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Abstract We consider the partially observable control problem wheig poten-
tially necessary to perform complex information-gathgroperations in order to
localize state. One approach to solving these problemsdsetate plans ifbelief-
spacethe space of probability distributions over the undewdystate of the system.
The belief-space plan encodes a strategy for performingkavtaile gaining infor-
mation as necessary. Most approaches to belief-spaceipdamty upon represent-
ing belief state in a particular way (typically as a Gauskibimfortunately, this can
lead to large errors between the assumed density repréeardad the true belief
state. We propose a new computationally efficient algoritbrmplanning in non-
Gaussian belief spaces. We propose a receding horizomaneipt approach where
planning occurs in a low-dimensional sampled represamtatf belief state while
the true belief state of the system is monitored using artrarigiaccurate high-
dimensional representation. Our key contribution is a pilag problem that, when
solved optimally on each re-planning step, is guaranteedeiucertain conditions,
to enable the system to gain information. We prove that whesd conditions are
met, the algorithm converges with probability one. We chiaze algorithm per-
formance for different parameter settings in simulatiod agport results from a
robot experiment that illustrates the application of thgathm to robot grasping.

1 Introduction

A fundamental objective of robotics is to develop systenas ¢lan function robustly
in unstructured environments where the state of the woibdlig partially observed
and measurements are noisy. For example, robust robot otatgn is well mod-
eled as partially observable problem. It is common to modaetrol problems such
as these as partially observable Markov decision procé€gs@sIDPs). However,
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in general, finding optimal solutions to POMDPs has been shimabe PSPACE
complete [12]. Even many approximate approaches are catiqually complex:
the time complexity of standard point-based algorithmshsas HSVI and SAR-
SOP, is exponential in the planning horizon [17, 9, 15]. Avgrg body of work
is focused on finding correct rather than optimal solutianghe partially observ-
able control problem. Many of these approaches search &msghbelief space
the space of probability distributions over the underlystgte space. The idea of
planning in belief space can be traced back to some of the éaal control work
where differential dynamic programming was used to find sbpolicies in stochas-
tic domains [1]. More recent work has explored the applaratf different planning
and re-planning mechanisms to the belief space planningigaro[13, 6, 11]. Al-
though these approaches are well suited to finding compfexnmation-gathering
behavior, they do so at the expense of solving a planninglg@moihat is higher
dimensional than the underlying perfectly-observablenpiiag problem. Another
recent class of approaches avoids this complexity by etiatyéarge numbers of
candidate trajectories in the underlying state space mdeaf the information that
is likely to be gained during execution and the chances dfdiof) with prob-
lem constraints [18, 14, 5]. Although these approaches gilattly in the (lower-
dimensional) state space, it may be necessary to creatge tamber of plans
before finding one with satisfactory information-gathgrproperties.

One drawback with the belief space planning work cited abis\ube assump-
tion that belief state (the probability distribution ovanderlying system state) is
Gaussian. Unfortunately, this assumption is unwarrantechany robot naviga-
tion and manipulation applications (witness the populaoit the particle filter in
these applications). Furthermore, directly extending@pr@ach such as in [13] to
non-Gaussian distributions quickly results in a compatatlly complex planning
problem because of the high dimensionality of typical nani€sian parametriza-
tions (for example, see [2]). This paper considers the prolbf planning in non-
Gaussian belief spaces. We propose an algorithm that, wedin conditions, is
provably correct and also computationally efficient. Biesipace planning implic-
itly necessitates tracking belief state using a Bayes.fier key idea is to separate
the representation used to track belief state from the septation used for plan-
ning. During execution of the plan, system state is tracksdguan arbitrary Bayes
filter implementation that is selected by the system desi¢mearticle filter, for
example). For the purposes of planning, however, this piadgnhigh-dimensional
belief state representation is projected onto a low-dinogras sampled represen-
tation. Plans are created that generate observations iffegedtiate a hypothesis
sample from the other samples while also reaching a goa.dfathe true belief
state diverges too far from the nominal belief space trajgatiuring execution of
the plan, then a re-planning cycle is triggered and the poiterates. The dimen-
sionality of this planning problem is linear in the dimensatity of the underlying
state space. This compares favorably with other algoritfiiis 6, 11, 1] which
must solve planning problems quadratically larger thanfdiig observable prob-
lem. Perhaps surprisingly, this approach can be proved lte sbe belief space
planning problem (under certain conditions) with probiapibne when as few as
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two samples are used for planning. Moreover, our experisiadicate that, for rel-
atively simple problems at least, it is unnecessary to uge laumbers of samples
in order to obtain good plans. After defining the problem ict®a 2, this paper
describes the algorithm in Section 3 and proves convergienSection 4. In Sec-
tion 5, we experimentally characterize the performancégafradhm as a function of
the number of samples used. Finally, in Section 6, we apghatforithm to a robot
grasping problem where a robot must simultaneously logeaizd grasp objects in
the environment.

2 Problem Statement

We are concerned with the class of control problems wher desired to reach
a specified goal state even though state may only be estirbatee on partial
or noisy observations. Consider a discrete-time systeim @ghtinuous non-linear
deterministic process dynamitsx. 1 = f (%, W), where state, is a column vector
in R", and actionu € R'. Although state is not directly observed, an observation,
z = h(x) + v, is made at each timg wherez € R™ is a column vector ang is
zero-mean Gaussian noise with covariagce

Bayes filtering can be used to estimate state based on theysections taken
and observations perceived. The estimate is a probabisitsitalition over state rep-
resented by a probability density function (pdfix;b) : R" — R™ with parameter
vector,b € #. The parameter vector is called tbelief stateand the parameter
space 4, is called thebelief-spaceFor deterministic process dynamics, the Bayes
filter update can be written:

11X, bt )P(z41]X, W)
P(z41) ’

The Bayes update calculates a new belief state, givenby, u;, andz_ 1. It will
sometimes be writtery 1 = G(bt, U, z+1). In general, it is impossible to imple-
ment Equation 1 exactly using a finite-dimensional paraizegton of belief-space.
However, a variety of approximations exist in practice [4].

