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Abstract One of the main challenges in solving partially observable control prob-
lems is planning in high-dimensional belief spaces. Essentially, it is necessary to
plan in the parameter space of all relevantprobability distributionsover the state
space. The literature has explored different planning technologies including trajec-
tory optimization [8, 6] and roadmap methods [12, 4]. Unfortunately, these methods
are hard to use in a receding horizon control context. Trajectory optimization is
not guaranteed to find globally optimal solutions and roadmap methods can have
long planning times. This paper identifies a non-trivial instance of the belief space
planning problem that is convex and can therefore be solved quickly and optimally
even for high dimensional problems. We prove that the resulting control strategy
will ultimately reach a goal region in belief space under mild assumptions. Since
the space of convex belief space planning problem is somewhat limited, we extend
the approach using mixed integer programming. We propose tosolve the integer
part of the problem in advance so that only convex problems need be solved during
receding horizon control.

1 Introduction

The problem of controlling partially observable systems isextremely important in
general and is particularly important in robotics. In partially observable systems,
noisy and incomplete measurements make it hard to estimate state accurately. For
example, it can be very challenging for a manipulation robotto estimate the position
of objects to grasp accurately using laser, visual, or tactile data. Similarly, it can be
difficult for an autonomous air or land vehicle to localize itself based on noisy range
bearings to features in the environment. Since state is never known exactly in these
problems, the objective of control should be to maximize theprobability that the
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robot achieves its goals. These problems are frequently solved using planning and
control inbelief space, the space of probability distributions over an underlyingstate
space. The solutions frequently involve strategies for actively gathering information
in order to better localize state. This is in contrast to fully observable problems
where, since state is fully observed, the only objective is to reach a goal state.

One of the challenges in controlling a partially observablesystem in belief space
is that since belief space can be very high-dimensional, it can be difficult to compute
a policy. In fact, finding optimal policies for Markov partially observable problems
has been shown to be PSPACE-complete [7]. An alternative is to compute and ex-
ecute plans instead and re-plan when necessary. However, inorder for this to be
effective, it is necessary to have the ability to re-plan quickly. This is because be-
lief space dynamics can be very stochastic; a single observation can “convince” the
system that it needs to adjust its belief state significantly(i.e. sequential Bayesian
filtering can adjust its belief state estimate significantlybased on only one or two
observations). When this happens, the old plan becomes irrelevant and a new plan
must be found. Unfortunately, most current belief space planning approaches are
not fast enough to use in the inner loop of a receding horizon controller [8, 6, 12].
Moreover, most current approaches to belief space planningare based on assuming
that belief space is Gaussian – that is, that belief state is always well-represented
by a Gaussian [12, 14, 4, 11]. Unfortunately, this is not the case for many common
robotics problems occuring in robot navigation or manipulation where multi-modal
distributions are more common. In these situations, the Gaussian assumption can
result in plans that are arbitrarily bad.

This paper proposes formulating the belief space planning problem as a convex
program that is appropriate for receding horizon control. This is important for two
reasons. First, since convex programs can be solved quicklyand accurately in gen-
eral, the method is fast enough for receding horizon control. Second, solutions to
convex programs are guaranteed to be globally optimal. Thisis important because
it enables us to guarantee that receding horizon control converges in the limit to a
goal region in belief space as long as a path to the goal regionexists. In this paper,
we constrain ourselves to considering only linear systems with state-dependent ob-
servation noise. Although we are assuming a linear system, it should be noted that
this problem setting is fundamentally different from the linear quadratic Gaussian
(LQG) setting [2] because observation noise is state dependent. This one difference
means that the certainty equivalence principle [2] does notapply. To our knowledge,
this is the first belief space control strategy for systems with state dependent noise
for which a such a convergence guarantee can be made. After introducing the basic
convex formulation, this paper introduces an approach to using mixed integer pro-
gramming to solve non-convex problems comprised of a small number of convex
“parts”. Although it can take significantly longer to solve amixed integer program
than a convex program, this does not affect our on-line performance since the mixed
integer program may be solved ahead of time and the integer variables fixed. We
simulate our algorithm in the context of standard mobile robot localization and nav-
igation problems where features in the environment make observations more or less
noisy in different parts of the environment.
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2 Problem Statement

