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Abstract One of the main challenges in solving partially observabletio| prob-
lems is planning in high-dimensional belief spaces. Essigntit is necessary to
plan in the parameter space of all relevarabability distributionsover the state
space. The literature has explored different planningrteldyies including trajec-
tory optimization [8, 6] and roadmap methods [12, 4]. Unfogtely, these methods
are hard to use in a receding horizon control context. Trajgcptimization is
not guaranteed to find globally optimal solutions and rogom&thods can have
long planning times. This paper identifies a non-triviatémee of the belief space
planning problem that is convex and can therefore be soluézkly and optimally
even for high dimensional problems. We prove that the rigguttontrol strategy
will ultimately reach a goal region in belief space underdh@kssumptions. Since
the space of convex belief space planning problem is sontdimfited, we extend
the approach using mixed integer programming. We proposelie the integer
part of the problem in advance so that only convex probleresl e solved during
receding horizon control.

1 Introduction

The problem of controlling partially observable systemextremely important in

general and is particularly important in robotics. In pallyi observable systems,
noisy and incomplete measurements make it hard to estirtetteaccurately. For
example, it can be very challenging for a manipulation rabetstimate the position
of objects to grasp accurately using laser, visual, orleadata. Similarly, it can be
difficult for an autonomous air or land vehicle to localizeeif based on noisy range
bearings to features in the environment. Since state is tk@aosvn exactly in these
problems, the objective of control should be to maximize ghabability that the
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robot achieves its goals. These problems are frequentiedalsing planning and
control inbelief spacethe space of probability distributions over an underhstege
space. The solutions frequently involve strategies favelstgathering information
in order to better localize state. This is in contrast toyfudbservable problems
where, since state is fully observed, the only objective isaich a goal state.

One of the challenges in controlling a partially observayigtem in belief space
is that since belief space can be very high-dimensionaitae difficult to compute
a policy. In fact, finding optimal policies for Markov paliaobservable problems
has been shown to be PSPACE-complete [7]. An alternative ¢é®@mpute and ex-
ecute plans instead and re-plan when necessary. Howewverrglém for this to be
effective, it is necessary to have the ability to re-plarcilyi This is because be-
lief space dynamics can be very stochastic; a single obs@mvean “convince” the
system that it needs to adjust its belief state significafitty sequential Bayesian
filtering can adjust its belief state estimate significam#gsed on only one or two
observations). When this happens, the old plan becomesviarl and a new plan
must be found. Unfortunately, most current belief spacanileg approaches are
not fast enough to use in the inner loop of a receding horizotroller [8, 6, 12].
Moreover, most current approaches to belief space plararmfased on assuming
that belief space is Gaussian — that is, that belief stateniaya well-represented
by a Gaussian [12, 14, 4, 11]. Unfortunately, this is not thgecfor many common
robotics problems occuring in robot navigation or manigalawhere multi-modal
distributions are more common. In these situations, thes§ian assumption can
result in plans that are arbitrarily bad.

This paper proposes formulating the belief space plannioglem as a convex
program that is appropriate for receding horizon contrbisTs important for two
reasons. First, since convex programs can be solved quacklyaccurately in gen-
eral, the method is fast enough for receding horizon con8etond, solutions to
convex programs are guaranteed to be globally optimal. iEhirmportant because
it enables us to guarantee that receding horizon contralezges in the limit to a
goal region in belief space as long as a path to the goal renimts. In this paper,
we constrain ourselves to considering only linear systeitis state-dependent ob-
servation noise. Although we are assuming a linear systeshpuld be noted that
this problem setting is fundamentally different from theelar quadratic Gaussian
(LQG) setting [2] because observation noise is state dependhis one difference
means that the certainty equivalence principle [2] doespply. To our knowledge,
this is the first belief space control strategy for systenth wiate dependent noise
for which a such a convergence guarantee can be made. Aftediicing the basic
convex formulation, this paper introduces an approach ittggusiixed integer pro-
gramming to solve non-convex problems comprised of a smatilbrer of convex
“parts”. Although it can take significantly longer to solveréxed integer program
than a convex program, this does not affect our on-line pexdmce since the mixed
integer program may be solved ahead of time and the integables fixed. We
simulate our algorithm in the context of standard mobileotdbcalization and nav-
igation problems where features in the environment makerehons more or less
noisy in different parts of the environment.
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2 Problem Statement