Starting from an initial belief statdy, the control objective is to achieve a task
objective with a specified minimum probability of successs [0,1). Specifically,
we want to reach a belief state,such that

m(f (X w);bya) = (1)

O(b,r,xg) :/‘ T(X+ Xg; b) > w, 2)

XEBn(r)

whereBy(r) = {x € R",x"x < r?} denotes the-ball in R" for somer > 0, andw de-
notes the minimum probability of success. There are stronigsities between this

1 Although we have formally limited ourselves to the case of deteistic process noise, we find
in Section 6 that empirically, our algorithm performs well ilveonments with limited amounts
of process noise.
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control problem and the more general Partially Observaldekibv Decision Pro-
cess (POMDP) problem. Both define a partially observablérobproblem. How-
ever, whereas the objective of a POMDP is to minimize expbobst, our objective
is to reach a goal region with a specified minimum probabiktiso, in contrast
to the more general POMDP problem, we have only allowed oetéstic process
dynamics.

3 Algorithm

Our algorithm can be viewed as a receding horizon controtagmh that creates
and executes nominal belief space plans. During executiertyack a belief dis-
tribution over underlying state based on actions and obsiens. If the true belief
state diverges from the nominal trajectory, our algoritleyplans and the process
repeats. Our key contribution is a planning problem thagnvolved optimally on
each re-planning step, is guaranteed, under certain conslito enable the system
to gain information.

3.1 Creating plans

The key to our approach is a mechanism for creating horizdrelief-space plans
that guarantee that new information is incorporated ineohblief distribution on
each planning cycle. Given a prior belief stabe, define a “hypothesis” state at
the maximum of the pdf! = argmaxcgn 11(x; by). Then, samplé— 1 states from
the prior distributionx ~ 71(x;by),i € [2,K], such that the pdf at each sample is
greater than a specified threshatdx'; by) > ¢ > 0, and there are at least two unique
states among thle— 1. We search for a sequence of actiams,; = (ug,...,Ur_1),
that result in as wide a margin as possible between the ddistmmg that would
be expected if the system were in the hypothesis state andbgervations that
would be expected in any other sampled state. As a resulipa glan enables the
system to “confirm” that the hypothesis state is in fact the state or to “disprove”
the hypothesis state. If the hypothesis state is disprdbed, the algorithm selects
a new hypothesis on the next re-planning cycle, ultimatelysing the system to
converge to the true state.

To be more specific, |6 (x,u;—1) be the state at timeif the system begins in
statex and takes actionsg;_;. Recall that the expected observation upon arriving in
statex; is h(x). Therefore, the expected sequence of observations is:

he(x ue1) = (h(FL(xup))T,... h(R_a(x u 1)) "

We are interested in finding a sequence of actions that naeisnihe probability
of seeing the observation sequence expected in the santpted when the system
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is actually in the hypothesis state. In other words, we warfind a sequence of
actions,ut_1, that minimizes

k .
It X uprog) = 'ZZN (h(xX,ur_1)|h(x},ur_1),Q)

whereN(-|u, X) denotes the Gaussian distribution with mgaand covarianc&
and Q = diag(Q,...,Q) is the block diagonal of measurement noise covariance
matrices of the appropriate size. When this sum is small, 8&itering will more
accurately be able to determine whether or not the true statear the hypothesis

in comparison to the other sampled states.

The above expression for observation distance is only d&fiieh respect to the
sampled points. However, we would like to “confirm” or “dispe” states in regions
about the hypothesis and samples — not just the zero-mepsimes themselves.
This can be incorporated to the first order by defining smalisSen distributions
in state space with covariandé, about the samples and taking an expectation:

Kk .
J(Xl, .. 7Xk7 Ul:Tfl) = -ZEMNN(‘M ,V),y1~N(-\x1,V)N (h(y',uT,1)|h(y1, UT,]_),Q)
i=

K
= EZN (h(X,ur—1)|h(<t ur—e), T (X, ur—1)), 3)

where I (x,ur—1) = 2Q+Hr (X, ur—1)VHr (X, ur—1)" +Hr (X', ur_1)VHT (x", ur—1)T,

(4)

Hi(x,u1t—1) = dhi(X,u11—1)/0x denotes the Jacobian matrix laf(x, us+_1) atx,
andV is the appropriately sized block diagonal matrinofRather than optimizing
for J(x%,..., XX, uy.t 1) (Equation 3) directly, we simplify the planning problem by
dropping the normalization factor in the Gaussian and dpiirg the exponential
factor only. Let

®(x,ur-1) = [[h(X, ur-1) = h(t ur-1) |17

UT-1)”
The modified cost function is:
— 1Kk i
J(Xl,...,Xk,Ul;T,J_) = K g P(Xur-1) (5)
i=
The optimization problem becomes:
Problem 1.
Minimize  J(x},.... % ur_ 1)+ aul jur 4 (6)
subjectto X, = f(x,w),ic[1K] 7)