We consider a class of Markov partially observable control problems where state,
x ∈ Rn, is not observed directly. Instead, on each time step, the system takes an
action,u ∈ Rl , and perceives an observation,z∈ Rm. The process dynamics are
linear-Gaussian of the form,

xt+1 = Axt +But +vt , (1)

whereA andB are arbitrary, andvt is zero-mean Gaussian noise with covarianceV.
The observation dynamics are of the form,

zt = xt +qt(xt), (2)

whereqt(xt) is zero-mean Gaussian noise with state-dependent covariance,Q(xt).
Notice that the presence of non-uniform observation noise invalidates the certainty
equivalence principle [2] and makes this problem fundamentally different than the
standard linear quadratic Gaussian (LQG) problem. In orderto solve this problem
using the convex formulation proposed in this paper, we require Q(x)−1 to be piece-
wise matrix convex inx (matrix convexity implies thata′Q(x)−1a is a convex func-
tion for any constant vector,a). In addition, we require all feasible trajectories to
adhere to a chance constraint that bounds the probability that the system collides
with an obstacle on a given time step. LetO1, . . . ,Oq ⊂ Rn be a set ofq polyhedral
regions of state space that describe the obstacles. The probability that the system is
in collision with an obstacle at timet is constrained to be less thanθ :

P
(

xt ∈ ∪q
n=1On

)

≤ θ . (3)

The objective of control is to reach a radius around a goal state,xg, with high prob-
ability. Let bt(x) = P(x|u1:t−1z1:t) denotebelief state, a probability distribution over
system state that represents the state of knowledge of the system and incorporates
all prior control actions,u1:t−1, and observations,z1:t . Our objective is to reach a
belief state,b, such that

Θ(b, r,xg) =
∫

δ∈Bn(r)
b(δ +xg)≥ ω, (4)

whereBn(r) = {x∈ Rn,xTx≤ r2} denotes ther-ball in Rn for somer > 0, andω
denotes the minimum probability of reaching the goal region.
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3 Belief Space Planning

3.1 Non-Gaussian belief space planning

We build upon a framework for non-Gaussian belief space control introduced in our
prior work [8]. We use a receding horizon control strategy where planning and track-
ing occurs using different representations of belief state. Plans are created using a
particular version of Bayesian filtering known as sequential importance sampling
(SIS) [1]. However, belief state tracking occurs using a more accurate implementa-
tion of Bayesian filtering,G, that can be arbitrary. For concreteness, suppose that
G is a histogram filter or a standard particle filter (SIR) [1]. At time t, the belief
state,bt(x), is approximated by a set ofk support pointsx1:k

t = x1
t , . . . ,x

k
t and the

corresponding un-normalized weights,w1:k
t :

bt(x)≈
k

∑
i=1

wi
tδ (x−xi

t), (5)

whereδ (x) denotes the Dirac delta function ofx. As the number of samples,k,
goes to infinity, this approximation becomes exact. When the system takes an ac-
tion and perceives a new observation, SIS can be used to calculate the new belief
state in two steps: the process update and the measurement update. Given a new
action,ut , the process update samples the support points at the next time step from
the process dynamics,xi

t+1 ∼ N(Axi
t +But ,V), whereN(µ ,Σ) denotes the normal

distribution with mean,µ , and covariance matrix,Σ . Given a new observation,zt+1,
the measurement update adjusts the weight of each point according to the observa-
tion dynamics:wi

t+1 = wi
tN(zt+1−xt+1,Q(xt+1)), where we have used the fact that

E [zt+1] = xt+1 (Equation 2). In this paper, we will track un-normalized weights and
write the above measurement update as:

wi
t+1 = wi

t exp
(

−‖zt+1−xt+1‖2Q(xt+1)

)

, (6)

where‖x‖2Q = x′Q−1x denotes the L2 norm ofx weighted byQ−1.
In order to plan in belief space, it is necessary to make assumptions regarding

the content of future process noise and future observations. Following our prior
work [8], we assume, for planning purposes only, that futureobservations will be
generated as if the system were actually in the currently most likely state. The obser-
vation at timeτ > t is predicted to bezτ = x1