We consider a class of Markov partially observable controbfems where state,

x € R", is not observed directly. Instead, on each time step, theesytakes an

action,u € R!, and perceives an observatiang R™. The process dynamics are
linear-Gaussian of the form,

X+1 = Ax +Bu + v, 1)

whereA andB are arbitrary, ang; is zero-mean Gaussian noise with covariavice
The observation dynamics are of the form,

z =X+ (%), )

whereq; (%) is zero-mean Gaussian noise with state-dependent coeari@(x).
Notice that the presence of non-uniform observation naigalidates the certainty
equivalence principle [2] and makes this problem fundawmdgndifferent than the
standard linear quadratic Gaussian (LQG) problem. In am@leolve this problem
using the convex formulation proposed in this paper, weired)x) ~* to be piece-
wise matrix convex irx (matrix convexity implies thaé'Q(x) *ais a convex func-
tion for any constant vectos). In addition, we require all feasible trajectories to
adhere to a chance constraint that bounds the probabibtytiie system collides
with an obstacle on a given time step. I@,...,Oq C R" be a set ofy polyhedral
regions of state space that describe the obstacles. Thalplipbthat the system is
in collision with an obstacle at timteis constrained to be less théin

P(% €Ul_,0n) < 6. (3)

The objective of control is to reach a radius around a go& stg with high prob-
ability. Letb;(x) = P(x|u1t—1211) denotebelief statea probability distribution over
system state that represents the state of knowledge of stensyand incorporates
all prior control actionspy 1, and observationg; 1. Our objective is to reach a
belief statep, such that

o(b,r, %) :./' b(3 +X%g) > , 4)

0€Bp(r)

whereBp(r) = {x € R",x"x < r2} denotes the-ball in R" for somer > 0, andw
denotes the minimum probability of reaching the goal region
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3 Belief Space Planning

3.1 Non-Gaussian belief space planning

We build upon a framework for non-Gaussian belief spacerobimtroduced in our
prior work [8]. We use a receding horizon control strategevdplanning and track-

ing occurs using different representations of belief stAtans are created using a
particular version of Bayesian filtering known as sequértigortance sampling
(SIS) [1]. However, belief state tracking occurs using aerecurate implementa-
tion of Bayesian filteringG, that can be arbitrary. For concreteness, suppose that
G is a histogram filter or a standard particle filter (SIR) [1}. thne t, the belief
state,by (x), is approximated by a set &fsupport points¢® = x,...,x¢ and the
corresponding un-normalized weightg,*:

k . N
500 = 3 WX ). )

where 6(x) denotes the Dirac delta function &f As the number of sampleg,
goes to infinity, this approximation becomes exact. When yisées takes an ac-
tion and perceives a new observation, SIS can be used tdat@¢he new belief
state in two steps: the process update and the measurenuaieu@iven a new
action,u;, the process update samples the support points at the mexstep from
the process dynamicg, ; ~ N(AX + Bu,V), whereN(y, X) denotes the normal
distribution with meany, and covariance matri®,. Given a new observatios,, 1,
the measurement update adjusts the weight of each pointdiicgdo the observa-
tion dynamicsw{Jrl = vv{N(th —%+1,Q(X+1)), where we have used the fact that
E[z+1] = %+1 (Equation 2). In this paper, we will track un-normalized glas and
write the above measurement update as:

W{+1 :VV{eXp(*||Zt+1*Xt+1”<22(xt+1)>’ ©

where||x||& = X'Q~!x denotes the L2 norm ofweighted byQ*.