X =xg, ¥ =X, € [1K]|. (8)
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Equation 6 adds an additional quadratic cost on action tiig a small preference
for short trajectories. The associated weighting paranstteuld be set to a small
value (@ < 1). Problem 1 can be solved using a number of planning teaksiguch
as rapidly exploring random trees [10], differential dynamrogramming [8], or
sequential quadratic programming [3]. We use sequentedigaiic programming to
solve the direct transcription [3] of Problem 1. Althoughedi transcription is only
guaranteed to find locally optimal solutions, we have foumat it works well for
many of the problems we have explored. The direct transeoriggolution will be
denoted
ur_1 = DIRTRAN(X, ..., X, xg, T), (9)

for samplesyl,...,x%, goal state constrainkg, and time horizonT. Note that the
dimensionality of Problem 1 iek — linear in the dimensionality of the underlying
state space with a constant equal to the number of samplescdimpares favor-
ably with the approaches in [13, 6, 11] that must solve plagmiroblems im?-
dimensional spaces (number of entries in the covariancexhat

3.2 Re-planning

After creating a plan, our algorithm executes it while tiagkthe belief state using
the user-supplied belief-state update, If the actual belief state diverges too far
from a nominal trajectory derived from the plan, then exicustops and a new
plan is created. The overall algorithm is outlined in Algom 1. The outewhile
loop iteratively creates and executes plans until the phgnobjective (Equation 2)
is satisfied. Step 2 sets the hypothesis state to the maxirfitiva prior distribution.
Step 3 samplels— 1 additional states. Step 4 of Algorithm 1 calls theEATEPLAN
function (Algorithm 2). REATEPLAN has two steps. First, it solves Problem 1 with
the final value (first condition, Equation 8) constraint. RhNEREATEPLAN calcu-
lates a corresponding belief trajectory forward by assgrthiat the hypothesis state
is equal to the true state. If the resulting trajectory doesreach a belief state
that satisfies thevhile loop condition in step 1 of Algorithm 1, thenREATEPLAN
solves Problem 1 again, this time without the final value traist. Steps 6 through
12 execute the plan. Step 9 updates the belief state givenetlieaction and ob-
servation using the user-specified Bayes filter implememaStep 10 breaks plan
execution when the actual belief state departs too far flmembminal trajectory,
as measured by the KL divergen@®, [71(-;br11), 71(+; br11)| > 6. The second con-
dition, J_(xl, XU ) <1-p, guarantees that ttvehile loop does not terminate
before a (partial) trajectory with codt< 1 executes. We show in Section 4 that the
second condition guarantees that the algorithm makes fpsstjon each iteration
of thewhile loop.
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Input :initial belief state, goal statexgy, planning horizonT, and belief-state update,

1 while ©(b,r,xg) < w do
xt = argmaxcgn 11(X; b);
Vi€ [2,k],X ~ i(x;b) : 7(X;b) > ¢;
bit,ur_1 = Creat ePl an(b,x%,..., X, x5, T) ;
bl =b;
fort«<1toT—1do

execute actiomy, perceive observation, 1;

bri1 = G(by, W, z11) B

if D1 [71(X; bre1), (X br11)] > 6 and I(Z,u_1) < 1—p then

| break

end
end
b=b1;

© 00N U WN

P
w N B O

end

=
N

Algorithm 1: Belief-space re-planning algorithm

Input :initial belief stateb, sample setdt, ... XK goal region¥, and time horizonT .
Output: nominal trajectorybst andugt_1
wr-1=DirTran(x,... Xg,T);
by=b;vte[1:T—1], biy1 = G(br,u,h(¢));
if ©(h,¥) < wthen
w1 =DirTran(x},... XT);
by =b;Vt € [1:T—1], by =G(by,u,h(x}));
end

o 0~ WN P

Algorithm 2: CREATEPLAN procedure

3.3 lllustration

Figures 1 and 2 show a simple example that illustrates bgfiate planning. Fig-
ure 1 shows a horizontal-pointing laser mounted to the dfedter of a two-link

robot arm. The end-effector is constrained to move onlyie@ty along the dotted
line. The laser points horizontally and measures the raraye the end-effector to
whatever object it “sees”. There are two boxes and a gap leettveem. Box size,
shape, and relative position are assumed to be perfecthyrkatong with the dis-
tance of the end-effector to the boxes. The only uncertaiabte in this problem is
the vertical position of the end-effector measured witlpees to the gap position.
This defines the one-dimensional state of the system antlistrdted by the ver-

Fig. 1 SLAG scenario. The arm
robot must simultaneously

localize the gap and move the

end-effector in front of the

gap.

gap

bhbhbbilombura
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Fig. 2 lllustration of CREATEPLAN. (a) An information-gathering trajectory (state as a functio
of time) found using direct transcription. Blue denotes thgettary that would be obtained if the
system started in the hypothesis state. Red denotes the trgjebtamed starting in the true state.
(b) The planned belief-space trajectory illustrated by pbdkig distributions superimposed over
time. Distributions early in the trajectory are light gray Vehdistributions late in the trajectory
are dark. The seven “X” symbols on the horizontal axis denotgtsiions of the samples (red
denotes the true state while cyan denotes the hypothesis)hépadtual belief-space trajectory
found during execution. (d-f) Comparison with the EKF-basedhoetproposed in [13]. (d) The
planned trajectory. (e) The corresponding nominal belietspeajectory. (f) Actual belief-space
trajectory.

tical number line in Figure 1. The objective is to localize trertical end-effector
with respect to the center of the gap (state) exactly and ntoweend-effector to
the center of the gap. The control input to the system is thiceé velocity of the
end-effector.

