape primitives (such as those
localized by RANSAC) could be used to inform the set
of initial hypotheses. This work explores the possibility of
the first and second options above: seeding hypotheses more
densely in dense regions of the cloud and giving preference
to hypotheses close to the laser source. Figure 8 illustrates the
comparison. Both seeding approaches find the two primary
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maxima (where boxes are located). However, the seeding
heuristic focuses the search on the primary maxima and
avoids spurious maxima.

V. CONCLUSION

This paper has presented a novel method to determine
the pose of objects of interest in a point cloud. A hierarchy
of relaxations uses knowledge of objects to inform how to
process raw data. This approach is robust to occlusions,
and requires fewer heuristic and parameter tuning necessary
in RANSAC based processes. Apart from a parameterized
model of the object of interest, our algorithm only requires
two variables: the standard deviations of expected noise in
each relaxation function. Though boxes were used through-
out the examples shown, the algorithm is generalizable to
any sufficiently parameterized object.

VI. FUTURE WORK

Although our method has proven to be very successful
in the box manipulation scenarios explored in this paper, it
needs to be demonstrated in the context of more complex
object localization tasks. We expect that the approach will
generalize well across large classes of objects. For example,
we expect that this will be an effective way of locating all
chairs or tables in a room based on a roughly parameterized
geometry. Another area for future exploration is to move
from a fixed-step gradient ascent algorithm to more powerful
optimization techniques.
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