In order to plan in belief space, it is necessary to make agsans regarding
the content of future process noise and future observatieolfowing our prior
work [8], we assume, for planning purposes only, that futlieervations will be
generated as if the system were actually in the currentlyt likedy state. The obser-
vation at timer > t is predicted to be; = x} (recall the unit observation dynamics
of Equation 2), where denotes the state at tinte> t corresponding to the most
likely state at timet, Xt = argmaxcgn bt (x), after executing some sequence of ac-
tions. Later in the paper, we show that this assumption esalx to prove that
the receding horizon control algorithm converges in thatlim a goal region in
belief space. Algorithm 1 illustrates the complete replagralgorithm. Following
our prior work in [8], we track belief state using, an accurate implementation
of sequential Bayesian filtering that is different than the¢d during plannings
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Input :initial belief statejo;, goal statexy, planning horizonT, and belief-state updat€,
1t«1;
2 whileO(b,r,xg) < wdo
3« argmaxegn b (X);

4 Vi€ [2,K,% ~ b (X) s b (X) > ¢;

5 JiT-1,Ur—1 = ConvexPl an( b, X, ..., X%, T) ;
6 for < 1toT—1do

7 execute actiowi;, perceive observation , 1;
8 bri1 < G(beyr-1,Ur,Zr41);

9 if Jr < p then

10 break

11 end

12 end

13 tt+r,

14 end

Algorithm 1: Receding horizon belief space control algorithm.

computes the next belief statg, 1, given that actiony; is taken from belief statéy
and observatiom 1 is madeby 1 = G(b,u,z1). Steps 3 and 4 select the support
points. Step 5 computes a belief space plan as describe@ inetkt section. The
plan is represented by the action sequeng¢e; = (uy,...,ur—1), and the sequence
of partial plan costs);t-1 = (J1,...,Jdr_1). Steps 6 through 12 execute the plan.
Step 9 breaks execution if at any point the partial plan cagtslbelow a threshold,
p. The outemwhile loop executes until the belief space goal is satisfied. Lint#is
section, we give conditions under which this is guaranteesttur.

3.2 Convex Formulation

The question remains how to solve the planning problem. \&ftify a class belief
space trajectory planning problems that can be expresseonasx programs and
solved using fast, globally optimal methods. Upon first apghing the problem,
one might identify the following problem variableg:, w\, andu,, forall T € [t,t +
T] andi € [1,k]. However, notice that the weight update in Equation 6 is & non
convex equality constraint. Since we are interested intify@mg a convex version
of the problem, we express the problem in terms of the logshtsiy, = log(w)
rather than the weights themselves. Equation 6 becomes:

Yeir=Ye — [IXp41 — XIr+1H(23(X%H)- (7)
The second term above appears to be bi-linear in the vasiaHlewever, because
we have assumed linear process dynamics, we have:

thﬂ _)4+r = AT(th_X{),
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wherex i € [1,K] are the support points for the prior distribution at titved there-
fore constant. As a result, the second term of Equation 7risecowhenQ(x)~* is
matrix concave irx. However, in order to express the problem in convex form, all
convex constraints must be inequality constraints, noaktyuconstraints. There-
fore, we relax the constraint to become:

Vri1 > Ve HAT(th—Xti)Hé(thﬂy 8)

The objective is to reach a belief state at titdeT such that Equation 4 is satisfied.
This is accomplished by minimizing the average log weight,

1Kk
I+T) =1 YeiT- )
1=
The problem becomes:
Problem 1.
o 1 k T-1 -
Minimize " Zy{” +0 Y Uy Ui (10)
i= =1

subject to X, ; = AX, + Bu,i € [1,K]
yirHZyir*HAr(th*X{)HQ( )

XZ
T+1
X =xw=1ie[1K
th+T = Xgoal-

a is intended to be a small value that adds a small prefererncshimrtest-path
trajectories. It turns out that because ﬂ\Eik:ly‘T term is part of the objective and
the quadratic action cost term is never affectedybythat the relaxed inequality
constraint on the log-weights (Equation 8) is always acfive. it is tight). As a
result, there is effectively no relaxation. All solutiormaihd to Problem 1 will satisfy
the equality constraint in Equation 6. Problem 1 is a convexgjam wherQ(x)’1
is matrix concave. When Algorithm 1 executes the convex piastep 5, we mean
that it solves an instance of Problem 1.