Figure 2(a) illustrates an information-gathering trapegtfound by DRTRAN
that is expected to enable the Bayes filter to determine wehéttle hypothesis state
is indeed the true state while simultaneously moving theothygsis to the goal state
(end-effector at the center of the gap). The sample set usealculate the trajec-
tory wasx!,..., XX =52 3,4,6,7,8, with the hypothesis sample located<it= 5.
The action cost used while solving Problem 1 was- 0.0085. DRTRAN was ini-
tialized with a random trajectory. The additional smalli@etcost smooths the tra-
jectory by pulling it toward shortest paths without chamginformation gathering
or goal directed behavior much. The trajectory can be utaedsntuitively. Given
the problem setup, there are two possible observationgerareasurements that
“see” one of the two boxes and range measurements that ‘tseeigh the gap. The
planillustrated in Figure 2(a) moves the end effector shahdifferent sequences of
measurements would be observed depending upon whethgsteeswvere actually
in the hypothesis state or in another sampled state.
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Figures 2(b) and (c) show the nominal belief-space trajg@ad the actual tra-
jectory, respectively, in terms of a sequence of probabdistributions superim-
posed on each other over time. Each distribution descrheedikelihood that the
system started out in a particular state given the actidentand the observations
perceived. The nominal belief-space trajectory in Figui® & found by simulat-
ing the belief-space dynamics forward assuming that futlogervations will be
generated by the hypothesis state. Ultimately, the plamrageictory reaches a be-
lief state distribution that is peaked about the hypothssite x* (the red “X”). In
contrast, Figure 2(c) illustrates the actual belief-spaajectory found during exe-
cution. This trajectory reaches a belief state distribupeaked about the true state
(the cyan “X”). Whereas the hypothesis state becomes themrmuamiof the nominal
distribution in Figure 2(b), notice that it becomes a minimaf the actual distribu-
tion in Figure 2(c). This illustrates the main idea of theaithm. Figure 2(b) can be
viewed as a trajectory that “trusts” that the hypothesisisert and takes actions
that confirm this hypothesis. Figure 2(c) illustrates thagrewhen the hypothesis
is wrong, the distribution necessarily gains informati@tduse it “disproves” the
hypothesis state (notice the likelihood of the region alibethypothesis is very
low).

Figure 2 (d-f) compares the performance of our approach thighextended
Kalman filter-based (EKF-based) approach proposed in [L3¢ problem setup
is the same in every way except that cost function optimirgtiis scenario is:

J(Ul;T_l) = 1*10 (O’%)T 0'12 + O.OOSHJI:T_j_Ul;T_L

wherea? denotes covariance. There are several differences inrpeafce. Notice
that the two approaches generate different trajectoriesare Figures 2(a) and
(d)). Essentially, the EKF-based approach maximizes thie Eelduction in variance
by moving the maximum likelihood state toward the edge ofgéye where the gra-
dient of the measurement function is large. In contrastapproach moves around
the state space in order to differentiate the hypothesis fitee other samples in
regions with a small gradient. Moreover, notice that sileeEKF-based approach
is constrained to track actual belief state using an EKF Bdyter, the tracking
performance shown in Figure 2(f) is very bad. The EKF inniovaterm actually
makes corrections in the wrong direction. However, in spitéhe large error, the
EKF covariance grows small indicating high confidence ingbktimate.

4 Analysis

We are interested in the correctness of Algorithm 1. Can werantee that Algo-
rithm 1 eventually reaches a belief state in the goal regidle?show that ifG is

an exact implementation of Equation 1, then Algorithm 1 ipested to localize
the true state of the system after a finite number of iteratmfrthe outer loop. As
the number of iterations of the outer loop goes to infinitg pmobability of having



10 Robert Platt, Leslie Kaelbling, Tomas Lozano-Perez, arssRadrake

localized the true system state goes to one. We start bydingva lower bound on
the expected probability of states in a neighborhood of ithe $tate. On a particu-
lar iteration of the outewhile loop in Algorithm 1, suppose that the system begins
in belief stateb;, while the true state i&, and executes a sequence of actions,
u = (ug,...,ur_1) (subscript dropped for conciseness). During executia sifs-
tem perceives observations= (z,...,zr) and ultimately arrives in belief stalg .
The probability of a statey = Fr(x,u), estimated by recursively evaluating Equa-
tion 1is:

. _ . qX(Za U)
mlyibr) = by Do (10)
where
qX(Zau) = N(Z‘h(X, U),Q) (11)

is the probability of the observations given that the systéarts in state and takes
actions,u, and

p(z,u) = /xeRn 11(x; b1)N(z|h(x,u),Q) (12)

is the marginal probability of the observations giver he following Lemma shows
that ri(y; br) can be lower-bounded in terms of the proximityxa the true state,
K.

Lemma 1. Suppose we are given an arbitrary sequence of actionand an arbi-
trary initial state, x R". Then, the expected probability ofyFr(x,u) found by
recursively evaluating the deterministic Bayes filter upd&quation 1) is

E, { mi(y; br)

i(x; b1)

} 2 eXp(Dl(CIK; p) - Dl(qK7qX)) 9

where g, 0y, and p are defined in Equations 11 and 12 angd denotes the KL
divergence between the arguments.

Proof. The log of the expected change in the probability ¢:

0% i | 0% i |

oq [ HEWKEU)
8, e

> [ (@) (logax(z.) ~ logp(z.u))
= Dl(qu p) - Dl(qqu)a

where the third line was obtained using Jensen’s inequatitythe last line follows
from algebra. Taking the exponential gives us the claim.