τ (recall the unit observation dynamics
of Equation 2), wherex1

τ denotes the state at timeτ > t corresponding to the most
likely state at timet, x1

t = argmaxx∈Rn bt(x), after executing some sequence of ac-
tions. Later in the paper, we show that this assumption enables us to prove that
the receding horizon control algorithm converges in the limit to a goal region in
belief space. Algorithm 1 illustrates the complete replanning algorithm. Following
our prior work in [8], we track belief state usingG, an accurate implementation
of sequential Bayesian filtering that is different than thatused during planning.G
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Input : initial belief state,b1, goal state,xg, planning horizon,T, and belief-state update,G.
t← 1;1
while Θ(bt , r,xg)< ω do2

x1
t ← argmaxx∈Rn bt(x);3

∀i ∈ [2,k],xi
t ∼ bt(x) : bt(xi)≥ ϕ;4

J1:T−1,uT−1 = ConvexPlan(bt ,x1
t , . . . ,x

k
t ,xg,T);5

for τ ← 1 to T−1 do6
execute actionuτ , perceive observationzτ+1;7
bτ+1←G(bt+τ−1,uτ ,zτ+1);8
if Jτ < ρ then9

break10
end11

end12
t← t + τ;13

end14

Algorithm 1: Receding horizon belief space control algorithm.

computes the next belief state,bt+1, given that actionut is taken from belief state,bt

and observationzt+1 is made:bt+1 = G(bt ,ut ,zt+1). Steps 3 and 4 select the support
points. Step 5 computes a belief space plan as described in the next section. The
plan is represented by the action sequence,uT−1 = (u1, . . . ,uT−1), and the sequence
of partial plan costs,J1:T−1 = (J1, . . . ,JT−1). Steps 6 through 12 execute the plan.
Step 9 breaks execution if at any point the partial plan cost drops below a threshold,
ρ . The outerwhile loop executes until the belief space goal is satisfied. Laterin this
section, we give conditions under which this is guaranteed to occur.

3.2 Convex Formulation

The question remains how to solve the planning problem. We identify a class belief
space trajectory planning problems that can be expressed asconvex programs and
solved using fast, globally optimal methods. Upon first approaching the problem,
one might identify the following problem variables:xi

τ , wi
τ , anduτ , for all τ ∈ [t, t+

T] and i ∈ [1,k]. However, notice that the weight update in Equation 6 is a non-
convex equality constraint. Since we are interested in identifying a convex version
of the problem, we express the problem in terms of the log-weights,yi

τ = log(wi
τ)

rather than the weights themselves. Equation 6 becomes:

yi
τ+1 = yi

τ −‖x1
τ+1−xi

τ+1‖2Q(x1
τ+1)

. (7)

The second term above appears to be bi-linear in the variables. However, because
we have assumed linear process dynamics, we have:

xζ
t+τ −xi

t+τ = Aτ(x1
t −xi

t),
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wherexi
t , i ∈ [1,k] are the support points for the prior distribution at timet and there-

fore constant. As a result, the second term of Equation 7 is convex whenQ(x)−1 is
matrix concave inx. However, in order to express the problem in convex form, all
convex constraints must be inequality constraints, not equality constraints. There-
fore, we relax the constraint to become:

yi
τ+1≥ yi

τ −‖Aτ(x1
t −xi

t)‖2Q(x1
t+τ)

. (8)

The objective is to reach a belief state at timet +T such that Equation 4 is satisfied.
This is accomplished by minimizing the average log weight,

J(t +T) =
1
k

k

∑
i=1

yi
t+T . (9)

The problem becomes:

Problem 1.

Minimize
1
k

k

∑
i=1

yi
t+T +α

T−1

∑
τ=1

uT
t+τut+τ (10)

subject to xi
τ+1 = Axi

τ +Buτ , i ∈ [1,k]

yi
τ+1≥ yi

τ −‖Aτ(x1
t −xi

t)‖Q
(

xζ
τ+1

)

xi
t = xi ,wi

t = 1, i ∈ [1,k]

x1
t+T = xgoal.

α is intended to be a small value that adds a small preference for shortest-path
trajectories. It turns out that because the1

k ∑k
i=1yi

T term is part of the objective and
the quadratic action cost term is never affected byyi

T , that the relaxed inequality
constraint on the log-weights (Equation 8) is always active(ı.e. it is tight). As a
result, there is effectively no relaxation. All solutions found to Problem 1 will satisfy
the equality constraint in Equation 6. Problem 1 is a convex program whenQ(x)−1

is matrix concave. When Algorithm 1 executes the convex plan in step 5, we mean
that it solves an instance of Problem 1.