3.3 Examples: Single Beacon Domains

For example, Figure 1 illustrates the solution to Problerorlitie a variant on the
“light-dark” domain introduced in [11]. The cost function this problem (Equa-
tion 10) usesy = 0.4. In this problem, the process dynamics have unit tramsitio
matricesA =1 andB =1 in Equation 1, with Gaussian process noise with a vari-
ance of 001. The observation dynamics are defined in Equation 6 wélfictowing
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Fig. 1 Solution to the light-dark problem found using convex optiatian. The magenta “x”s
denote the support points in the initial (a) and final (b) disttions that had above average weight.
The distribution is represented by 1000 support points. Entodplye distribution is clearly much
lower in (b) than itis in (a).

hyperbolic state dependent noi§Ex) = 1/(1+ 2x), x > 0. The observation noise

is illustrated by the shading in Figure 1. Noise is relagivaigh on the left side of
state space and relatively small on the right. The systertsstaan initial belief
state described by a mixture of two Gaussians with méa$,0) and(2,0.5) and
equal variances of.0625. The distribution is represented by a set of 1000 stppor
points. The solid blue line in Figure 1 denotes the planna@dtory of the hypoth-
esis sample starting at the cyan circle and ending in the tyamark. For the
hyperbolic observation noise given above, Problem 1 bes@giadratic program.
We solved it (parametrized by 1000 support points) usingBhé¢ ILOG CPLEX
Optimizer version 12.3 in.08 seconds on a dual-core 2.53GHz Intel machine with
4G of RAM. The magenta “x” marks show the locations of the img@oce samples
with weights greater than or equal to the average. Initi@lgure 1(a)), the sampled
distribution has a high entropy. However, entropy dropsificantly so that by the
end of the trajectory (Figure 1(b)), entropy is much lower.

(b)

Fig. 2 Single-beacon problem solved for two different cost funatiqi@a) shows a solution found
using a cost function (Equation 10) with= 1. (b) shows the solution found with a cost parameter
a =5. The magenta “x”s denote the support points in the initiatitigtion.
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The single-beacon domain is another example of a convegflsgace planning
problem. In this problem, the covariance of observatios@@ a function of the L2
distance from a single point in state spaie. (he beacon). Figure 2 illustrates the
solution to this problem. The beacon is locatesatcon= (2,1.5). The covariance
of the observation noise varies as a hyperbolic functiorheflt2 distance from
the beacon cente®(x) = 1/(6 — ||X— Xpeacor]|2) |[X— Xbeacor|2 < 6. For this noise
function, Problem 1 can be expressed as a second order cogeipr where the
constraint on the domain of is interpreted as a second order cone constraint on
the positions of all the support points. We solved this progusing CPLEX in less
than one second for a distribution with 100 support points.

3.4 Analysisof algorithm convergence

For systems with deterministic process dynamics, it is iptesso show that Al-
gorithm 1 reaches a goal region of belief space in the limitbag as a feasible
horizonT path with cost] < p exists from any starting configuratioxy, € R", and
as long as the implementation of Bayesian filteri@gused in the algorithm is suf-
ficiently accurate. LeF,(X) = (Xa,...,x7T) denote the sequence Ofstates reached
after taking actionsy = (uy,...,ur_1), starting from state; = x. Let

Uxu(2) = N(Z|Fu(x), Q(x)) (11)

be the probability of making the observatioass (z,...,zr), given that the sys-
tem starts in stat& and takes actionsj, whereQy(x) = diag(Q(x1),...,Q(xt)),
(X1,...,Xr) = Fu(x) denotes the block diagonal matrix comprised of the covagan
matrices of observation noise on each time step. Let

Pou(d) = | DO0G(2) (12)

be the probability of the observations givenmarginalized oveb. Our analysis
is based on the following two lemmas that are adapted fromhdhd stated here
without proof.

Lemma 1. Suppose we are given an arbitrary sequence ef Tactions,u, an ar-
bitrary initial state, x € R", and an arbitrary initial distribution, k. Then, the ex-
pected probability of x, where(xa, ..., xr) = Fy(X), found by recursively evaluating
the deterministic Bayes filter update-T1 times is

br (x7)
Ez{ by (x1)

wherek denotes the true state at time t and @enotes the KL divergence between
the arguments.