Lemma 1 expresses the bound in terms of the divergdhge, p), with respect
to the true states. However, since is unknown ahead of time, we must find a lower
bound on the divergend®;(qy, p) for arbitrary values of. The following lemma
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establishes a bound on this quantity. We use the notatidn||tiia = vaTA-la
denotes the Mahalanobis distance with respeét to

Lemma 2. Given an arbitraryu and a distributionm, supposeiA;, A, C R" such
thatvxy, Xz € A1 x Ay, [|h(xe,u) —h(x,u) |8 > {2 and [y 4, W(X) >, fycp, B(X) >
y. Then

. 2 _ 71(2 2
minD(dy, p) > 21 v’ (1 e? ) :
wheren = 1/,/(2w)"|Q| is the Gaussian normalization constant.
Proof. By Pinsker's inequality, we know th&; (ay, p) > 2sup, (Gk(z,u) — p(z,u))>.
Notice thatp(h(xz,u)) <n (17 y+ ye*%zz). Sincegx(h(x1,u)) = n, we have:

2
(e, )) — plh(xa,)))? > y? (1 7).
We obtain the conclusion by using Pinsker’s inequality.

As a result of Lemmas 1 and 2, we know that we can lower bounéxpected
increase in probability of a region about the true state bdirig regionsA; and
/\2, that satisfy the conditions of Lemma 2 for a giveri emma 3 shows that these
regions exist for any with a cost (Equation 3) < 1. The proof uses Lemmas 4
and 5, stated and proved in the appendix.

Lemma 3. Suppose thatl is a plan with costl = J_(xl,...,xk,u) defined over the
samples, i € [1,K]. If the maximum eigenvalue of the Hessian of M jsthen
Ji € [1,K] such that:

vr €R+7V61762 € Bn(r)’ ||h(XI+61)—h(X1+62)||12—<X|’u> 2 |:\/ —lOgJ_— 2(r+Cr2):| )

where c= A[|1]|g/2 and By(r) = {x € R:x"x < r?},

Proof. Considering Equation 3, we know that a Cogu',mplies that there is at least
one samplex’, such that

—logd < ®(x,u)
= [N = hOIZ 1 -

Notice thatvy € R", the matrixH (y) "I (y,u)~*H(y) is positive semidefinite with
eigenvalues no greater than one. Therefore, we know/thatR ™, d € By (r),

IH)SIF ) < T2

Using Lemma 4 twice to combine the above equations, we WaeR™, &, &, €
Bn(r),
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. _ 2
IPO0,3) ~ PO &)1, > (y/~logd-2r)

whereP(x,0) = h(x) — H(x)d. Using Lemma 5, we have thak, € R" andd €
Bn(r),
Ih(x+3) ~ P(x,8)[Z ) < (cr?)2.

Applying Lemma 4 twice gives us the conclusion of the theorem

We now state our main theoretical result regarding Alganithcorrectness. Two
conditions must be met. First, the planner in step 4 of Alponil must always find
low-cost plans successfully. Essentially, this guarasthat each plan will acquire
useful information. Second, step 8 of Algorithm 1 must usexatt implementation
of the Bayes filter. In practice, we expect that this secomdition will rarely be
met. However, our experiments indicate that good resultsbezaobtained using
practical filter implementations (Section 5).

Theorem 1. Supposélr, & € R* such thatvi € [1,k] andVd € By(r), (X +6) > €
with k> 2. Suppose:

1. DIRTRAN (Algorithm 1, step 4) always finds a horizon-T trajectarywith cost,

2
J(xL, . XK u) < exp{— (2r+r2/\h/\fT’1||1HQ+ \/Iog¢2) ] ,

whereA and A are the maximum eigenvalues of the Hessian matrix of h and f,

respectively ang > 1is the threshold parameter in step 3 of Algorithm 1; and
2. G is an exact implementation of the Bayesian filter updatgiétion 1) in step 8

of Algorithm 1.

Then, when Algorithm 1 executes,

1. the expected probability of the true state increases @h @aration of the outer

while loop by at leas2n?y?(1—1/¢), wheren = 1/,/(2m)"Q] is the Gaussian
normalization constanty = eVol(r), and Voh(r) is the volume of the r-ball in
n dimensions; and

2. as the number of iterations of the outer while loop goesfinity, the true state
becomes the maximum of the belief state distribution withgmoility one.

Proof. Condition 2 in the premise implies that

\/—logd —2r —r2ApAf |1l > /log 2.

Lemma 3, gives us thati € [1,k] such thatvdy, &, € B(r), ||h(X + &) — h(x! +
62)||I%(xi,u) > /log¢2. Then, Lemma 2 gives us that

min D]_(Qy, p) > 2n2y(1_ 1/¢)2v
yeR2
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wherey = eVoly(r). Lemma 1 gives us the first conclusion. The constraint that
¢ > 1 implies that the right side of the above equation is pasitAs a result, the
probability of the true state is expected to increase on &achtion of the outer
while loop and we have the second conclusion.

At the end of Section 3.1, we noted that the planning problelves in step 4
of Algorithm 1 was linear in the dimensionality of the ungémg space. Theorem 1
asserts that the algorithm is correct with as few as two sesnpls a result, we know
that the linear constant can be as small as two.

5 Experiments

P
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Fig. 3 (a) the experimental scenario. (b) a path found by Algorithnith @ nine-sample planner.
It starts in the upper right and ends at a point directly infiafthe right-most box. The red circles
denote where re-planning occurred. (c) belief state entespg function of time step. The solid
black line corresponds to the trajectory shown in (b). The dadihee lines correspond to five
additional nine-sample runs.