3.3 Examples: Single Beacon Domains

For example, Figure 1 illustrates the solution to Problem 1 for the a variant on the
“light-dark” domain introduced in [11]. The cost function in this problem (Equa-
tion 10) usesα = 0.4. In this problem, the process dynamics have unit transition
matrices,A= I andB= I in Equation 1, with Gaussian process noise with a vari-
ance of 0.01. The observation dynamics are defined in Equation 6 with the following
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(a) (b)

Fig. 1 Solution to the light-dark problem found using convex optimization. The magenta “x”s
denote the support points in the initial (a) and final (b) distributions that had above average weight.
The distribution is represented by 1000 support points. Entropyof the distribution is clearly much
lower in (b) than it is in (a).

hyperbolic state dependent noise,Q(x) = 1/(1+2x), x≥ 0. The observation noise
is illustrated by the shading in Figure 1. Noise is relatively high on the left side of
state space and relatively small on the right. The system starts in an initial belief
state described by a mixture of two Gaussians with means(1.75,0) and(2,0.5) and
equal variances of 0.0625. The distribution is represented by a set of 1000 support
points. The solid blue line in Figure 1 denotes the planned trajectory of the hypoth-
esis sample starting at the cyan circle and ending in the cyan“x” mark. For the
hyperbolic observation noise given above, Problem 1 becomes a quadratic program.
We solved it (parametrized by 1000 support points) using theIBM ILOG CPLEX
Optimizer version 12.3 in 0.08 seconds on a dual-core 2.53GHz Intel machine with
4G of RAM. The magenta “x” marks show the locations of the importance samples
with weights greater than or equal to the average. Initially(Figure 1(a)), the sampled
distribution has a high entropy. However, entropy drops significantly so that by the
end of the trajectory (Figure 1(b)), entropy is much lower.

(a) (b)

Fig. 2 Single-beacon problem solved for two different cost functions. (a) shows a solution found
using a cost function (Equation 10) withα = 1. (b) shows the solution found with a cost parameter
α = 5. The magenta “x”s denote the support points in the initial distribution.
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The single-beacon domain is another example of a convex belief space planning
problem. In this problem, the covariance of observation noise is a function of the L2
distance from a single point in state space (i.e. the beacon). Figure 2 illustrates the
solution to this problem. The beacon is located atxbeacon= (2,1.5)′. The covariance
of the observation noise varies as a hyperbolic function of the L2 distance from
the beacon center:Q(x) = 1/(6−‖x−xbeacon‖2), ‖x−xbeacon‖2 < 6. For this noise
function, Problem 1 can be expressed as a second order cone program where the
constraint on the domain ofx is interpreted as a second order cone constraint on
the positions of all the support points. We solved this program using CPLEX in less
than one second for a distribution with 100 support points.

3.4 Analysis of algorithm convergence

For systems with deterministic process dynamics, it is possible to show that Al-
gorithm 1 reaches a goal region of belief space in the limit aslong as a feasible
horizon-T path with costJ≤ ρ exists from any starting configuration,x1 ∈ Rn, and
as long as the implementation of Bayesian filtering,G, used in the algorithm is suf-
ficiently accurate. LetFu(x) = (x1, . . . ,xT) denote the sequence ofT states reached
after taking actions,u = (u1, . . . ,uT−1), starting from statex1 = x. Let

qx,u(z) = N(z|Fu(x),Q(x)) (11)

be the probability of making the observations,z = (z1, . . . ,zT), given that the sys-
tem starts in statex and takes actions,u, whereQu(x) = diag(Q(x1), . . . ,Q(xT)),
(x1, . . . ,xT) = Fu(x) denotes the block diagonal matrix comprised of the covariance
matrices of observation noise on each time step. Let

pb,u(z) =
∫

x∈Rn
b(x)qx,u(z) (12)

be the probability of the observations givenu marginalized overb. Our analysis
is based on the following two lemmas that are adapted from [10] and stated here
without proof.

Lemma 1. Suppose we are given an arbitrary sequence of T−1 actions,u, an ar-
bitrary initial state, x1 ∈ Rn, and an arbitrary initial distribution, b1. Then, the ex-
pected probability of xT , where(x1, . . . ,xT) =Fu(x), found by recursively evaluating
the deterministic Bayes filter update T−1 times is

Ez

{

bT(xT)

b1(x1)

}

≥ exp
(

D1(qκ ,u, pb1,u)−D1(qκ ,u,qx,u)
)

,

whereκ denotes the true state at time t and D1 denotes the KL divergence between
the arguments.
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It is possible to bound the KL divergence between the two distributions,qκ ,u and
pb1,u using the following lemma.