} > exp(Dl(qK,Ua pbl,u) — Dl(QK,mQx,u)) )



Convex receding horizon control in non-Gaussian belief space 9

It is possible to bound the KL divergence between the twaidistions, gy , and
Po, u Using the following lemma.

Lemma 2. Suppose we are given a partially observable system witle stepen-
dent noise that satisfies Equation 2, an arbitrary sequerfcé actions,u, and
a distribution, 3. Supposeing, A, C R" such thatVxg, X, € Ag x Ay, ||Fu(x1) —

Fu()|2, ) = €2 8N fucp, 1(X) > Vi, fyen, b1(X) > v Then

2
) S 2n2 _ e3¢
QJ;EDI Dl(qy.,m pblsU) = 2’] y2 (l © ) ’

wheren = 1/./(2m)"|Qu(x2)| is the Gaussian normalization constant.

In order to apply Lemma 2, it is necessary to identify regjghis/A, C R" and
ae such thatyxy, x; € Ay x Ay, ||Fu(x1) — Fu(X2) ||6U(X2) > £2. Below, we show that
these regions always exist for action sequences with a iguftig small associated
cost,J(t+ T) (Equation 9).

Lemma 3. Given a linear-Gaussian system with state dependent nuégsatisfies
Equations 1 and 2 and a set of k initial support points and WisigX ,i € [1,k] and

Wi € [1,K], letu be a sequence of T 1 actions with cost &= £ ¥ logwi. Then,
3j € [1,k] such thatvr € R",V1, % € Ba(r):

IR+ 81) — Fu( + &) v=3-2va’,

2 5=
Qu(xl)
where B(r) = {x € R"x"x < r?}, and A denotes the maximum eigenvalue of
G'Qu(x))"1G where G= (I(A)T(A%)T ... (AT-H)T.

Proof. A costJ implies that there is at least one support pojn, [1,k], such that

. . 2
logw} < J. This implies thatHG(xi = x’l)’ . > J. Also, we have that'd;, &, €

u(xi)

Bn(r), ||G(&1 + &) ”@.@ < 4r2). Applying Lemma 4 in [9] gives us the conclusion
of the Lemma.

In order to show convergence of Algorithm 1, we show that tkelihood of a

region about the true state increases by a finite amount dniteaation of the outer
while loop. Our proof only holds for deterministic systems (hoameexperimental
evidence suggests that the approach is applicable to stichgstems).

Theorem 1. Suppose we have:

1. a system described by Equations 1 and 2 where the processnilys are re-
quired to be deterministic;

2. a prior distribution, hy;

3. atrajectory,u;_1, defined over k> 2 support points with cost;;J1.

If an exact implementation of Bayesian filtering were to kratate while executing
U1.r_1 resulting in a distribution at time of b;, then the probability of all states
within a ball of radius r about the true state is expected wréase by a factor of
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exp[Zrlzv2 <1e%(V'°9J2’ﬁ)2>] (13)

relative to its value at tim&, wheren = 1/,/(2m)"|Qu(x})| is the Gaussian nor-

malization constanty = eVoln(r), Vol(r) is the volume of the r-ball in n dimen-
sions, and\ is the maximum eigenvalue of Gy (X ) ~1G where G= (1(A)T(A%)T ... (AT-1)T)T.

Proof. Lemma 3 gives us two samples,andx! such that|F, (x} + &) — Fy(x) +
62)||é o) is lower-bounded. Lemma 2 gives us a lower boun®gfoy, p) by set-
ulXy

ting € = v/—logJ — 2rv/A. Lemma 1 gives us the conclusion of the Theorem by
noting thatD1(qx,ax) = 0 whenx =K.

Since Theorem 1 shows that the probability of a region abimitrtie state increases
on each iteration of thevhileloop of Algorithm 1, we know that the algorithm even-
tually terminates in the belief space goal region, as statdte following Theorem.