From a practical perspective, the preceding analysis ifulbecause it tells
us that if we execute thehile loop in Algorithm 1 a sufficient number of times,
we can expect to localize the state of the system with arpitmacuracy (we can
drive ©(b,r,xg) arbitrarily low). However, for this result to hold, we reqaithe
planner to find low cost paths each time it is called and forttheking Bayes
filter to be an exact realization of Equation 1 (the premis@loéorem 1). Since
these conditions are difficult to meet in practice, an imgatrguestion is how well
the approach works for approximately accurate Bayes fiftgriémentations and
for planners that only succeed some of the time. Furthermvegeare interested in
knowing how the performance of the algorithm changes wigimtilimber of samples
used to parametrized the planner. Figure 3(a) illustrdtesekperimental scenario.
A two-link robot arm moves a hand in the plane. A single rafigding laser is
mounted at the center of the hand. The laser measures the faorg the end-
effector to whatever object it “sees”. The hand and lasecanstrained to remain
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horizontal. The position of the hand is assumed to be medsuegectly. There
are two boxes of known size but unknown position to the lefthaf robot (four
dimensions of unobserved state). The boxes are constrairtezlaligned with the
coordinate frame (they cannot rotate). The control inpuh&system is the planar
velocity of the end-effector. The objective is for the robmtocalize the two boxes
using its laser and move the end-effector to a point direatfont of the right-most
box (the box with the largest-coordinate) so that it can grasp by extending and
closing the gripper. On each time step, the algorithm spettfie real-valued two-
dimensional hand velocity and perceived the laser rangesunement. If the laser
missed both boxes, a zero measurement was perceived. Eha&r(sneasurements
were corrupted by zero-mean Gaussian noise wigh 8tandard deviation.

(@) (b) (c) (d)

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Fig. 4 Histogram probability distributions (a-d) and planner sampts g&-h) at time steps 10,
100, 200, and 300 during the path shown in Figure 3(b).

Figure 3(b) illustrates the path of the hand (a point disebitween the two
jaws of the gripper) found by running our algorithm paranzed by nine samples.
The state space was four dimensional and comprised of twddmations rang-
ing between—1,1] on thex-axis and[—2, 2] on they-axis. The hand starts in the
upper right corner at5,5) and ends at a point directly in front of the lower right
box. The blue line shows the path and the red circles idettidypoints along the
path at which re-planning occurred (there are 14 re-plamtevia this example).
The tracking Bayes filter was implemented using a griddetbgiam filter com-
prised of 62500 bins over the four-dimensional space (ttsitipa of each of the
two boxes was denoted by a point in ax@5 grid). At the start of planning, the
prior histogram distribution was assumed to be uniform. Tast function opti-
mized by the DRTRAN planner (Equation 6) was parametrized dy= 0.01 and
V = diag(0.5) (Equations 3 and 4). The planning horizon vilas- 50. The algo-
rithm did not terminate until the histogram Bayes filter w@8®confident that it
had localized the right-most box to withih0.3 of its true location @ = 0.9 in step
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1 of Algorithm 1). Figure 4(a)-(d) show snapshots of thedgsam distribution at
time steps 10, 100, 200, and 300. (This is actually a two-dsiomal projection of
the four dimensional distribution illustrating the distition over the location afne
box only.) Figure 4(e)-(h) show the nine samples used torpatigze the planning
algorithm at the four snapshots. Initially, (in Figures 4 &ad (e), the distribution
is high-entropy and the samples are scattered through e sps time increases,
the distribution becomes more peaked and the sample saisbemore focused.
The solid black line in Figure 3(b) shows the entropy of th&tdgram distribution
as a function of time step. As expected, entropy decreage#isantly over the tra-
jectory. For comparison, the five additional blue dottee@dirn Figure 3(c) show
entropy results from five additional identical experimehtste the relatively small
variance amongst trajectories. Even though the algorithdsfa very different tra-
jectory on each of these runs, performance is similar. Thesdts help answer two
of the questions identified at the beginning of the sectiarst,H-igure 4 suggests
that in at least one case, the histogram filter was adequegpresent the belief state
in the context of this algorithm even though it is a coarsedggbtized approxima-
tion to the true distribution. The black line in Figure 3(ciggests that IRTRAN
was an effective tool for planning in this scenario. The sidiional runs illustrated

in Figure 3(c) indicate that these results are typical.

@) (b) (©

Fig. 5 (a) comparison of entropy averaged over six runs for four diffeiplanner sample set
sizes (36 samples, solid black line; 9 samples, dashed blue line; 4 sachptied magenta line; 2
samples, dash-dot green line). (b) comparison of the six thirtgaimple runs (solid black) with
the six two-sample runs (dashed blue). (c) a path found using adawple planner.

The other question to be answered concerns the effect olutimber of samples
on algorithm performance. To find an answer, we have run taighm in the sce-
nario described above for four contingencies where thenyglawas parametrized by
two, four, nine, and thirty-six samples. Figure 5(a) coregahe average (over six
runs each) information-gathering performance for the tmmntingencies. Although
increasing the number of samples improves algorithm pedioce, the gains di-
minish as the number of samples increases. Figure 5(b) cqesplze two-sample
runs with the thirty-six-sample runs and demonstratestti@atmprovement is sta-
tistically significant. The comparison of Figure 5(c) witlgére 3(b) suggests that
(in this experiment, at least) the trajectories producedhieyhigh-sample planner
are better than those produced by the low-sample plannaubedhe high-sample
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planner does a better job covering the space in front of tkedd’ hese results show
that it is valuable to expend computational effort planrangnformation-gathering
trajectory, even in this simple example. The results alsovsthat the performance
of our algorithm smoothly degrades or improves with fewemare samples used
during planning. Even with the minimum of two samples, thgodathm is capable
of making progress.

6 Robot Grasping application

We apply our approach to an instance of the robot graspinglgmowhere it is
necessary to localize and grasp a box. We refer to this veddithe problem, where
perception is incorporated into the problem statementsiasuitaneous localization
and grasping” (SLAG). Two boxes of unknown dimensions ars@nted to the
robot. The objective is to localize and grasp the box whighitglly found directly
in front of the left paddle. This is challenging because tleegment of the two
boxes may make localization of the exact position and dimessof the boxes
difficult.