Lemma 2. Suppose we are given a partially observable system with state depen-
dent noise that satisfies Equation 2, an arbitrary sequence of T actions,u, and
a distribution, b1. Suppose∃Λ1,Λ2 ⊆ Rn such that∀x1,x2 ∈ Λ1×Λ2,‖Fu(x1)−
Fu(x2)‖2Qu(x2)

≥ ε2 and
∫

x∈Λ1
b1(x)≥ γ,

∫

x∈Λ2
b1(x)≥ γ. Then

min
y∈Rn

D1(qy,u, pb1,u)≥ 2η2γ2
(

1−e−
1
2ε2

)2
,

whereη = 1/
√

(2π)n|Qu(x2)| is the Gaussian normalization constant.

In order to apply Lemma 2, it is necessary to identify regions, Λ1,Λ2 ⊆ Rn and
a ε such that∀x1,x2 ∈Λ1×Λ2,‖Fu(x1)−Fu(x2)‖2Qu(x2)

≥ ε2. Below, we show that
these regions always exist for action sequences with a sufficiently small associated
cost,J(t +T) (Equation 9).

Lemma 3. Given a linear-Gaussian system with state dependent noise that satisfies
Equations 1 and 2 and a set of k initial support points and weights, xi1, i ∈ [1,k] and
wi

1, i ∈ [1,k], let u be a sequence of T−1 actions with cost J= 1
k ∑k

i=1 logwi
T . Then,

∃ j ∈ [1,k] such that∀r ∈ R+,∀δ1,δ2 ∈ Bn(r):

‖Fu(x
1
1+δ1)−Fu(x

j
1+δ2)‖2

Qu(x
j
1)
≥
[√
−J−2r

√
λ
]2

,

where Bn(r) = {x ∈ Rn;xTx ≤ r2}, and λ denotes the maximum eigenvalue of
GTQu(xi

1)
−1G where G= (I(A)T(A2)T . . .(AT−1)T)T .

Proof. A costJ implies that there is at least one support point,j ∈ [1,k], such that

logw j
T ≤ J. This implies that

∥

∥

∥
G(xζ

1 −x j
1)
∥

∥

∥

2

Qu(x
j
1)
≥ J. Also, we have that∀δ1,δ2 ∈

Bn(r), ‖G(δ1+δ2)‖2Qu(x
j
1)
≤ 4r2λ . Applying Lemma 4 in [9] gives us the conclusion

of the Lemma.

In order to show convergence of Algorithm 1, we show that the likelihood of a
region about the true state increases by a finite amount on each iteration of the outer
while loop. Our proof only holds for deterministic systems (however, experimental
evidence suggests that the approach is applicable to stochastic systems).

Theorem 1. Suppose we have:

1. a system described by Equations 1 and 2 where the process dynamics are re-
quired to be deterministic;

2. a prior distribution, b1;
3. a trajectory,uτ−1, defined over k≥ 2 support points with cost, Jτ−1.

If an exact implementation of Bayesian filtering were to track state while executing
u1:τ−1 resulting in a distribution at timeτ of bτ , then the probability of all states
within a ball of radius r about the true state is expected to increase by a factor of
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exp

[

2η2γ2
(

1−e−
1
2(
√− logJ−2r

√
λ)

2
)]

(13)

relative to its value at time1, whereη = 1/
√

(2π)n|Qu(x1
1)| is the Gaussian nor-

malization constant,γ = εVoln(r), Voln(r) is the volume of the r-ball in n dimen-
sions, andλ is the maximum eigenvalue of GTQu(xi

1)
−1G where G=(I(A)T(A2)T . . .(AT−1)T)T .

Proof. Lemma 3 gives us two samples,xi andx1 such that‖Fu(x1
1+ δ1)−Fu(x

j
1+

δ2)‖2
Qu(x

j
1)

is lower-bounded. Lemma 2 gives us a lower bound ofD1(qy, p) by set-

ting ε =
√− logJ− 2r

√
λ . Lemma 1 gives us the conclusion of the Theorem by

noting thatD1(qκ ,qx) = 0 whenx= κ .

Since Theorem 1 shows that the probability of a region about the true state increases
on each iteration of thewhile loop of Algorithm 1, we know that the algorithm even-
tually terminates in the belief space goal region, as statedin the following Theorem.