Theorem 2. Suppose we have the system described by Equations 1 and@tvaer
process dynamics are deterministic. Suppose'fRaty € R", there always exists a
solution to Problem 1 from x tgpsuch that § < p < 0. Then Algorithm 1 reaches
the goal region of belief space and terminates with probghll when a sufficiently
accurate implementation of Bayesian filtering is used tokraelief state.

Proof. Since the convex planner is globally optimal, we know thawiit find a
feasible plan with} < O if one exists. According to Theorem 1, this implies that the
likelihood of anr-ball for somer € R about the true state is expected to increase
by a finite amount on each iteration of thdile loop. Eventually, the goal region
must contain at leasb probability mass and the algorithm terminates in the goal
region of belief space.

4 Non-Convex Observation Noise

The fact that some belief space planning problems can bedeRiciently as a con-
vex program is important because it suggests that it migiat la possible to solve
efficiently non-convex problems comprised of a small nundi@onvex parts. One
way to accomplish this is to use mixed integer programmirithcdigh integer pro-
gramming (IP) is an NP-complete problem, there are bramchk®und methods
available that can be used to efficiently solve problems Wgthall” numbers of
integer variables with good average-case running timeseMer, since the com-
plexity of the IP is insensitive to the dimensionality of tlmederlying state space or
the belief space representation, this method can be usedv ligh dimensional
planning problems that cannot be solved in other ways.
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4.1 Mixed I nteger formulation

Suppose that state space contajnson-overlapping convex polyhedral regions,
RiU---URy C 2 such thatQ(x) 1 is matrix concave in each region. In partic-
ular, suppose that,

Ql(X) if xe Ry

=) Qo if xe R

Qu(x) otherwise

whereQ;l,i € [L,K] is the convex noise function in regid) andQy, is the “back-
ground” noise function. For this noise function, Problens hon-convex. To solve
the problem using mixed integer programming, we definex (T — 1) binary
variables:y and )\tJ, VJ € [1,gl,t € [1,T —1]. These binary variables can be re-
garded as bit-vectorgy.; and)\l:Tfl, that denote when the hypothesis state en-
ters and leaves regiop Each bit-vector is constrained be to all zero, all one, or
to change from zero to one exactly once. This representafitime transition time
from one region to the next uses extra bits but will make itexds express the con-
straints in the following. The time step on whigh, , transitions from zero to one
denotes the time when the hypothesis state enters rgg®imilarly, the time step
on whichA/.; , transitions from zero to one denotes the time when the hgsigh
state leaves regiop These constraints on the form of the bit-vectors are egpres
Vo> W, Vielgte[1,T—1] and)\tJ+1 > M, Vjelg.,te [l T—1]. We also
constrain the system to enter and leave each region exautly/and that the times
when the hypothesis state is within different regions mestdn-overlapping. This
constraint isA{; ; < Vi1 4, Vi € [1,q]. The constraint that the regions are non-
overlapping in time (the hypothesis state may not be in tvgiores at once) is:
Z?:l(y:IJ.:T—l —Mro) <L

Now that the constraints on the bit-vectors themselves haee established, we
need to make explicit the relationship between the bitemscand the distribution,
bx(x), encoded by the sample points and weights. First, we needrstrain the
hypothesis state to be within the regiBp wheny — A = 1. Suppose that each

region, R;, is defined by at set o;fz, hyperplanesrj, . f‘, such thatx € rj iff
(r)'x < bj, Yme [1, yj]. Wheny — )\t‘ =1, we enforce atqJ € R; using the so-

called “big-M” approach [13]:
vme Ly, ()% <bj+M(1— (Y —A)), (14)

whereM is defined to be a scalar large enough to effectively relaxctrestraint.

Also, when the hypothesis state is in a given region, we neexpply the corre-
sponding noise constraint. That is, whgh. ; —A{; ; = 1, we need to apply a
constraint of the form of Equation 8. This is also accom@dhusing the big-M

approach:
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Y 29— IAOG )l ¢y =M= (6 =A): (15)

When the hypothesis state is outside of all regions, thenabkdsound noise model
is applied:

) . ) q
Yo 2= IA OG-l (¢ ) ~M(3 (K =) (16)

=1

4.2 Example: Multi-Beacon Domain

Fig. 3 Multi-beacon problem. Three beacons are located at thersasfteach of the white regions.
Observation noise is proportional to the shading in the figemeet about the beacons and higher
further away. (a) and (b) illustrate the trajectories fougdhe planner in two scenarios where the
beacons are placed in slightly different configurations.