6.1 Problem setup

Fig. 6 lllustration of the grasping problem, (a). The robot must loeatize pose and dimensions
of the boxes using the laser scanner mounted on the left wrist.igh&datively easy when the
boxes are separated as in (b) but hard when the boxes are pragstbt as in ().

Our robot,Paddles has two arms with one paddle at the end of each arm (see
Figure 6(a)). Paddles may grasp a box by squeezing the bmebertthe two pad-
dles and lifting. We assume that the robot is equipped witteggpogrammed “lift”
function that can be activated once the robot has placed/@gpaddles in opposi-
tion around the target box. Paddles may localize objectsenatorld using a laser
scanner mounted to the wrist of its left arm. The laser saaprueluces range data
in a plane parallel to the tabletop over a 60 degree field af.vie
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Fig. 7 Example of a box localization task. In (a) and (d), the roboielvek the gap between the
boxes is large and plans to localize the boxes by scanningépsin (b) and (e), the robot has
recognized that the boxes abut each other and creates aplare¢ase gap width by pushing the
right box. In (c) and (f), the robot localizes the boxes by si@agthe newly created gap.

We use Algorithm 1 to localize the planar pose of the two bgpa@asmetrized
by a six-dimensional underlying metric space. The boxesisseamed to have been
placed at a known height. We reduce the dimensionality ofptaaning problem
by introducing an initial perception step that localizes tfepth and orientation of
the right box using RANSAC [7]. From a practical perspectivés is a reasonable
simplification because RANSAC is well-suited to finding thepth and orientation
of a box that is assumed to be found in a known region of the &sa. The remain-
ing (four) dimensions that are not localized using RANSAGatibe the horizontal
dimension of the right box location and the three-dimersi@ose of the left box.
These dimensions are localized using a Bayes filter thattap@ahistogram distri-
bution over the four-dimensional state space based onitasasurements and arm
motions measured relative to the robot. The histogram fdteomprised of 20000
bins: 20 bins (12 cm each) describing right box horizontal position timesirGs
(2.4 cm each) describing left box horizontal position times its{24 cm each)
describing left box vertical position times 10 bins@B6 radians each) describing
left box orientation. While it is relatively easy for the lagtam filter to localize the
remaining four dimensions when the two boxes are separgtadjap (Figure 6(b)),
notice that this is more difficult when the boxes are pressgdther (Figure 6(c)).
In this configuration, the laser scans lie on the surfacelseofwo boxes such that it
is difficult to determine where one box ends and the next lsedote that it is diffi-
cult to locate the edge between abutting boxes reliablygugision or other sensor
modalities — in general this is a hard problem.
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Our implementation of Algorithm 1 used a set of 15-sampletutiing the hy-
pothesis sample. The algorithm controlled the left padgisgecifying Cartesian
end-effector velocities in the horizontal plane. These&an velocity commands
were projected into the joint space using standard JacdPésudoinverse tech-
niques [16]. The algorithm was parametrized by process mijocgathat modeled
arms motions resulting from velocity commands and box nmstiproduced by
pushes from the arm. Box motions were modeled by assumigstiprwhile push-
ing the box and assuming the center of friction was locatedeatenter of the area
of the box “footprint”. The observation dynamics descrilibe set of range mea-
surements expected in a given paddle-box configuratiomplganing purposes, the
observation dynamics were simplified by modeling only a leirigrward-pointing
scan rather than the full 60 degree scan range. Howevecenibiat since this is a
conservative estimate of future perception, low cost plarder the simplified ob-
servation dynamics are also low cost under the true dynamgertheless, the ob-
servation model used foracking(step 8 of Algorithm 1) accurately described mea-
surements from all (100) scans over the 60 degree rangeefinaation threshold
in Algorithm 1 was set to 50% rather than a higher threshotthbse we found our
observation noise model to overstate the true observatimen

Our hardware implementation of the algorithm included samell variations
relative to Algorithm 1. Rather than monitoring divergemglicitly in step 9, we
instead monitored the ratio between the likelihood of thpdilgesis state and the
next most probable bin in the histogram filter. When this réglbbelow 0.8, plan
execution was terminated and thvile loop continued. Since the hypothesis state
must always have a maximal likelihood over the planned dtajg, a ratio of less
than one implies a positive divergence. Second, ratherfihnding a non-goal di-
rected plan in steps 3-5 of Algorithm 2, we always found gtiedcted plans.

Figure 7 illustrates an example of an information-gattgetiajectory. The al-
gorithm begins with a hypothesis state that indicates thatwo boxes are 10 cm
apart (the solid blue boxes in Figure 7(a)). As a result, therghm creates a plan
that scans the laser in front of the two boxes under the agsoumibhat this will
enable the robot to perceive the (supposed) large gap. intfectwo boxes abut
each other as indicated by the black dotted lines in Figuse After beginning the
scan, the histogram filter in Algorithm 1 recognizes this terchinates execution of
the initial plan. At this point, the algorithm creates thesping trajectory illustrated
in Figure 7(b). During execution of the push, the left box e®in an unpredicted
way due to uncertainty in box friction parameters (this feeively process noise).
This eventually triggers termination of the second trajectThe third plan is cre-
ated based on a new estimate of box locations and executesairsg motion in
front of the boxes is expected to enable the algorithm tdilethe boxes with high
confidence.
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Fig. 8 “Easy” and “hard” experimental contingencies. (a) shows imadéken12 randomly se-
lected “easy” configurations (both box configurations chosemomly) superimposed on each
other. (b) shows images of the 12 randomly selected “hard” comdfigums (boxes abutting each
other). (c) and (d) are plots of error between the maximum a postcalization estimate and
the true box pose. Each line denotes a single trial. The red “Xksndenote localization error at
algorithm termination.