Theorem 2. Suppose we have the system described by Equations 1 and 2 where the
process dynamics are deterministic. Suppose that∀x,xg ∈ Rn, there always exists a
solution to Problem 1 from x to xg such that JT < ρ < 0. Then Algorithm 1 reaches
the goal region of belief space and terminates with probability 1 when a sufficiently
accurate implementation of Bayesian filtering is used to track belief state.

Proof. Since the convex planner is globally optimal, we know that itwill find a
feasible plan withJt < 0 if one exists. According to Theorem 1, this implies that the
likelihood of anr-ball for somer ∈ R+ about the true state is expected to increase
by a finite amount on each iteration of thewhile loop. Eventually, the goal region
must contain at leastω probability mass and the algorithm terminates in the goal
region of belief space.

4 Non-Convex Observation Noise

The fact that some belief space planning problems can be solved efficiently as a con-
vex program is important because it suggests that it might also be possible to solve
efficiently non-convex problems comprised of a small numberof convex parts. One
way to accomplish this is to use mixed integer programming. Although integer pro-
gramming (IP) is an NP-complete problem, there are branch-and-bound methods
available that can be used to efficiently solve problems with“small” numbers of
integer variables with good average-case running times. Moreover, since the com-
plexity of the IP is insensitive to the dimensionality of theunderlying state space or
the belief space representation, this method can be used to solve high dimensional
planning problems that cannot be solved in other ways.
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4.1 Mixed Integer formulation

Suppose that state space containsq non-overlapping convex polyhedral regions,
R1∪ ·· · ∪Rq ⊂X such thatQ(x)−1 is matrix concave in each region. In partic-
ular, suppose that,

Q(x) =



















Q1(x) if x∈ R1
...

Qq(x) if x∈ Rq

Qb(x) otherwise

whereQ−1
j , i ∈ [1,k] is the convex noise function in regionRj andQb is the “back-

ground” noise function. For this noise function, Problem 1 is non-convex. To solve
the problem using mixed integer programming, we define 2× q× (T − 1) binary
variables:γ j

t and λ j
t , ∀ j ∈ [1,q], t ∈ [1,T − 1]. These binary variables can be re-

garded as bit-vectors,γ j
1:T−1 andλ j

1:T−1, that denote when the hypothesis state en-
ters and leaves regionj. Each bit-vector is constrained be to all zero, all one, or
to change from zero to one exactly once. This representationof the transition time
from one region to the next uses extra bits but will make it easier to express the con-
straints in the following. The time step on whichγ j

1:T−1 transitions from zero to one
denotes the time when the hypothesis state enters regionj. Similarly, the time step
on whichλ j

1:T−1 transitions from zero to one denotes the time when the hypothesis
state leaves regionj. These constraints on the form of the bit-vectors are expressed:
γ j
t+1≥ γ j

t , ∀ j ∈ [1,q], t ∈ [1,T−1] andλ j
t+1≥ λ j

t , ∀ j ∈ [1,q], t ∈ [1,T−1]. We also
constrain the system to enter and leave each region exactly once and that the times
when the hypothesis state is within different regions must be non-overlapping. This
constraint is:λ j

1:T−1 ≤ γ j
1:T−1, ∀i ∈ [1,q]. The constraint that the regions are non-

overlapping in time (the hypothesis state may not be in two regions at once) is:
∑q

j=1(γ
j
1:T−1−λ j

1:T−1)≤ 1.
Now that the constraints on the bit-vectors themselves havebeen established, we

need to make explicit the relationship between the bit-vectors and the distribution,
bt(x), encoded by the sample points and weights. First, we need to constrain the
hypothesis state to be within the regionRj whenγ j

t − λ j
t = 1. Suppose that each

region,Rj , is defined by at set ofµ j hyperplanes,r1
j , . . . , r

µ j
j , such thatx ∈ r j iff

(rm
j )
′x≤ b j , ∀m∈ [1,µ j ]. Whenγ j

t − λ j
t = 1, we enforce atx j

t ∈ Rj using the so-
called “big-M” approach [13]:

∀m∈ [1,µ j ], (rm
j )
′xζ

t ≤ b j +M(1− (γ j
t −λ j

t )), (14)

whereM is defined to be a scalar large enough to effectively relax theconstraint.
Also, when the hypothesis state is in a given region, we need to apply the corre-
sponding noise constraint. That is, whenγ j

1:T−1− λ j
1:T−1 = 1, we need to apply a

constraint of the form of Equation 8. This is also accomplished using the big-M
approach:



12 Robert Platt Jr.

yi
t+1≥ yi

t −‖At(xζ
1 −xi

1)‖Q j

(

xζ
t+1

)−M(1− (γ j
t −λ j

t )). (15)

When the hypothesis state is outside of all regions, then the background noise model
is applied:

yi
t+1≥ yi

t −‖At(xζ
1 −xi

1)‖Qb

(

xζ
t+1

)−M(
q

∑
j=1

(γ j
t −λ j

t )). (16)

4.2 Example: Multi-Beacon Domain

(a) (b)

Fig. 3 Multi-beacon problem. Three beacons are located at the centers of each of the white regions.
Observation noise is proportional to the shading in the figure: lower about the beacons and higher
further away. (a) and (b) illustrate the trajectories found by the planner in two scenarios where the
beacons are placed in slightly different configurations.

We have explored the mixed-integer approach in the context of a multi-beacon
localization problem. This problem is essentially a combination of three convex
single-beacon problems and is illustrated in Figure 2. The scenario is as follows:
a maneuverable aerial vehicle (such as a mini quad-rotor) isflying through the
environment. The objective is to reach a neighborhood around a designated posi-
tion with high confidence. Localization information is provided by beacons scat-
tered throughout the environment. At each time step, the beacons report an esti-
mate of the vehicle’s position. The covariance of these estimates is state depen-
dent: noise is small near the beacons but large further away.The covariance noise
function is similar to that used in the single beacon domain,but it uses an L1
norm instead of an L2 norm. If the L1 distance between the system and any bea-
con,x j

beacon, j ∈ [1,q], is less than one (‖x− x j
beacon‖1 < 1), then the covariance of
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observation noise is:Q j(x) = 1/(1+ ρ −‖x− x j
beacon‖1), whereρ = 0.01. When

‖x−x j
beacon‖1 > 1,∀ j ∈ [1,q], observation noise is constant and equal to 1/ρ .

The sampled distribution was comprised of 8 samples. The prior distribution was
sampled from a Gaussian with a standard deviation of 0.25. The trajectory was 24
time steps long. The cost function in this experiment usedα = 0.25. The experi-
ment used a variation of the bit-vector strategy described above where each bit was
associated with four adjacent time steps. As a result, each obstacle was associated
with two bit-vectors that were each 6 bits long. In total, there were 36 binary vari-
ables in the problem. The resulting problem was a mixed integer quadratic program
(MIQP). As in the light-dark experiment, we solved it using IBM CPLEX on a dual-
core 2.53GHz Intel machine with 4G of RAM. It took roughly 30 second to solve
each of the MIQPs in this section.

The results are illustrated in Figure 3. The shading in the figure denotes the ob-
servation noise about each beacon. We performed the experiment for two different
contingencies where the beacons were arranged slightly differently. In the first, Fig-
ure 3(a), the upper right beacon was positioned closer to thegoal whereas in the
second, Figure 3(b), the upper right beacon was positioned further away. Notice the
effect on the resulting solution. The position of this second beacon influences the
direction of the entire trajectory and illustrates that theMIQP is finding globally
optimal solutions to Problem 1.

5 Chance Constraints

Chance constraints are an important part of belief space planning. It is assumed
that obstacles are present in the state space that are to be avoided. The probability
that the planned trajectory will cause the system to collidewith an obstacle on any
given time step is constrained to be less than a desired threshold. One approach
to finding feasible trajectories, introduced by [13], is to use mixed integer linear
programming in the context of polyhedral obstacles. However, the large number of
integer variables needed results in a large integer programthat can be difficult to
solve. A key innovation, known as iterative deepening [5], improves the situation
dramatically by adding constraints and integer variables as needed rather than all
at once. This helps because most constraints in obstacle avoidance problems are
inactive – they can be removed without affecting the solution. Blackmore has used
this idea to solve chance constrained problems where beliefstate is represented
by unweighted support points and where there are no observations [3]. The key
innovation of this section is to extend this approach to avoiding obstacles to partially
observable problems where sensing is active.