We have explored the mixed-integer approach in the contieatroulti-beacon
localization problem. This problem is essentially a comalion of three convex
single-beacon problems and is illustrated in Figure 2. Tdenario is as follows:
a maneuverable aerial vehicle (such as a mini quad-rotoflyirsy through the
environment. The objective is to reach a neighborhood at@udesignated posi-
tion with high confidence. Localization information is pirded by beacons scat-
tered throughout the environment. At each time step, thedreareport an esti-
mate of the vehicle’s position. The covariance of thesarests is state depen-
dent: noise is small near the beacons but large further al¥eycovariance noise
function is similar to that used in the single beacon domhirt, it uses an L1
norm instead of an L2 norm. If the L1 distance between theegysind any bea-
coN, X} oo § € [1.0], is less than onel|& — X} .eodl1 < 1), then the covariance of
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observation noise i€Qj(x) = 1/(1+ p — [|X— X gacodl1): Wherep = 0.01. When
X=X} oacorl1 > 1, Vj € [1,q], observation noise is constant and equaltp.1

The sampled distribution was comprised of 8 samples. The gistribution was
sampled from a Gaussian with a standard deviation 26.0The trajectory was 24
time steps long. The cost function in this experiment uged 0.25. The experi-
ment used a variation of the bit-vector strategy descrilbed@where each bit was
associated with four adjacent time steps. As a result, eastade was associated
with two bit-vectors that were each 6 bits long. In total,rthevere 36 binary vari-
ables in the problem. The resulting problem was a mixed artggadratic program
(MIQP). As in the light-dark experiment, we solved it usigBM CPLEX on a dual-
core 2.53GHz Intel machine with 4G of RAM. It took roughly 3€csnd to solve
each of the MIQPs in this section.

The results are illustrated in Figure 3. The shading in theréiglenotes the ob-
servation noise about each beacon. We performed the exgrarfior two different
contingencies where the beacons were arranged slightéretiitly. In the first, Fig-
ure 3(a), the upper right beacon was positioned closer tgdla¢ whereas in the
second, Figure 3(b), the upper right beacon was positiomlder away. Notice the
effect on the resulting solution. The position of this setteacon influences the
direction of the entire trajectory and illustrates that MEQP is finding globally
optimal solutions to Problem 1.

5 Chance Constraints

Chance constraints are an important part of belief spaaenplg. It is assumed
that obstacles are present in the state space that are t@idkedvThe probability
that the planned trajectory will cause the system to colliit an obstacle on any
given time step is constrained to be less than a desiredhibicesOne approach
to finding feasible trajectories, introduced by [13], is ®eumnixed integer linear
programming in the context of polyhedral obstacles. Howebe large number of
integer variables needed results in a large integer proginaimcan be difficult to
solve. A key innovation, known as iterative deepening [Bipioves the situation
dramatically by adding constraints and integer variabkeseeded rather than all
at once. This helps because most constraints in obstacldaav® problems are
inactive — they can be removed without affecting the sotutBlackmore has used
this idea to solve chance constrained problems where bstbdé is represented
by unweighted support points and where there are no obgamgaf3]. The key
innovation of this section is to extend this approach to@wg obstacles to partially
observable problems where sensing is active.