6.2 Localization Performance

At a high level, the objective of SLAG is to robustly localiaed grasp objects even
when the pose or shape of those objects is uncertain. Werpestba series of ex-
periments to evaluate how well this approach performs wisex to localize boxes
that are placed in initially uncertain locations. On eachsgrtrial, the boxes were
placed in a uniformly random configuration (visualized imgliies 8(a) and (c)).
There were two experimental contingencies: “easy” anddhdn the easy contin-
gency, both boxes were placed randomly such that they weentially separated
by a gap. The right box was randomly placed in ax1B6 cm region over a range
of 15 degrees. The left box was placed uniformly randomly 2@& 20 cm region
over 20 degrees measured with respect to the right box Eig(&)). In the hard
contingency, the two boxes were pressed against each otti¢he pair was placed
randomly in a 13< 16 cm region over a range of 15 degrees (Figure 8(b)).
Figures 8(c) and (d) show right box localization error asrecfion of the num-
ber of updates to the histogram filter since the trial statttrials were performed
in each contingency. Each blue line denotes the progressioigée trial. The ter-
mination of each trial is indicated by the red “X” marks. Eaainor trajectory is
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referenced to the ground truth error by measuring the disthetween the final po-
sition of the paddle tip and its goal position in the left carof the right box using
a ruler. There are two results of which to take note. Firstirills terminate with
less than 2 cm of error. Some of this error is a result of thesepdiscretization
of possible right box positions in the histogram filter (natso the discreteness of
the error plots). Since the right box position bin size in liigtogram filter is 12
cm, we would expect a maximum error of at least &m. The remaining error is
assumed to be caused by errors in the range sensor or theatimemodel. Sec-
ond, notice that localization occurs much more quickly éyefly in less than 100
filter updates) and accurately in the easy contingency, wihetboxes are initially
separated by a gap that the filter may used to localize. Irasmtaccurate local-
ization takes longer (generally between 100 and 200 filtelatgs) during the hard
contingency experiments. Also error prior to accurate llgation is much larger
reflecting the significant possibility of error when the bexee initially placed in
the abutting configuration. The key result to notice is tvanethough localization
may be difficult and errors large during a “hard” contingerady/trials ended with
a small localization error. This suggests that our algaritiermination condition
in step 1 of Algorithm 1 was sufficiently conservative. Alsotice that the algo-
rithm was capable of robustly generating information gatttgtrajectories in all of
the randomly generated configurations during the “hardtiogencies. Without the
box pushing trajectories found by the algorithm, it is likéhat some of the hard
contingency trials would have ended with larger local@aterrors.

7 Discussion

Creating robots that can function robustly in unstructuedronments has always
been a central objective of robatics. In order to achievs, tihis necessary to de-
velop algorithms capable of actively localizing the statehe world while also
reaching task objectives. We introduce an algorithm thiaieses this by planning in
belief-space, the space of probability distributions dherunderlying state space.
Crucially, our approach is capable of reasoning aboutdtajes through a non-
Gaussian belief-space. The fact that we can plan effegtiveh-Gaussian belief
spaces makes our algorithm different than most other bsgfiate planning algo-
rithms currently in the literature. The non-Gaussian asjgessential because in
many robot problems it is not possible to track belief stateuaately by project-
ing onto an assumed Gaussian density function (this is the, éar example, in the
two-box example described in this paper). This paper pesvia novel sufficient
condition for guaranteeing that the probability of the tstate found by the Bayes
filter increases (Lemma 1). We show that our algorithm méetsd conditions and,
as a result, converges to the true state with probability(@heorem 1). Although
our theoretical results hold only under strict conditioosy experiments indicate
that the algorithm performs well in practice. We empirigalharacterize the effect
of changing the number of samples used to parametrize tobeithign on the result-
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ing solution quality. We find that algorithm performance &arly optimized using

very few (between two and nine) samples and that, as a rédselplanning step in

our algorithm is computationally efficient. Finally, weu#itrate our approach in the
context of a robot grasping problem where a robot must sanebusly localize and
grasp and object that is known only to be found somewhereint fsf the robot.
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Appendix

Lemmad. If ||x]|Z > 62, ||6]|% < €2, and @ > ¢, then||x— 5|3 > (6 — €)?, where
x,0 €R", 0, e R, and A= AT >0,

Proof. By the triangle inequality, we haviex||a < ||]|a+ |[x— d||a. Rearranging,
this becomegx — d||a > ||X||a— [|9]|a. We obtain the conclusion by squaring both
sides and substituting ande.

Lemma5. If f(x) = (f1(x),..., fa(x))" is a vector-valued function with Jacobian
matrix F, and each scalar-valued componenthfs a Hessian matrix with a max-
imum eigenvalue of¢, thenvx € 27,0 € By(r),

r4a2
2 f 2
IT(x+8) = P(x,6)la < —~ I3,

wherel is a column vector of n ones,(Rd) = f(X) + F(x)0 is the first-order
Taylor expansion of, Aa is the maximum eigenvalue of A, anglB is the r-ball in
dimension n.

Proof. For alli € [1,n], the Taylor remainder iB(x,d) = f (x+ d) — P(x,d). By the
Taylor remainder theorem, we know tHE(x, d)| < %(STQ J, whereG; is the Hes-
sian off;. Notice thatvd € By(r), 87Ci8 < r2As. LetR(x,8) = (Ry(x, 8),...Ra(x,8))".

4A2
Then|R(x,8)|% < rTf||1||E\ and we have the conclusion.