Our problem is to find a plan such that on every time step, the probability that
the system has collided with an obstacle is less than a threshold, θ . If there areq
polyhedral obstacles,O1, . . . ,Oq, then this condition is (Equation 3):

P
(

x∈ ∪q
j=1O j

)

≤ θ .
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Suppose that each obstacle,j ∈ [1,q], is defined byν j hyperplanes where themth

hyperplane has a normalom
j and an interceptcm

j . The condition that support point
i be outside them hyperplane in obstaclej is (om

j )
Txi

t ≤ cm
j . The condition that the

normalized weight of support pointi be less thanθ/k is:

exp(yi
t)

∑k
n=1exp(yn

t )
≤ θ

k
. (17)

If the weight of each support point that is inside an obstacleis less thanθ/k, then
we are guaranteed that the total weight of the contained support points is less than
θ . Unfortunately, since Equation 17 turns out to be a concave constraint, we cannot
directly use it. Instead, we note that a simple sufficient condition can be found using
Jensen’s inequality:

yi
t ≤ log(θ)+

1
k

k

∑
n=1

yn
t . (18)

At this point, we are in a position to enumerate the set of constraints for all possible
time steps, support points, obstacles, and obstacle hyperplanes. However, since each
of these constraints is associated with a single binary variable, it is infeasible to solve
the corresponding integer program for any problem of reasonable size. Instead, we
use iterative deepening to add only a small set of active constraints.

Iterative deepening works by maintaining a set of active constraints. Initially, the
active set is null. On each iteration of iterative deepening, the optimization problem
is solved using the current active set. The solution is checked for particles that in-
tersect an obstacle with a weight of at leastθ/k. Violations of the obstacle chance
constraint are placed in a temporary list that contains the time step and the sample
number of the violation. The violations are ranked in order of the amount by which
they penetrate the obstacle. Constraints (and the corresponding binary variables) are
added corresponding to the most significant violation. If sample i collided with ob-
staclej at timet on a particular iteration of iterative deepening, we createν j +1 new
binary variables,ψ i, j,m

t ,m∈ [1,ν j +1]. Essentially, theseν j +1 binary variables en-
able us to formulate the following OR condition: either the sample is feasible for
some hyperplane,m∈ [1,ν j ] (indicating the point is outside of the obstacle), or
Equation 18 is true (indicating a below-threshold weight).Using the “big-M” ap-
proach, we add the following constraints:

ν j+1

∑
m=1

ψ i, j,m≥ 1, (19)

(om
j )

Txi
t ≤ cm

j +M(1−ψ i, j,m),m∈ [1,ν j ], (20)

and

yi
t ≤ log(θ)+

1
k

k

∑
n=1

yn
t +M(1−ψ i, j,ν j+1). (21)
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The constraint in Equation 19 forces at least one of theν j +1 binary variables to
be one. This forces at least one of the constraints in Equations 20 and 21 tonot
be relaxed. Essentially, the support point cannot be insideall faces of the obstacle
while also having a large weight. This process of adding constraints via iterative
deepening continues until no more violations are found. In principle, this procedure
could become intractable if it is necessary to add all possible constraints in order to
bring the violations list to null. In practice, however, this rarely happens.

(a) (b) (c) (d)

Fig. 4 Chance-constrained trajectories found on iterations 1 (a),3 (b), 9 (c), and 25 (d) of iterative
deepening. The obstacle is shown in cyan. The magenta “x”s show the initial distribution. The red
“x”s in collision with the obstacle show the list of chance constraint violations at that particular
iteration.

Figure 4 illustrates our approach to chance constraints in the presence of a single
obstacle. With the exception of the obstacle, the domain is nearly identical to the
light-dark domain in Section 3.3. The distribution is encoded using 32 weighted
samples. There are 24 time steps. The cost function and the state-dependent noise
are the same as those used in Section 3.3. The chance constraint threshold isθ = 0.1
– the probability that the system may be in collision with theobstacle cannot exceed
0.1 on a single time step. (The effective chance constraint maybe tighter because
of the sufficient condition found using Jensen’s inequality.) The sequence of sub-
figures in Figure 4 roughly illustrates progress on different iterations of iterative
deepening. Even though this problem requires 32×24×3= 2304 binary variables
in the worst case, we have found an optimal solution after adding only 25×3= 75
binary variables.

6 Conclusions

In this paper, we express the problem of planning in partially observable systems
as a convex program. Since convex programs can be solved quickly (on the order
of milliseconds) and with guaranteed convergence to globaloptima, this is makes
the approach suitable for receding horizon control. In consequence, we are able to
identify a new class of partially observable problems that can be solved efficiently
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and with provable correctness guarantees. We extend our approach to non-convex
problems using mixed-integer programming. Although we areusing integer pro-
gramming, the approach is still appropriate for real-time applications by solving
the integer part of the program in advance and optimizing theconvex part of the
program on-line.
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