Our problem is to find a plan such that on every time step, tbbahility that
the system has collided with an obstacle is less than a thicksh. If there areq
polyhedral obstacle€), ..., Oq, then this condition is (Equation 3):

P (x « U?:loj-) <o.
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Suppose that each obstacjes [1,q], is defined byv; hyperplanes where thefh
hyperplane has a norma']" and an interceptl:'j'”. The condition that support point
i be outside then hyperplane in obstaclgis (OG“)TX{ < cj. The condition that the
normalized weight of support poinbe less tha /K is:

expy) 6
5% exp) ~ K a7

If the weight of each support point that is inside an obstacless tharf /k, then
we are guaranteed that the total weight of the containedostippints is less than
6. Unfortunately, since Equation 17 turns out to be a concawstcaint, we cannot
directly use it. Instead, we note that a simple sufficientition can be found using
Jensen’s inequality:

k
i < log( Hizw. (18)

At this point, we are in a position to enumerate the set of taimgs for all possible
time steps, support points, obstacles, and obstacle hgpegp However, since each
of these constraints is associated with a single binarpkibgj it is infeasible to solve
the corresponding integer program for any problem of realslensize. Instead, we
use iterative deepening to add only a small set of activetcainss.

Iterative deepening works by maintaining a set of activestraints. Initially, the
active set is null. On each iteration of iterative deepeniing optimization problem
is solved using the current active set. The solution is chedkr particles that in-
tersect an obstacle with a weight of at le@gk. Violations of the obstacle chance
constraint are placed in a temporary list that containsithe step and the sample
number of the violation. The violations are ranked in ordghe amount by which
they penetrate the obstacle. Constraints (and the comdsmpbinary variables) are
added corresponding to the most significant violation. ifigkei collided with ob-
staclej at timet on a particular iteration of iterative deepening, we cregte1 new
binary variablesy; "™, me [1,v; + 1]. Essentially, these; + 1 binary variables en-
able us to formulate the following OR condition: either tlz@nple is feasible for
some hyperplanen € [1,v;] (indicating the point is outside of the obstacle), or
Equation 18 is true (indicating a below-threshold weighiing the “big-M” ap-
proach, we add the following constraints:

vj+1 .
YoM > 1, (19)
2,
(©M "% < "+ M(1— g ™) me [1,vy], (20)
and
) 1 k
Yt < 1og(8) + Z Y+ M(1— gttty (21)
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The constraint in Equation 19 forces at least one ofuh¢ 1 binary variables to
be one. This forces at least one of the constraints in Equaf2® and 21 taot
be relaxed. Essentially, the support point cannot be irglidiaces of the obstacle
while also having a large weight. This process of adding taimds via iterative
deepening continues until no more violations are foundrimgiple, this procedure
could become intractable if it is necessary to add all péssibnstraints in order to
bring the violations list to null. In practice, however,gharely happens.

(d)

Fig. 4 Chance-constrained trajectories found on iterations B(@), 9 (c), and 25 (d) of iterative
deepening. The obstacle is shown in cyan. The magenta “x"s steimitfal distribution. The red
“x”s in collision with the obstacle show the list of chance constraiolations at that particular
iteration.

Figure 4 illustrates our approach to chance constraintsiptesence of a single
obstacle. With the exception of the obstacle, the domaire&Iy identical to the
light-dark domain in Section 3.3. The distribution is eneddising 32 weighted
samples. There are 24 time steps. The cost function andatedtpendent noise
are the same as those used in Section 3.3. The chance cottstrashold i = 0.1
— the probability that the system may be in collision with diistacle cannot exceed
0.1 on a single time step. (The effective chance constraint Ineajghter because
of the sufficient condition found using Jensen’s inequalithe sequence of sub-
figures in Figure 4 roughly illustrates progress on différiéerations of iterative
deepening. Even though this problem requirex22 x 3 = 2304 binary variables
in the worst case, we have found an optimal solution aftemagdoinly 25x 3 =75
binary variables.

6 Conclusions

In this paper, we express the problem of planning in paytialiservable systems
as a convex program. Since convex programs can be solvekhyg(in the order
of milliseconds) and with guaranteed convergence to gloptima, this is makes
the approach suitable for receding horizon control. In eqognce, we are able to
identify a new class of partially observable problems tfzat be solved efficiently
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and with provable correctness guarantees. We extend ouwoagpto non-convex
problems using mixed-integer programming. Although we @simg integer pro-
gramming, the approach is still appropriate for real-tinppleations by solving
the integer part of the program in advance and optimizingctex part of the
program on-line.
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